[go: up one dir, main page]

JP7595312B2 - Reprocessed parts and manufacturing method for reprocessed parts - Google Patents

Reprocessed parts and manufacturing method for reprocessed parts Download PDF

Info

Publication number
JP7595312B2
JP7595312B2 JP2023517596A JP2023517596A JP7595312B2 JP 7595312 B2 JP7595312 B2 JP 7595312B2 JP 2023517596 A JP2023517596 A JP 2023517596A JP 2023517596 A JP2023517596 A JP 2023517596A JP 7595312 B2 JP7595312 B2 JP 7595312B2
Authority
JP
Japan
Prior art keywords
hardened layer
layer
carburized
hardness
reprocessed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023517596A
Other languages
Japanese (ja)
Other versions
JPWO2022230937A5 (en
JPWO2022230937A1 (en
Inventor
智尚 金澤
ダン ヴィニャス
ダニーロ ベルトラン
光宏 吉本
典仁 畑
道雄 菅原
正夫 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
National Institute for Materials Science
Original Assignee
Hitachi Construction Machinery Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, National Institute for Materials Science filed Critical Hitachi Construction Machinery Co Ltd
Publication of JPWO2022230937A1 publication Critical patent/JPWO2022230937A1/ja
Publication of JPWO2022230937A5 publication Critical patent/JPWO2022230937A5/ja
Application granted granted Critical
Publication of JP7595312B2 publication Critical patent/JP7595312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、再処理部品及び再処理部品の製造方法に関する。
本願は、2021年4月28日に、日本に出願された特願2021-076702号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to reprocessed parts and methods of manufacturing reprocessed parts.
This application claims priority based on Japanese Patent Application No. 2021-076702, filed on April 28, 2021, the contents of which are incorporated herein by reference.

減速機などを構成する歯車やベアリングは使用数が多く高額である。そのため、再利用することが求められている。欠損した部品に対しては、肉盛り技術による修復方法が提案されているが、高コストあるいは低品質であるため、ほとんど適用されていない。また、欠損を伴わない部品も再利用されているが、想定寿命よりも短時間での破損に至ってしまうものもある。 Gears and bearings that make up reducers are used in large numbers and are expensive. For this reason, there is a demand for them to be reused. Repair methods using build-up technology have been proposed for damaged parts, but due to their high cost and low quality, they are rarely used. Parts that are not damaged are also reused, but some of them end up breaking down before their expected lifespan.

欠損を伴わない歯車やベアリングの再利用に関しては、これまで余寿命を測定し余寿命の範囲内での再利用のみ実施されてきたが、機能復元や長寿命化する試みはこれまで全くない。その理由は、簡便かつ安価な手法で機能の復元や長寿命化を達成することは、実現が困難であることが常識とされているからである。 When it comes to reusing gears and bearings that are not damaged, their remaining lifespan has been measured and they have only been reused within that range, but there have been no attempts to restore functionality or extend their lifespan. This is because it is commonly believed that it is difficult to restore functionality or extend their lifespan using simple, inexpensive methods.

一方、欠損した部品の再利用化の技術に関して、部品の欠損部を様々な技術で修復する方法が知られている。例えば、特許文献1には、ガスタービンエンジンに用いられる耐熱金属合金の溶接による補修方法が記載されている。特許文献2には、既設鋼構造物の鋼材に発生した亀裂にレーザー光を照射して亀裂を溶融させて補修する技術が記載されている。特許文献3には、高温部材の余寿命評価法が記載されており、さらに、この評価法によりメンテナンスされる信頼性の高い高温機器及びこの評価法で検知された損傷の再熱処理法(補修法)が記載されている。特許文献4には、ガスタービン動翼に関して、使用後の組織を未使用材の組織の形態と同様に再生し、未使用材と同等の強度を有するガスタービン動翼及びその再熱処理法が記載されている。On the other hand, regarding the technology of reusing missing parts, methods of repairing missing parts by various techniques are known. For example, Patent Document 1 describes a repair method by welding heat-resistant metal alloys used in gas turbine engines. Patent Document 2 describes a technology of irradiating a crack generated in the steel material of an existing steel structure with laser light to melt the crack and repair it. Patent Document 3 describes a method of evaluating the remaining life of high-temperature components, and further describes a highly reliable high-temperature equipment maintained by this evaluation method and a reheat treatment method (repair method) for damage detected by this evaluation method. Patent Document 4 describes a gas turbine blade that regenerates the structure after use to the same form as the structure of unused material and has the same strength as unused material, and a reheat treatment method thereof.

