[go: up one dir, main page]

JP7575725B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP7575725B2
JP7575725B2 JP2021057746A JP2021057746A JP7575725B2 JP 7575725 B2 JP7575725 B2 JP 7575725B2 JP 2021057746 A JP2021057746 A JP 2021057746A JP 2021057746 A JP2021057746 A JP 2021057746A JP 7575725 B2 JP7575725 B2 JP 7575725B2
Authority
JP
Japan
Prior art keywords
fuel ratio
region
temperature
air
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021057746A
Other languages
Japanese (ja)
Other versions
JP2022154625A (en
Inventor
徹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2021057746A priority Critical patent/JP7575725B2/en
Publication of JP2022154625A publication Critical patent/JP2022154625A/en
Application granted granted Critical
Publication of JP7575725B2 publication Critical patent/JP7575725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の排気空燃比の検出技術に関する。 The present invention relates to technology for detecting the exhaust air-fuel ratio of an internal combustion engine.

内燃機関の排気通路には、内燃機関の空燃比を制御して排気を良化したり燃費や運転性を向上させたりするために、排気通路の空燃比を検出するセンサが設けられている。
例えば特許文献1には、排気通路に設けられた排気浄化触媒の近傍に空燃比センサ(空燃比検出手段)とO2センサ(酸素濃度検出手段)を備え、空燃比センサの検出値に基づいて燃料噴射制御を行うとともに、O2センサの検出値に基づいて空燃比センサの検出値を補正して、空燃比センサの検出値の精度を向上させている。
2. Description of the Related Art An exhaust passage of an internal combustion engine is provided with a sensor for detecting the air-fuel ratio in the exhaust passage in order to control the air-fuel ratio of the internal combustion engine to improve exhaust emissions and to enhance fuel economy and drivability.
For example, in Patent Document 1, an air-fuel ratio sensor (air-fuel ratio detection means) and an O2 sensor (oxygen concentration detection means) are provided near an exhaust purification catalyst provided in the exhaust passage, and fuel injection control is performed based on the detection value of the air-fuel ratio sensor, and the detection value of the air-fuel ratio sensor is corrected based on the detection value of the O2 sensor, thereby improving the accuracy of the detection value of the air-fuel ratio sensor.

更に、特許文献1では、内燃機関の吸入空気量及び目標空燃比に基づいて排気温度を推定し、推定した排気温度に基づいてO2センサの検出値を補正して、O2センサの検出値に基づいて補正する空燃比センサの検出値の精度を向上させている。 Furthermore, in Patent Document 1, the exhaust temperature is estimated based on the intake air volume and target air-fuel ratio of the internal combustion engine, and the detection value of the O2 sensor is corrected based on the estimated exhaust temperature, thereby improving the accuracy of the detection value of the air-fuel ratio sensor that is corrected based on the detection value of the O2 sensor.

特開平9-49448号公報Japanese Patent Application Publication No. 9-49448

特許文献1では、推定した排気温度に基づいてO2センサの検出値を加算補正している。このO2センサの検出値に基づいて空燃比センサの検出値を補正する際は、排気温度に基づいて加算補正したO2センサの検出値を使用することになる。しかしながら、補正後のO2センサの検出値は、補正前のO2センサの検出値よりも排気通路内の酸素濃度の変化を正確に表せていない場合があるため、空燃比センサの検出値に基づく空燃比フィードバック制御の精度を十分に向上させることができない場合がある。 In Patent Document 1, the detection value of the O2 sensor is corrected based on the estimated exhaust temperature. When correcting the detection value of the air-fuel ratio sensor based on the detection value of this O2 sensor, the detection value of the O2 sensor that has been corrected based on the exhaust temperature is used. However, since the corrected detection value of the O2 sensor may not represent the change in oxygen concentration in the exhaust passage more accurately than the detection value of the O2 sensor before correction, it may not be possible to sufficiently improve the accuracy of the air-fuel ratio feedback control based on the detection value of the air-fuel ratio sensor.

本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、酸素濃度検出手段の検出値を使用した補正を適切に行い、空燃比検出手段の検出値に基づく空燃比フィードバック制御の精度を向上させる内燃機関の制御装置を提供することにある。 The present invention was made in consideration of these problems, and its purpose is to provide a control device for an internal combustion engine that appropriately performs corrections using the detection value of the oxygen concentration detection means, and improves the accuracy of air-fuel ratio feedback control based on the detection value of the air-fuel ratio detection means.

上記の目的を達成するため、本発明の内燃機関の制御装置は、内燃機関の排気通路に設けられた排気浄化装置と、前記排気浄化装置の上流に設けられた空燃比検出手段と、前記排気浄化装置の下流に設けられた酸素濃度検出手段と、を備え、前記空燃比検出手段の検出値が目標値となるように空燃比をフィードバック制御する内燃機関の制御装置であって、前記酸素濃度検出手段の温度を取得する温度取得手段と、前記酸素濃度検出手段の出力値に応じて前記目標値を補正する補正手段と、前記温度取得手段によって取得した前記酸素濃度検出手段の温度に基づき、前記補正手段による前記目標値の補正量を変更する補正量変更手段と、を備え、前記補正手段は、前記酸素濃度検出手段の出力値がリッチ領域となった場合、前記目標値をリーン側に補正し、前記リッチ領域は、理論空燃比領域からのズレの大きさに応じて複数の領域に区分され、前記補正手段は、前記酸素濃度検出手段の出力値が、前記リッチ領域を複数に区分した領域のうち前記理論空燃比領域からのズレが大きい領域に位置するほど前記目標値を大きくリーン側に補正し、前記補正量変更手段は、前記温度取得手段によって取得した前記酸素濃度検出手段の温度が高いほど、前記目標値がよりリーン側になるように前記補正手段による補正量を変更し、前記補正量変更手段は、前記リッチ領域を複数に区分した領域のうち前記理論空燃比領域からのズレが最も大きい領域に関しては、前記酸素濃度検出手段の温度に基づいた前記補正手段による補正量の変更を行わず、前記理論空燃比領域からのズレが最も小さい領域に関しては、前記酸素濃度検出手段の温度に基づいた前記補正手段による補正量の所定以上の変更を行わないことを特徴とする。 In order to achieve the above object, a control device for an internal combustion engine of the present invention comprises an exhaust purification device provided in an exhaust passage of an internal combustion engine, an air-fuel ratio detection means provided upstream of the exhaust purification device, and an oxygen concentration detection means provided downstream of the exhaust purification device, and feedback controls the air-fuel ratio so that the detection value of the air-fuel ratio detection means becomes a target value, and the control device comprises temperature acquisition means for acquiring a temperature of the oxygen concentration detection means, correction means for correcting the target value in accordance with an output value of the oxygen concentration detection means, and correction amount change means for changing a correction amount of the target value by the correction means based on the temperature of the oxygen concentration detection means acquired by the temperature acquisition means, and the correction means corrects the target value to the lean side when the output value of the oxygen concentration detection means falls within a rich region, and the rich region is a region where a large deviation from a theoretical air-fuel ratio region occurs. the correction means corrects the target value more to the lean side as the output value of the oxygen concentration detection means is located in a region among the multiple regions into which the rich region is divided and which has a greater deviation from the stoichiometric air-fuel ratio region, and the correction amount change means changes the correction amount by the correction means so that the target value becomes leaner as the temperature of the oxygen concentration detection means acquired by the temperature acquisition means is higher, and the correction amount change means does not change the correction amount by the correction means based on the temperature of the oxygen concentration detection means for the region among the multiple regions into which the rich region is divided and which has the greatest deviation from the stoichiometric air-fuel ratio region, and does not change the correction amount by the correction means based on the temperature of the oxygen concentration detection means by more than a predetermined amount for the region among the multiple regions into which the rich region is divided and which has the smallest deviation from the stoichiometric air-fuel ratio region .

これにより、酸素濃度検出手段における温度の影響を抑制して、酸素濃度検出手段の検
出値に基づく空燃比のフィードバック制御の目標値の補正精度を向上させることができる
This makes it possible to suppress the effect of temperature on the oxygen concentration detection means, and improve the accuracy of correcting the target value of the feedback control of the air-fuel ratio based on the detection value of the oxygen concentration detection means.
.

特に、酸素濃度検出手段の温度が高いほど、補正手段による目標値の補正量を大きくするので、温度が高いほど出力値の変動範囲が狭くなる酸素濃度検出手段の特性に対応して、空燃比のフィードバック制御の目標値の補正精度を向上させることができる。
好ましくは、前記補正手段は、前記リッチ領域を複数に区分した領域のうち前記理論空燃比領域からのズレが最も小さい領域において、前記酸素濃度検出手段の温度が所定未満の場合は前記目標値の補正を行わず、補正量変更手段は、前記酸素濃度検出手段の温度が所定以上の場合は、前記リッチ領域を複数に区分した領域のうち前記理論空燃比領域からのズレが最も小さい領域においても前記目標値の補正を行うとよい。
In particular, the higher the temperature of the oxygen concentration detection means, the greater the amount of correction of the target value by the correction means. This improves the correction accuracy of the target value of the air-fuel ratio feedback control in response to the characteristics of the oxygen concentration detection means, in which the range of variation of the output value narrows as the temperature increases.
Preferably, the correction means does not correct the target value in the region obtained by dividing the rich region into a plurality of regions and in which the deviation from the theoretical air-fuel ratio region is the smallest when the temperature of the oxygen concentration detection means is below a predetermined value, and the correction amount change means corrects the target value even in the region obtained by dividing the rich region into a plurality of regions and in which the deviation from the theoretical air-fuel ratio region is the smallest when the temperature of the oxygen concentration detection means is equal to or higher than a predetermined value.

これにより、酸素濃度検出手段の温度が所定未満の際に目標値を補正しない酸素濃度検出手段の出力値であっても、酸素濃度検出手段の温度が所定以上の場合には空燃比のフィードバック制御の目標値を補正するので、温度が高いほど出力値の変動範囲が狭くなる特性を有する酸素濃度検出手段においても、酸素濃度の変化を適切に捉えフィードバック制御を精度良く行うことができる。 As a result, even if the output value of the oxygen concentration detection means does not correct the target value when the temperature of the oxygen concentration detection means is below a predetermined value, the target value of the feedback control of the air-fuel ratio is corrected when the temperature of the oxygen concentration detection means is above a predetermined value. Therefore, even in an oxygen concentration detection means that has a characteristic that the range of variation of the output value becomes narrower as the temperature increases, it is possible to appropriately capture changes in oxygen concentration and perform feedback control with high accuracy.

ましくは、排気を吸気に還流する排気還流手段を備え、前記補正手段は、前記酸素濃度検出手段の出力値が前記リッチ領域となった場合、前記目標値をリーン側に補正するとともに、排気の還流量が多くなるほど、前記目標値をリーン側に補正するとよい。 Preferably , an exhaust gas recirculation means is provided for recirculating exhaust gas to the intake air, and the correction means corrects the target value to the lean side when the output value of the oxygen concentration detection means falls within the rich region, and the larger the amount of recirculated exhaust gas becomes, the more the correction means corrects the target value to the lean side.

これにより、排気の還流量が多くなることで排気中の窒素酸化物(NOx)が低減することに対応して、目標値をリーン側に補正することで、排気浄化装置に流入する排気の空燃比を、窒素酸化物及び一酸化炭素(CO)の排出が低下する適正範囲に制御することができる。
好ましくは、内燃機関の点火時期を変更する点火時期変更手段を備え、前記補正手段は、前記酸素濃度検出手段の出力値が前記リッチ領域となった場合、前記目標値をリーン側に補正するとともに、点火時期が遅角されるほど、前記目標値をリッチ側に補正するとよい。
As a result, by correcting the target value to the lean side in response to the increase in the amount of exhaust gas recirculated, which reduces nitrogen oxides (NOx) in the exhaust, the air-fuel ratio of the exhaust gas flowing into the exhaust purification device can be controlled to an appropriate range in which emissions of nitrogen oxides and carbon monoxide (CO) are reduced.
Preferably, the invention includes an ignition timing changing means for changing the ignition timing of the internal combustion engine, and when the output value of the oxygen concentration detection means falls within the rich region, the correction means corrects the target value to the lean side, and the more the ignition timing is retarded, the more the correction means corrects the target value to the rich side.

これにより、点火時期が遅角することで排気中の一酸化炭素が低下することに対応して、目標値をリッチ側に補正することで、排気浄化装置に流入する排気の空燃比を、窒素酸化物及び一酸化炭素の排出が低下する適正範囲に制御することができる。 As a result, by correcting the target value to the rich side in response to the reduction in carbon monoxide in the exhaust due to the retarded ignition timing, the air-fuel ratio of the exhaust flowing into the exhaust purification device can be controlled to an appropriate range that reduces emissions of nitrogen oxides and carbon monoxide.

本発明の内燃機関の制御装置によれば、酸素濃度検出手段の温度に基づいて、酸素濃度検出手段の検出値に基づく空燃比のフィードバック制御の目標値の補正量を変更することで、酸素濃度検出手段の温度による検出値の影響を抑制して、空燃比のフィードバック制御の目標値を適切に設定することができる。これにより、排気浄化装置に流入する排気の空燃比を適切に制御して、排気浄化装置における排気浄化性能を向上させることができる。 According to the control device for an internal combustion engine of the present invention, the effect of the temperature of the oxygen concentration detection means on the detection value can be suppressed by changing the correction amount of the target value of the feedback control of the air-fuel ratio based on the detection value of the oxygen concentration detection means based on the temperature of the oxygen concentration detection means, and the target value of the feedback control of the air-fuel ratio can be appropriately set. This makes it possible to appropriately control the air-fuel ratio of the exhaust flowing into the exhaust purification device, thereby improving the exhaust purification performance of the exhaust purification device.