特開2004-216457号公報JP 2004-216457 A 特開2013-86163号公報JP 2013-86163 A 特開平8-271501号公報Japanese Patent Application Publication No. 8-271501 特開2000-80455号公報JP 2000-80455 A

しかしながら、上記の技術は高コスト、精密工程を要するものであり、また、主に航空機、発電用部品に関するものである。However, the above technologies are costly, require precise processes and are primarily relevant for aircraft and power generation components.

本発明は、上記問題に鑑みてなされたものであり、浸炭処理部品が熱処理のみの簡便かつ安価な方法によって機能の復元や長寿命化が図られた再処理部品及び再処理部品の製造方法を提供することを目的とする。The present invention has been made in consideration of the above problems, and aims to provide reprocessed parts and a manufacturing method for reprocessed parts in which the functionality of carburized parts is restored and their service life is extended by a simple and inexpensive method using only heat treatment.

本発明は、上記課題を解決するために、以下の手段を提供する。 To solve the above problems, the present invention provides the following means.

本発明の第1態様に係る再処理部品は、表面に浸炭層を備え、前記浸炭層内において、表面から深さ方向に、いずれも心部よりも硬度が高い第1硬化層、第2硬化層及び第3硬化層の三層を順に隣接して有し、前記第1硬化層は前記三層の中で硬度が最も高く、かつ、前記第2硬化層は前記三層の中で硬度が最も低い。The reprocessed part according to the first aspect of the present invention has a carburized layer on its surface, and within the carburized layer, three layers are arranged adjacent to each other in the depth direction from the surface: a first hardened layer, a second hardened layer, and a third hardened layer, all of which have a higher hardness than the core, and the first hardened layer has the highest hardness of the three layers, and the second hardened layer has the lowest hardness of the three layers.

上記態様に係る再処理部品において、前記第2硬化層の硬度の最小値が前記心部の硬度よりも高くてもよい。In the reprocessed part relating to the above aspect, the minimum hardness value of the second hardened layer may be higher than the hardness of the core portion.

上記態様に係る再処理部品において、前記第1硬化層の厚みは50μm以上、300μm以下であってもよい。In the reprocessed part relating to the above aspect, the thickness of the first hardened layer may be 50 μm or more and 300 μm or less.

上記態様に係る再処理部品において、前記第1硬化層の旧γ粒径が5μm以上、15μm以下であってもよい。In the reprocessed part relating to the above aspect, the prior gamma grain size of the first hardened layer may be 5 μm or more and 15 μm or less.

上記態様に係る再処理部品において、前記第1硬化層の残留オーステナイトの体積率が10%以上、35%以下であってもよい。In the reprocessed part relating to the above aspect, the volume fraction of the retained austenite in the first hardened layer may be 10% or more and 35% or less.

本発明の第2態様に係る再処理部品の製造方法は、上記態様に係る再処理部品を製造する方法であって、表面に浸炭層を有する浸炭処理部品を準備する工程と、前記浸炭処理部品に瞬間焼入れを行い、前記浸炭層内に前記三層を形成する工程と、を有する。The method for manufacturing a reprocessed part according to the second aspect of the present invention is a method for manufacturing a reprocessed part according to the above aspect, and includes the steps of preparing a carburized part having a carburized layer on its surface, and flash-hardening the carburized part to form the three layers within the carburized layer.

上記態様に係る再処理部品の製造方法は、前記瞬間焼入れをレーザーによって行うものであって、前記瞬間焼入れを行う際のレーザーの出力の範囲を、前記第1硬化層に割れが入らず、かつ、前記第1硬化層の厚みが所定の厚さとなるように決定する工程と、決定した出力の範囲内でレーザーによる瞬間焼入れを行う工程と、を有してもよい。The manufacturing method for reprocessed parts according to the above aspect may include a step of performing the flash hardening by a laser, determining a range of laser output when performing the flash hardening such that no cracks are generated in the first hardened layer and the thickness of the first hardened layer is a predetermined thickness, and a step of performing the flash hardening by laser within the determined output range.