本発明の一実施形態に係るエンジンの給排気系の概略構成図である。1 is a schematic configuration diagram of an intake and exhaust system of an engine according to an embodiment of the present invention; 三元触媒における排気空燃比に対する各排気成分の浄化性能とO2センサの出力値を示すグラフである。4 is a graph showing the purification performance of each exhaust component and the output value of an O2 sensor versus the exhaust air-fuel ratio in a three-way catalyst. LAFS補正量の設定用マップの一例である。4 is an example of a map for setting a LAFS correction amount. LAFS補正量の設定用マップの他の例である。11 is another example of a map for setting a LAFS correction amount. 三元触媒における排気空燃比に対する各排気成分の浄化性能とO2センサの出力値を示すグラフであり、LAFS補正量を決定する閾値の設定例を示す。1 is a graph showing the purification performance of each exhaust component and the output value of an O2 sensor versus the exhaust air-fuel ratio in a three-way catalyst, and shows an example of setting a threshold value for determining a LAFS correction amount.

以下、図面に基づき本発明の一実施形態について説明する。
図1は、本発明の一実施形態に係る制御装置を適用したエンジン2(内燃機関)の給排気系の概略構成図である。
エンジン2は、走行駆動源として車両に搭載されている。
エンジン2は、多気筒のガソリンエンジンであって、図1では簡略して1つの気筒のみ記載している。エンジン2は、各気筒の吸気ポート4に設けられた燃料噴射弁3から、任意の噴射時期及び噴射量で各気筒の吸気ポート4内に燃料を噴射可能な構成となっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing the configuration of an intake and exhaust system of an engine 2 (internal combustion engine) to which a control device according to an embodiment of the present invention is applied.
The engine 2 is mounted on the vehicle as a driving source.
The engine 2 is a multi-cylinder gasoline engine, and for simplicity, only one cylinder is shown in Fig. 1. The engine 2 is configured to be able to inject fuel into the intake port 4 of each cylinder from a fuel injection valve 3 provided in the intake port 4 of each cylinder at any injection timing and injection amount.

エンジン2の吸気通路5には、新気の流量を調整するためのスロットルバルブ6が設けられている。
一方、エンジン2の排気通路10には、排気浄化装置として三元触媒12が備えられている。
三元触媒12は、理論空燃比において排気中のHC、COを酸化させるとともにNOxを還元し、これらの排気成分を排気中から除去する機能を有する。
An intake passage 5 of the engine 2 is provided with a throttle valve 6 for adjusting the flow rate of fresh air.
On the other hand, an exhaust passage 10 of the engine 2 is provided with a three-way catalyst 12 as an exhaust purification device.
The three-way catalyst 12 has the function of oxidizing HC and CO in the exhaust gas and reducing NOx at a theoretical air-fuel ratio, thereby removing these exhaust components from the exhaust gas.

エンジン2の排気通路10には、三元触媒12の上流側にLAFS(リニア空燃比センサ)22(排気空燃比検出手段)を備えるとともに、三元触媒12の下流側に排気空燃比を検出するO2センサ23(酸素濃度検出手段)と排気温度を検出する排気温度センサ24(温度取得手段)が設けられている。
エンジンコントロールユニット30は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、タイマ及び中央演算処理装置(CPU)等を含んで構成され、LAFS22、O2センサ23等の各種センサの検出情報と、その他車両のアクセル操作量等の車両運転情報を入力し、当該各種情報に基づいて、燃料噴射弁3からの燃料噴射量、 スロットルバルブ6の開度を演算して、上記各種機器の作動制御を行うことで、エンジン2の運転制御を行う。
The exhaust passage 10 of the engine 2 is provided with a LAFS (linear air-fuel ratio sensor) 22 (exhaust air-fuel ratio detection means) on the upstream side of the three-way catalyst 12, and an O2 sensor 23 (oxygen concentration detection means) that detects the exhaust air-fuel ratio and an exhaust temperature sensor 24 (temperature acquisition means) that detects the exhaust temperature are provided on the downstream side of the three-way catalyst 12.
The engine control unit 30 is configured to include input/output devices, memory devices (ROM, RAM, non-volatile RAM, etc.), a timer, a central processing unit (CPU), etc., and receives detection information from various sensors such as the LAFS 22 and the O2 sensor 23, as well as other vehicle operation information such as the amount of accelerator operation of the vehicle, and calculates the amount of fuel injection from the fuel injection valve 3 and the opening of the throttle valve 6 based on this information, thereby controlling the operation of the various devices mentioned above, thereby controlling the operation of the engine 2.

具体的には、エンジンコントロールユニット30は、LAFS22の検出値が目標空燃比(目標値)、例えば理論空燃比を示す値になるように燃料噴射量をフィードバック制御する。
図2は、所定回転速度及び所定負荷でのエンジン2の運転時において、三元触媒12における排気空燃比に対する各排気成分の浄化性能とO2センサ23の出力値を示すグラフである。図2(A)において、実線がLAFS22の出力値を示す。また、破線が一酸化炭素CO及び炭化水素HC、一点鎖線が窒素酸化物NOxの三元触媒12からの排出量を示す。一酸化炭素CO、炭化水素HC、窒素酸化物NOxの三元触媒12からの排出量が少なくなる空燃比、すなわち理論空燃比付近の領域(理論空燃比領域)を目標空燃比として、LAFS22の検出値に基づき燃料噴射量をフィードバック制御する。図2(B)は、O2センサ23の出力値を示す。図2(B)において、破線はO2センサ23が高温状態であるときのO2センサ23の出力値、一点鎖線はO2センサ23が低温(常温)であるときのO2センサ23の出力値である。O2センサ23の出力値は、理論空燃比領域において大きく変化し、理論空燃比領域よりもリッチ側及びリーン側では小さく変化する。そのため、理論空燃比領域とリッチ領域との境界(リッチ境界)におけるO2センサ23の出力値と、理論空燃比領域とリーン領域との境界(リーン境界)におけるO2センサ23の出力値との差は大きくなる。O2センサ23は、例えばリッチ境界及びリーン境界における出力値にそれぞれリッチ閾値(リッチ判定値)、リーン閾値(リーン判定値)を設けることで、O2センサ23の出力値に基づいて三元触媒12の下流側の排気空燃比の状態、すなわち排気空燃比が理論空燃比領域にあるか、若しくはリッチ、リーン状態にあるかを判定することができる。
Specifically, the engine control unit 30 feedback controls the fuel injection amount so that the detection value of the LAFS 22 becomes a target air-fuel ratio (target value), for example, a value indicating the theoretical air-fuel ratio.
2 is a graph showing the purification performance of each exhaust component and the output value of the O2 sensor 23 with respect to the exhaust air-fuel ratio in the three-way catalyst 12 when the engine 2 is operated at a predetermined rotation speed and a predetermined load. In FIG. 2(A), the solid line shows the output value of the LAFS 22. The dashed line shows the amount of carbon monoxide CO and hydrocarbons HC, and the dashed line shows the amount of nitrogen oxides NOx discharged from the three-way catalyst 12. The amount of fuel injection is feedback-controlled based on the detection value of the LAFS 22, with the air-fuel ratio at which the amount of carbon monoxide CO, hydrocarbons HC, and nitrogen oxides NOx discharged from the three-way catalyst 12 is small, that is, the area near the theoretical air-fuel ratio (theoretical air-fuel ratio area), being set as the target air-fuel ratio. FIG. 2(B) shows the output value of the O2 sensor 23. In FIG. 2(B), the dashed line shows the output value of the O2 sensor 23 when the O2 sensor 23 is in a high temperature state, and the dashed line shows the output value of the O2 sensor 23 when the O2 sensor 23 is in a low temperature (normal temperature). The output value of the O2 sensor 23 changes greatly in the stoichiometric air-fuel ratio region, and changes slightly on the rich side and lean side of the stoichiometric air-fuel ratio region. Therefore, the difference between the output value of the O2 sensor 23 at the boundary (rich boundary) between the stoichiometric air-fuel ratio region and the rich region and the output value of the O2 sensor 23 at the boundary (lean boundary) between the stoichiometric air-fuel ratio region and the lean region becomes large. For example, the O2 sensor 23 can determine the state of the exhaust air-fuel ratio downstream of the three-way catalyst 12, i.e., whether the exhaust air-fuel ratio is in the stoichiometric air-fuel ratio region or in a rich or lean state, based on the output value of the O2 sensor 23, by providing a rich threshold value (rich judgment value) and a lean threshold value (lean judgment value) for the output value at the rich boundary and the lean boundary, respectively.

エンジンコントロールユニット30は、O2センサ23の出力値に基づいて、LAFS22の出力値を補正する機能を有する。
更に、本実施形態のエンジンコントロールユニット30は、上記フィードバック制御における目標空燃比を補正する目標空燃比補正部1を備えている。目標空燃比補正部1は、排気温度センサ24によって検出した排気温度に基づいてO2センサ23の温度を取得する温度取得部35(温度取得手段)と、目標空燃比を補正する補正部36(補正手段、補正量変更手段)と、を有する。なお、三元触媒12、LAFS22、O2センサ23、排気温度センサ24、及びエンジンコントロールユニット30における目標空燃比補正部1と空燃比のフィードバック制御機能と、が本発明の制御装置に該当する。
The engine control unit 30 has a function of correcting the output value of the LAFS 22 based on the output value of the O 2 sensor 23 .
Furthermore, the engine control unit 30 of this embodiment is provided with a target air-fuel ratio correction section 1 that corrects the target air-fuel ratio in the above feedback control. The target air-fuel ratio correction section 1 has a temperature acquisition section 35 (temperature acquisition means) that acquires the temperature of the O2 sensor 23 based on the exhaust temperature detected by the exhaust temperature sensor 24, and a correction section 36 (correction means, correction amount change means) that corrects the target air-fuel ratio. The three-way catalyst 12, the LAFS 22, the O2 sensor 23, the exhaust temperature sensor 24, and the target air-fuel ratio correction section 1 and the feedback control function of the air-fuel ratio in the engine control unit 30 correspond to the control device of the present invention.

補正部36は、O2センサ23の出力値とO2センサ23の温度とに基づいて目標空燃比を補正する。なお、ここでは、排気温度センサ24によって検出した排気温度を基にO2センサ23の温度を推定する。具体的には、O2センサ23の温度が排気温度に対して遅れて変化することを考慮して、O2センサ23の温度を推定する。補正部36は、図3に示すようなマップを用いて、O2センサ23の出力値とO2センサ23の温度(排気温度)とに基づいて、LAFS補正量(目標空燃比の補正量)を設定する。図3に示すように、O2センサ23の出力値が理論空燃比に近くなるほどLAFS補正量(目標空燃比の補正量)の絶対値を小さくし、O2センサ23の出力値がリッチになるほどあるいはリーンになるほどLAFS補正量の絶対値を大きくする。即ち、O2センサ23の出力値がリッチあるいはリーンになるほど、LAFS補正量の絶対値を大きくして、目標空燃比を大きく変化させる。 The correction unit 36 corrects the target air-fuel ratio based on the output value of the O2 sensor 23 and the temperature of the O2 sensor 23. Here, the temperature of the O2 sensor 23 is estimated based on the exhaust temperature detected by the exhaust temperature sensor 24. Specifically, the temperature of the O2 sensor 23 is estimated taking into consideration that the temperature of the O2 sensor 23 changes with a delay relative to the exhaust temperature. The correction unit 36 sets the LAFS correction amount (the correction amount of the target air-fuel ratio) based on the output value of the O2 sensor 23 and the temperature (exhaust temperature) of the O2 sensor 23 using a map such as that shown in FIG. 3. As shown in FIG. 3, the absolute value of the LAFS correction amount (the correction amount of the target air-fuel ratio) is made smaller as the output value of the O2 sensor 23 approaches the theoretical air-fuel ratio, and the absolute value of the LAFS correction amount is made larger as the output value of the O2 sensor 23 becomes richer or leaner. That is, the absolute value of the LAFS correction amount is made larger as the output value of the O2 sensor 23 becomes richer or leaner, and the target air-fuel ratio is changed more significantly.

また、排気温度が高くなるほど、即ちO2センサ23の温度が高くなるほど、LAFS補正量(目標空燃比の補正量)の絶対値を大きくする。
なお本実施形態では、補正部36によって図3に示すように、O2センサ23の出力値をリッチ領域及びリーン領域の夫々において大、中、小の第3段階に、排気温度を4段階に区分しており、LAFS補正量を大、中、小、0(補正なし)の4段階に設定する。O2センサ23の出力値がリッチ大あるいはリーン大(すなわち、理論空燃比領域からのズレが大きい領域)の場合には、排気温度に拘わらずLAFS補正量の絶対値が大に設定される。O2センサ23の出力値がリッチ中あるいはリーン中(理論空燃比領域からのズレがリッチ大あるいはリーン大より少ない領域)の場合には、上記のように排気温度が高くなるほどLAFS補正量(目標空燃比の補正量)の絶対値を小→中→大のように大きくする。O2センサ23の出力値がリッチ小あるいはリーン小(理論空燃比領域からのズレがリッチ中あるいはリーン中より少ない領域)の場合には、排気温度が4段階のうちの最も低い領域では補正を行わず(LAFS補正量=0)、その他の領域でLAFS補正量を小に設定する。なお、排気温度が4段階のうちの最も低い領域は、O2センサ23の活性温度以上の領域であり、活性温度近傍(活性温度を含む)から広がっていることが好ましい。
Also, the higher the exhaust temperature, i.e., the higher the temperature of the O2 sensor 23, the larger the absolute value of the LAFS correction amount (the correction amount of the target air-fuel ratio) is made.
In this embodiment, as shown in Fig. 3, the output value of the O2 sensor 23 is divided into three stages, large, medium, and small, in each of the rich and lean regions, and the exhaust temperature is divided into four stages, and the LAFS correction amount is set to four stages, large, medium, small, and 0 (no correction). When the output value of the O2 sensor 23 is rich and large or lean and large (i.e., a region where the deviation from the theoretical air-fuel ratio region is large), the absolute value of the LAFS correction amount is set to large regardless of the exhaust temperature. When the output value of the O2 sensor 23 is rich or lean and medium (a region where the deviation from the theoretical air-fuel ratio region is smaller than rich and large lean), the absolute value of the LAFS correction amount (correction amount of the target air-fuel ratio) is increased from small to medium to large as the exhaust temperature increases, as described above. When the output value of the O2 sensor 23 is small rich or small lean (a region where the deviation from the theoretical air-fuel ratio region is smaller than middle rich or middle lean), no correction is performed in the lowest region of the four stages of exhaust gas temperature (LAFS correction amount = 0), and the LAFS correction amount is set to small in other regions. Note that the lowest region of the four stages of exhaust gas temperature is a region equal to or higher than the activation temperature of the O2 sensor 23, and preferably extends from the vicinity of the activation temperature (including the activation temperature).