本発明によれば、浸炭処理部品が熱処理のみの簡便かつ安価な方法によって長寿命化が図られた再処理部品を提供することができる。 According to the present invention, it is possible to provide reprocessed parts whose service life has been extended by a simple and inexpensive method using only heat treatment for carburized parts.

本実施形態の再処理部品を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing a reprocessed part according to the present embodiment. 本実施形態の再処理部品の典型的な断面深さ方向の硬度分布のグラフである。1 is a graph showing a hardness distribution in a typical cross-sectional depth direction of a reprocessed part according to an embodiment of the present invention. (a)はレーザー焼入れ工程を行うための装置構成の一例の概略構成図であり、(b)はレーザー焼入れ工程後、評価体における瞬間冷却を説明するための概念である。FIG. 1A is a schematic diagram of an example of an apparatus configuration for performing a laser hardening process, and FIG. 1B is a concept for explaining instantaneous cooling in an evaluation body after the laser hardening process. (a)は摺動疲労試験のフロー図であり、(b)は各ステップを説明するための概念図である。FIG. 4A is a flow diagram of a sliding fatigue test, and FIG. 4B is a conceptual diagram for explaining each step. 摺動疲労試験の概略を示す概略構成図であり、(a)は平面模式図であり、(b)は側面模式図である。1A and 1B are schematic diagrams illustrating an outline of a sliding fatigue test, in which FIG. 1A is a schematic plan view and FIG. 各評価体について、摺動疲労試験を行い、ピッチングが発生したピッチング発生サイクル数を測定した結果を示すグラフである。1 is a graph showing the results of a sliding fatigue test performed on each evaluation body, and measuring the number of cycles at which pitting occurred. レーザー焼入れによる残留γ率の増加と摺動疲労寿命の向上との関係を示すグラフである。1 is a graph showing the relationship between an increase in the residual γ rate due to laser hardening and an improvement in the sliding fatigue life. 評価体のステップ1段階及びステップ3後の深さ方向の硬度分布を示す図である。FIG. 13 is a diagram showing the hardness distribution in the depth direction of the evaluation body at step 1 and after step 3. (a)は評価体のステップ1段階のSEM像であり、(b)は評価体のステップ3後のSEM像である。13A is an SEM image of the evaluation object at step 1, and FIG. 13B is an SEM image of the evaluation object after step 3. (a)はステップ1段階のSEM像、(b)ステップ2後のSEM像、(c)ステップ3後のSEM像、(d)ステップ4後のSEM像である。(a) is an SEM image at step 1, (b) an SEM image after step 2, (c) an SEM image after step 3, and (d) an SEM image after step 4. (a)はステップ1段階の評価体のSEM像であり、(b)はステップ3後の評価体のSEM像である。1A is an SEM image of the evaluation object at step 1, and FIG. 1B is an SEM image of the evaluation object after step 3. STEM(走査型透過電子顕微鏡)による第1硬化層の内部組織の観察結果である。1 shows the results of observation of the internal structure of the first hardened layer by STEM (scanning transmission electron microscope). TEM(透過電子顕微鏡)による第1硬化層の内部組織の観察結果である。1 shows the results of observation of the internal structure of the first hardened layer by a TEM (transmission electron microscope).

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その効果を奏する範囲で適宜変更して実施することが可能である。The present embodiment will now be described in detail with reference to the drawings as appropriate. The drawings used in the following description may show enlarged characteristic parts for the sake of convenience in order to make the features of the present invention easier to understand, and the dimensional ratios of each component may differ from the actual ones. The materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited to them, and may be modified as appropriate within the scope of the effects.