このように補正することで、温度上昇によって出力値の変動範囲が狭くなるといったO2センサ23の特性に対応して、LAFS補正量を大きく設定することで、空燃比フィードバック制御における目標空燃比を温度変化に対応して大きく変化させることができる。すなわち、温度上昇によってO2センサ23の出力値の変動範囲が狭くなった場合は、LAFS補正量を大きくすることによって、少ないO2センサ23の出力値変動を目標空燃比に反映させている。したがって、この補正された目標空燃比を使用して、LAFS22の出力値に基く空燃比フィードバック制御を精度良く実行することができる。 By making such corrections, the LAFS correction amount can be set large in response to the characteristics of the O2 sensor 23, such as the narrowing of the output value fluctuation range due to temperature rise, and the target air-fuel ratio in the air-fuel ratio feedback control can be changed significantly in response to temperature changes. In other words, when the output value fluctuation range of the O2 sensor 23 narrows due to temperature rise, the LAFS correction amount is increased to reflect the small fluctuation in the output value of the O2 sensor 23 in the target air-fuel ratio. Therefore, this corrected target air-fuel ratio can be used to accurately execute air-fuel ratio feedback control based on the output value of LAFS 22.

また、O2センサ23の出力値がリッチ小あるいはリーン小の場合には、排気温度が4段階のうちの最も低い領域ではLAFS補正量を0にしている。しかしながら、このようにO2センサ23の出力値が理論空燃比に近い領域であっても、排気温度が4段階のうち下から2番目に低い領域以上の場合にはLAFS補正量を0ではなく小にする。
これにより、酸素濃度検出手段の温度が所定未満の低温時にLAFS補正量を補正しないO2センサ23の出力値であっても、O2センサ23の温度が所定以上の場合にはLAFS補正量を小としてフィードバック制御における目標空燃比を補正するので、O2センサ23付近の排気の空燃比が理論空燃比に近くてもフィードバック制御を精度良く行うことができる。すなわち、O2センサ23の温度が所定未満の場合であればリッチ閾値あるいはリーン閾値を超えるようなO2センサ23の出力値であっても、O2センサ23の温度が所定(排気温度が4段階のうちの下から2番目に低い領域)以上の場合は、O2センサ23の出力値の変動範囲が狭くなり、O2センサ23の出力値がリッチ閾値あるいはリーン閾値を超えなくなるため、本来であれば目標空燃比の補正を行いたい排気状態なのに補正が行われない場合がある。酸素濃度検出手段の温度が所定未満の低温時にLAFS補正量を補正しないO2センサ23の出力値であっても、O2センサ23の温度が所定以上の場合にはLAFS補正量を小としてフィードバック制御における目標空燃比を補正することで、このような事態を解消し、フィードバック制御を精度良く行うことができる。
Furthermore, when the output value of the O2 sensor 23 is small rich or small lean, in the lowest exhaust temperature range of the four stages, the LAFS correction amount is set to 0. However, even if the output value of the O2 sensor 23 is in a range close to the stoichiometric air-fuel ratio, in the case where the exhaust temperature is equal to or higher than the second lowest range of the four stages, the LAFS correction amount is set to small, not 0.
As a result, even if the output value of the O2 sensor 23 does not correct the LAFS correction amount when the temperature of the oxygen concentration detection means is low and below a predetermined value, the LAFS correction amount is set to be small when the temperature of the O2 sensor 23 is above a predetermined value, and the target air-fuel ratio in the feedback control is corrected, so that feedback control can be performed with high accuracy even if the air-fuel ratio of the exhaust gas near the O2 sensor 23 is close to the theoretical air-fuel ratio. That is, even if the output value of the O2 sensor 23 exceeds the rich threshold value or the lean threshold value when the temperature of the O2 sensor 23 is below a predetermined value, when the temperature of the O2 sensor 23 is above a predetermined value (the second lowest region of the four exhaust gas temperature stages), the fluctuation range of the output value of the O2 sensor 23 becomes narrower and the output value of the O2 sensor 23 does not exceed the rich threshold value or the lean threshold value, so that the correction of the target air-fuel ratio may not be performed even if the exhaust gas is in a state where the correction of the target air-fuel ratio is originally desired. Even if the output value of the O2 sensor 23 does not correct the LAFS correction amount when the temperature of the oxygen concentration detection means is low and below a predetermined value, when the temperature of the O2 sensor 23 is above a predetermined value, the LAFS correction amount is set to a small value and the target air-fuel ratio in feedback control is corrected, thereby eliminating such a situation and enabling feedback control to be performed with high accuracy.

また、エンジン2にEGR装置(排気還流手段)が備えられている場合には、更にEGR量(排気還流量)に基づいて目標空燃比を補正するとよい。具体的には、補正部36は、排気の還流量が多くなるほど、目標空燃比をリーン側に補正するとよい。
これにより、排気の還流量が多くなることで排気中のNOxが低減することに対応して目標空燃比を補正することができる。具体的には、排気浄化装置が三元触媒12であり目標空燃比が理論空燃比である場合を例示すると、排気の還流量が多くなることで排気中のNOxが低減するが、排気中のCOはNOxほど大きく低減しない。そのため、COとNOxの三元触媒12からの排出量が少なくなる空燃比領域はリーン側に拡大することとなる。この拡大した空燃比領域の中央部で目標空燃比を設定することで、空燃比が変動したとしても排気を良好に保つことができる。したがって、空燃比が変動しても理論空燃比領域から逸脱し難くなり、三元触媒12における排気浄化性能を向上させることができる。なお、目標空燃比は拡大した空燃比領域の中央部に設定する必要はないが、このようにすることにより、空燃比が変動しても、変動した空燃比がCOとNOxの三元触媒12からの排出量が少なくなる空燃比領域内に納まりやすくなる。
Furthermore, if the engine 2 is equipped with an EGR device (exhaust gas recirculation means), the target air-fuel ratio may be further corrected based on the EGR amount (amount of exhaust gas recirculated). Specifically, the correction unit 36 may correct the target air-fuel ratio to the leaner side as the amount of exhaust gas recirculated increases.
As a result, the target air-fuel ratio can be corrected in response to the reduction in NOx in the exhaust gas due to the increase in the amount of recirculation of the exhaust gas. Specifically, in the case where the exhaust gas purification device is the three-way catalyst 12 and the target air-fuel ratio is the stoichiometric air-fuel ratio, the amount of NOx in the exhaust gas is reduced by increasing the amount of recirculation of the exhaust gas, but the amount of CO in the exhaust gas is not reduced as much as the amount of NOx. Therefore, the air-fuel ratio region in which the amount of CO and NOx emitted from the three-way catalyst 12 is reduced is expanded to the lean side. By setting the target air-fuel ratio in the center of this expanded air-fuel ratio region, the exhaust gas can be kept in good condition even if the air-fuel ratio fluctuates. Therefore, even if the air-fuel ratio fluctuates, it is difficult to deviate from the stoichiometric air-fuel ratio region, and the exhaust gas purification performance of the three-way catalyst 12 can be improved. It is not necessary to set the target air-fuel ratio in the center of the expanded air-fuel ratio region, but by doing so, even if the air-fuel ratio fluctuates, the fluctuated air-fuel ratio is likely to fall within the air-fuel ratio region in which the amount of CO and NOx emitted from the three-way catalyst 12 is reduced.

また、エンジンコントロールユニット30に点火時期を変更する機能(点火時期変更手段)を備えている場合には、更に点火時期に基づいて目標空燃比を補正するとよい。具体的には、補正部36は、点火時期が遅角されるほど、目標空燃比をリッチ側に補正するとよい。
これにより、点火時期が遅角することで排気中のCOが低下することに対応して目標空燃比を補正することができる。具体的には、排気浄化装置が三元触媒12であり目標空燃比が理論空燃比である場合を例示すると、点火時期を遅角することで排気中のCOが低減するが、排気中のNOxはCOほど大きく低減しない。そのため、COとNOxの三元触媒12からの排出量が少なくなる空燃比領域はリッチ側に拡大することとなる。この拡大した空燃比領域の中央部で目標空燃比を設定することで、空燃比が多少変動したとしても排気を良好に保つことができる。したがって、空燃比が変動しても理論空燃比領域から逸脱し難くなり、三元触媒12における排気浄化性能を向上させることができる。
Furthermore, if the engine control unit 30 has a function of changing the ignition timing (ignition timing changing means), it is preferable to further correct the target air-fuel ratio based on the ignition timing. Specifically, it is preferable that the correction unit 36 corrects the target air-fuel ratio to the rich side as the ignition timing is retarded.
This allows the target air-fuel ratio to be corrected in response to the reduction in CO in the exhaust gas due to the retardation of the ignition timing. Specifically, in the case where the exhaust gas purification device is a three-way catalyst 12 and the target air-fuel ratio is the stoichiometric air-fuel ratio, the CO in the exhaust gas is reduced by retarding the ignition timing, but the NOx in the exhaust gas is not reduced as much as the CO. Therefore, the air-fuel ratio region in which the amount of CO and NOx emitted from the three-way catalyst 12 is reduced is expanded to the rich side. By setting the target air-fuel ratio in the center of this expanded air-fuel ratio region, the exhaust gas can be kept good even if the air-fuel ratio fluctuates slightly. Therefore, even if the air-fuel ratio fluctuates, it is difficult to deviate from the stoichiometric air-fuel ratio region, and the exhaust gas purification performance of the three-way catalyst 12 can be improved.

以上で本発明の説明を終了するが、本発明は上記の実施形態に限定するものではない。
例えば、上記の実施形態では、補正部36において、O2センサ23の出力値をリッチ及びリーンにおいて夫々大、中、小の第3段階、排気温度を4段階に区分して、LAFS補正量を大、中、小、0の4段階に設定しているが、その他の2以上の段階に適宜設定してもよいし、連続的に設定してもよい。また、O2センサ23の出力値がリッチ小あるいはリーン小の場合であって、かつ排気温度が最も低い領域において、LAFS補正量を0に設定しているが、小に設定してもよいし、小よりも少ない値に設定してもよい。
Although the description of the present invention is now completed, the present invention is not limited to the above embodiment.
For example, in the above embodiment, the output value of the O2 sensor 23 is divided into three stages of large, medium, and small for rich and lean, and the exhaust temperature is divided into four stages, and the LAFS correction amount is set to four stages of large, medium, small, and 0 in the correction unit 36, but it may be appropriately set to other two or more stages, or may be set continuously. Also, when the output value of the O2 sensor 23 is small rich or small lean and in the region where the exhaust temperature is the lowest, the LAFS correction amount is set to 0, but it may be set to small or a value less than small.

また、リッチとリーンにおいてLAFS補正量を異なるように設定してもよい。例えば、リーン領域におけるO2センサ23の出力値はO2センサ23の温度変化の影響を受けにくいため、リッチ領域よりもリーン領域でのLAFS補正量を小さく設定してもよいし、リーン領域においてLAFS補正量を0にしてもよい。なお、リーン領域の方がリッチ領域よりも温度変化の影響を受けやすいような場合が考えられるのであれば、リーン領域でのLAFS補正量をリッチ領域でのLAFS補正量よりも大きくしてもよい。 The LAFS correction amount may be set differently in the rich and lean regions. For example, since the output value of the O2 sensor 23 in the lean region is less susceptible to temperature changes of the O2 sensor 23, the LAFS correction amount may be set smaller in the lean region than in the rich region, or the LAFS correction amount may be set to 0 in the lean region. Note that if there is a case in which the lean region is more susceptible to temperature changes than the rich region, the LAFS correction amount in the lean region may be set larger than the LAFS correction amount in the rich region.

また、排気浄化装置は三元触媒に限らず、燃料噴射量をフィードバック制御する際のLAFS22の検出値の目標空燃比は理論空燃比でなくともよい。
また、上記実施態では補正部36において、O2センサ23の出力値と排気温度からLAFS補正量(目標空燃比の補正量)を変更するように設定しているが、O2センサ23の出力値と排気温度からLAFS補正量を決定する閾値を変更することにより、結果的にLAFS補正量を変更してもよい。
Furthermore, the exhaust purification device is not limited to a three-way catalyst, and the target air-fuel ratio of the detection value of the LAFS 22 when feedback controlling the fuel injection amount does not have to be the stoichiometric air-fuel ratio.
In addition, in the above embodiment, the correction unit 36 is set to change the LAFS correction amount (the correction amount of the target air-fuel ratio) based on the output value of the O2 sensor 23 and the exhaust temperature, but the LAFS correction amount may be changed by changing the threshold value that determines the LAFS correction amount based on the output value of the O2 sensor 23 and the exhaust temperature.

補正部36は、例えば図4、5に示すように、O2センサ23の出力値についてリッチ側より順番に第1閾値、第2閾値、第3閾値の3個有し、O2センサ23の出力値がこれらの閾値のいずれの間の範囲であるかによって、LAFS補正量を設定する。更に、この第1閾値、第2閾値、第3閾値の設定が、排気温度(O2センサ23の温度)によって異なる。例えば排気温度が適宜設定された常温域においては、O2センサ23の出力値が第1閾値以上ではLAFS補正量が大、第1閾値未満第2閾値以上ではLAFS補正量が小、第2閾値未満第3閾値以上ではLAFS補正量が0であるのに対し、排気温度が常温域より高い高温域では、O2センサ23の出力値が第1閾値以上ではLAFS補正量が大、第1閾値未満第2閾値以上ではLAFS補正量が大、第2閾値未満第3閾値以上ではLAFS補正量が小に設定される。すなわち、常温域における第1閾値と第2閾値が、高温域ではそれぞれ第2閾値と第3閾値まで低下したこととなる。なお、O2センサ23の出力値が第3閾値未満においては、空燃比が理論空燃比領域及び理論空燃比領域に近い領域にあるものと判断して、LAFS補正量は0とする。したがって、排気温度が常温域より高い高温域では、常温域の場合よりも、LAFS補正量を決定する閾値を下げることになる。 As shown in Figures 4 and 5, the correction unit 36 has three thresholds, a first threshold, a second threshold, and a third threshold, in order from the rich side, for the output value of the O2 sensor 23, and sets the LAFS correction amount depending on which of these thresholds the output value of the O2 sensor 23 is in. Furthermore, the settings of the first threshold, the second threshold, and the third threshold differ depending on the exhaust temperature (temperature of the O2 sensor 23). For example, in the normal temperature range where the exhaust temperature is appropriately set, when the output value of the O2 sensor 23 is equal to or higher than the first threshold, the LAFS correction amount is large, when it is less than the first threshold and equal to or higher than the second threshold, the LAFS correction amount is small, and when it is less than the second threshold and equal to or higher than the third threshold, the LAFS correction amount is 0. On the other hand, in the high temperature range where the exhaust temperature is higher than the normal temperature range, when the output value of the O2 sensor 23 is equal to or higher than the first threshold, the LAFS correction amount is large, when it is less than the first threshold and equal to or higher than the second threshold, the LAFS correction amount is large, and when it is less than the second threshold and equal to or higher than the third threshold, the LAFS correction amount is set to small. That is, the first and second thresholds in the normal temperature range are lowered to the second and third thresholds in the high temperature range. When the output value of the O2 sensor 23 is less than the third threshold, it is determined that the air-fuel ratio is in the stoichiometric air-fuel ratio range or a range close to the stoichiometric air-fuel ratio range, and the LAFS correction amount is set to 0. Therefore, in the high temperature range where the exhaust temperature is higher than the normal temperature range, the threshold for determining the LAFS correction amount is lowered compared to the normal temperature range.

これにより、上記実施形態と同様に、O2センサの温度に基づいてLAFS補正量が変更され目標空燃比を適切に設定することができる。
なお、リーン領域においても、上記のリッチ領域と同様にLAFS補正量(絶対値)を設定してもよい。この場合には、排気温度が高温域では常温域の場合よりも、LAFS補正量を0から小に切り換えるO2センサ23の出力値であるリーン判定値を上げることになる。これにより、リーン領域においてもLAFS補正量を変更して目標空燃比を適切に設定することが可能になる。
As a result, similarly to the above embodiment, the LAFS correction amount is changed based on the temperature of the O2 sensor, and the target air-fuel ratio can be appropriately set.
In the lean region, the LAFS correction amount (absolute value) may be set in the same manner as in the rich region. In this case, the lean judgment value, which is the output value of the O2 sensor 23 at which the LAFS correction amount is switched from 0 to small, is increased in the high exhaust gas temperature region compared to the normal temperature region. This makes it possible to appropriately set the target air-fuel ratio by changing the LAFS correction amount even in the lean region.

また、車両の走行駆動用以外のエンジンについても、排気通路に空燃比検出手段を備え、空燃比検出手段の検出値に基づいて空燃比をフィードバック制御する内燃機関に対して広く適用することができる。 The invention can also be widely applied to internal combustion engines other than those used to drive vehicles, which are equipped with an air-fuel ratio detection means in the exhaust passage and feedback-control the air-fuel ratio based on the detection value of the air-fuel ratio detection means.

1 目標空燃比補正部
2 エンジン(内燃機関)
10 排気通路
12 三元触媒(排気浄化装置)
22 LAFS(空燃比検出手段)
23 O2センサ(酸素濃度検出手段)
24 排気温度センサ(温度取得手段)
30 エンジンコントロールユニット
35 温度取得部(温度取得手段)
36 補正部(補正手段、補正量変更手段)
1 Target air-fuel ratio correction unit 2 Engine (internal combustion engine)
10 exhaust passage 12 three-way catalyst (exhaust gas purification device)
22 LAFS (air-fuel ratio detection means)
23 O2 sensor (oxygen concentration detection means)
24 Exhaust temperature sensor (temperature acquisition means)
30 Engine control unit 35 Temperature acquisition unit (temperature acquisition means)
36 Correction unit (correction means, correction amount change means)

Claims (4)

内燃機関の排気通路に設けられた排気浄化装置と、
前記排気浄化装置の上流に設けられた空燃比検出手段と、
前記排気浄化装置の下流に設けられた酸素濃度検出手段と、を備え、
前記空燃比検出手段の検出値が目標値となるように空燃比をフィードバック制御する内燃機関の制御装置であって、
前記酸素濃度検出手段の温度を取得する温度取得手段と、
前記酸素濃度検出手段の出力値に応じて前記目標値を補正する補正手段と、
前記温度取得手段によって取得した前記酸素濃度検出手段の温度に基づき、前記補正手段による前記目標値の補正量を変更する補正量変更手段と、を備え
前記補正手段は、前記酸素濃度検出手段の出力値が理論空燃比領域よりリッチ側の領域であるリッチ領域となった場合、前記目標値をリーン側に補正し、
前記リッチ領域は、前記理論空燃比領域からのズレの大きさに応じて複数の領域に区分され、前記補正手段は、前記酸素濃度検出手段の出力値が、前記リッチ領域を複数に区分した領域のうち前記理論空燃比領域からのズレが大きい領域に位置するほど前記目標値を大きくリーン側に補正し、
前記補正量変更手段は、前記温度取得手段によって取得した前記酸素濃度検出手段の温度が高いほど、前記目標値がよりリーン側になるように前記補正手段による補正量を変更し、
前記補正量変更手段は、前記リッチ領域を複数に区分した領域のうち前記理論空燃比領域からのズレが最も大きい領域に関しては、前記酸素濃度検出手段の温度に基づいた前記補正手段による補正量の変更を行わず、前記理論空燃比領域からのズレが最も小さい領域に関しては、前記酸素濃度検出手段の温度に基づいた前記補正手段による補正量の所定以上の変更を行わない
ことを特徴とする内燃機関の制御装置。
an exhaust purification device provided in an exhaust passage of the internal combustion engine;
an air-fuel ratio detection means provided upstream of the exhaust purification device;
an oxygen concentration detection means provided downstream of the exhaust purification device,
A control device for an internal combustion engine that feedback controls an air-fuel ratio so that a detection value of the air-fuel ratio detection means becomes a target value,
A temperature acquisition means for acquiring a temperature of the oxygen concentration detection means;
a correction means for correcting the target value in accordance with an output value of the oxygen concentration detection means;
a correction amount changing means for changing a correction amount of the target value by the correction means based on the temperature of the oxygen concentration detection means acquired by the temperature acquisition means ,
the correction means corrects the target value to a lean side when the output value of the oxygen concentration detection means falls in a rich region that is a region richer than a stoichiometric air-fuel ratio region,
the rich region is divided into a plurality of regions according to the magnitude of deviation from the stoichiometric air-fuel ratio region, and the correction means corrects the target value to the lean side more significantly as the output value of the oxygen concentration detection means is positioned in a region among the plurality of regions into which the rich region is divided that has a greater deviation from the stoichiometric air-fuel ratio region,
the correction amount changing means changes the correction amount by the correcting means so that the target value becomes leaner as the temperature of the oxygen concentration detecting means acquired by the temperature acquiring means becomes higher;
The correction amount changing means does not change the correction amount by the correcting means based on the temperature of the oxygen concentration detecting means for a region in which the deviation from the stoichiometric air-fuel ratio region is the largest among the regions obtained by dividing the rich region into a plurality of regions, and does not change the correction amount by the correcting means based on the temperature of the oxygen concentration detecting means by a predetermined amount or more for a region in which the deviation from the stoichiometric air-fuel ratio region is the smallest.
A control device for an internal combustion engine.
前記補正手段は、前記リッチ領域を複数に区分した領域のうち前記理論空燃比領域からのズレが最も小さい領域において、前記酸素濃度検出手段の温度が所定未満の場合は前記目標値の補正を行わず、the correction means does not correct the target value when the temperature of the oxygen concentration detection means is less than a predetermined value in a region in which the deviation from the stoichiometric air-fuel ratio region is smallest among a plurality of regions obtained by dividing the rich region,
補正量変更手段は、前記酸素濃度検出手段の温度が所定以上の場合は、前記リッチ領域を複数に区分した領域のうち前記理論空燃比領域からのズレが最も小さい領域においても前記目標値の補正を行うWhen the temperature of the oxygen concentration detection means is equal to or higher than a predetermined value, the correction amount change means corrects the target value even in a region where the deviation from the stoichiometric air-fuel ratio region is smallest among a plurality of regions obtained by dividing the rich region.
ことを特徴とする請求項1に記載の内燃機関の制御装置。2. The control device for an internal combustion engine according to claim 1.
排気を吸気に還流する排気還流手段を備え、
前記補正手段は、前記酸素濃度検出手段の出力値が前記リッチ領域となった場合、前記目標値をリーン側に補正するとともに、排気の還流量が多くなるほど、前記目標値をリーン側に補正すること
を特徴とする請求項1又は2に記載の内燃機関の制御装置。
An exhaust gas recirculation means is provided for recirculating the exhaust gas to the intake air,
3. The control device for an internal combustion engine according to claim 1, wherein the correction means corrects the target value to the lean side when the output value of the oxygen concentration detection means falls within the rich region , and corrects the target value to the lean side as the amount of recirculated exhaust gas increases.
前記内燃機関の点火時期を変更する点火時期変更手段を備え、
前記補正手段は、前記酸素濃度検出手段の出力値が前記リッチ領域となった場合、前記目標値をリーン側に補正するとともに、点火時期が遅角されるほど、前記目標値をリッチ側に補正する請求項1又は2に記載の内燃機関の制御装置。
an ignition timing changing means for changing the ignition timing of the internal combustion engine;
3. The control device for an internal combustion engine according to claim 1, wherein the correction means corrects the target value to the lean side when the output value of the oxygen concentration detection means falls within the rich region , and corrects the target value to the rich side as the ignition timing is retarded.
JP2021057746A 2021-03-30 2021-03-30 Control device for internal combustion engine Active JP7575725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021057746A JP7575725B2 (en) 2021-03-30 2021-03-30 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021057746A JP7575725B2 (en) 2021-03-30 2021-03-30 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2022154625A JP2022154625A (en) 2022-10-13
JP7575725B2 true JP7575725B2 (en) 2024-10-30

Family

ID=83557622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021057746A Active JP7575725B2 (en) 2021-03-30 2021-03-30 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP7575725B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332896A (en) 2001-05-10 2002-11-22 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2006009652A (en) 2004-06-24 2006-01-12 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
JP2006016973A (en) 2004-06-30 2006-01-19 Mazda Motor Corp Control device of cylinder injection internal combustion engine
JP2007285218A (en) 2006-04-18 2007-11-01 Mitsubishi Electric Corp Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine
JP2008014212A (en) 2006-07-05 2008-01-24 Toyota Motor Corp Internal combustion engine
JP2010196474A (en) 2009-02-23 2010-09-09 Toyota Motor Corp Engine control device
WO2012056515A1 (en) 2010-10-26 2012-05-03 トヨタ自動車 株式会社 Control device for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3119704B2 (en) * 1991-11-26 2000-12-25 ヤンマーディーゼル株式会社 Air-fuel ratio control device for internal combustion engine
JPH08254143A (en) * 1995-03-20 1996-10-01 Nissan Motor Co Ltd Exhaust control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332896A (en) 2001-05-10 2002-11-22 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JP2006009652A (en) 2004-06-24 2006-01-12 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
JP2006016973A (en) 2004-06-30 2006-01-19 Mazda Motor Corp Control device of cylinder injection internal combustion engine
JP2007285218A (en) 2006-04-18 2007-11-01 Mitsubishi Electric Corp Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine
JP2008014212A (en) 2006-07-05 2008-01-24 Toyota Motor Corp Internal combustion engine
JP2010196474A (en) 2009-02-23 2010-09-09 Toyota Motor Corp Engine control device
WO2012056515A1 (en) 2010-10-26 2012-05-03 トヨタ自動車 株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2022154625A (en) 2022-10-13

Similar Documents

Publication Publication Date Title
JP3927395B2 (en) Control device for compression ignition engine
US10247114B2 (en) Exhaust gas control system for internal combustion engine and control method for internal combustion engine
JP4314585B2 (en) Control device for internal combustion engine
JP4314636B2 (en) Air-fuel ratio control device for internal combustion engine
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
WO2019198546A1 (en) Air-fuel ratio control device
JP4618141B2 (en) Exhaust gas recirculation device for internal combustion engine
JP7575725B2 (en) Control device for internal combustion engine
JPS61132745A (en) Air-fuel ratio controller of internal-conbustion engine
JP4792453B2 (en) Intake air amount detection device
JP3846481B2 (en) In-cylinder injection internal combustion engine control device
JP2020026756A (en) Engine control device and engine control method
JP2022154624A (en) Controller of internal combustion engine
JP4424248B2 (en) In-cylinder injection internal combustion engine control device
JP2009068503A (en) Control device of cylinder injection internal combustion engine
JP4258733B2 (en) Air-fuel ratio control device for internal combustion engine
JP7718589B2 (en) Method and device for controlling oxygen storage amount of three-way catalyst
JP2717442B2 (en) Engine exhaust gas recirculation control device
US5546921A (en) Air-fuel ratio control system
JP2017218921A (en) Control device of internal combustion engine
JP2867816B2 (en) Air-fuel ratio control device for internal combustion engine
JP4144275B2 (en) Air-fuel ratio control device for internal combustion engine
JP2006016972A (en) Control device of internal combustion engine
WO2025163844A1 (en) Air–fuel ratio control method and device for internal combustion engine
JP2007077842A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20240610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241001

R150 Certificate of patent or registration of utility model

Ref document number: 7575725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150