[再処理部品]
図1は、本実施形態の再処理部品を示す断面模式図である。
図1に示すように、本実施形態の再処理部品100は、表面に浸炭層10を備え、浸炭層10内において、表面から深さ方向に、いずれも心部20よりも硬度が高い第1硬化層1、第2硬化層2及び第3硬化層3の三層を順に隣接して有し、第1硬化層1は三層の中で硬度が最も高く、かつ、第2硬化層2は三層の中で硬度が最も低い。
ここで、「第1硬化層は三層の中で硬度が最も高く」とは、第1硬化層内に三層の中で最も硬度が高い領域を有することを意味する。また、「第2硬化層は三層の中で硬度が最も低い」とは、第2硬化層内に三層の中で最も硬度が低い領域を有することを意味する。なお、第1硬度層、第2硬度層及び第3硬度層の各平均硬度の大小関係は、第1硬度層>第3硬度層>第2硬度層の関係にある。本明細書においては、層の平均硬度とは、層の厚み方向(深さ方向)に2点以上の測定点で得た硬度に基づいて得られた、厚み方向の硬度分布のグラフを用いて、その層における最大硬度と最小硬度の平均の硬度をいう。
[Reprocessed parts]
FIG. 1 is a schematic cross-sectional view showing a reprocessed part according to the present embodiment.
As shown in FIG. 1, the reprocessed part 100 of this embodiment has a carburized layer 10 on its surface. Within the carburized layer 10, there are three adjacent layers from the surface to the depth direction, namely, a first hardened layer 1, a second hardened layer 2, and a third hardened layer 3, all of which have a harderness than that of the core 20. The first hardened layer 1 has the highest hardness of the three layers, and the second hardened layer 2 has the lowest hardness of the three layers.
Here, "the first hardened layer has the highest hardness among the three layers" means that the first hardened layer has a region with the highest hardness among the three layers. Also, "the second hardened layer has the lowest hardness among the three layers" means that the second hardened layer has a region with the lowest hardness among the three layers. The relationship of the average hardness of each of the first hardness layer, the second hardness layer, and the third hardness layer is first hardness layer>third hardness layer>second hardness layer. In this specification, the average hardness of a layer refers to the average hardness of the maximum hardness and the minimum hardness in the layer, obtained by using a graph of the hardness distribution in the thickness direction based on the hardness obtained at two or more measurement points in the thickness direction (depth direction) of the layer.

再処理部品100は、「浸炭処理部品」を一定時間使用後、又は、未使用の段階において、その浸炭処理部品に対して後述する瞬間焼入れ処理を施すことによって得ることができる。本明細書において、再処理部品のうち、使用後の「浸炭処理部品」に対して瞬間焼入れ処理を施すことによって得られたものを「再利用部品」という。
なお、本明細書において、「浸炭処理部品」とは、鋼製部品の表面から炭素を拡散浸透させることにより、炭素含有量が高い表層(浸炭層)を形成され、その後に焼入れされて浸炭層が硬化された部品を指す。「浸炭処理部品」は表層に浸炭層が形成された部品であればよく、浸炭処理された部品に限定されず、炭素と共に他の元素を拡散浸透させた部品も含まれ、例えば、窒素を拡散浸透させる窒化処理された部品も含まれる。また、「浸炭処理部品」は、鋼製部品に対して、表面焼入れと熱拡散処理に分類される表面熱処理を施すことによって製造されるが、この表面焼入れには高周波焼入れ等の公知の表面焼入れが含まれ、また、熱拡散処理には浸炭処理等の公知の熱拡散処理が含まれる。かかる部品としては鋼製部品であれば特に制限されないが、典型的には、歯車やベアリング等の機械部品が挙げられる。また、これに限らず、刃物類、ばね、ホイールスピンドル、ピストンリング溝、コンロッド、シャフトやプーリーなどを例示することができる。浸炭処理され、表面に浸炭層を有する鋼製部品を焼入れすれば、浸炭層はマルテンサイト組織が多くなり、心部に比べて硬度が高くなり、耐摩耗性が向上する。一方、焼入れの際にすべてを変態させずに一部にオーステナイト組織を残すことができる(残留オーステナイト)。オーステナイト組織は柔らかく展延性に富んでいるため、残留オーステナイトの部分がショックアブソーバーとなって、靭性が向上する。
また、浸炭処理部品は浸炭層と心部とを有し、浸炭層と心部からなる場合には、浸炭層とは、浸炭処理部品の表面から、硬度の大きさが心部と区別できない深さまでの部分を指し、また、心部とは、浸炭層よりも深い位置にある部分を指すものとする。
The reprocessed part 100 can be obtained by subjecting a "carburized part" to a flash hardening treatment, which will be described later, after it has been used for a certain period of time, or when the part is unused. In this specification, among the reprocessed parts, those obtained by subjecting a used "carburized part" to a flash hardening treatment are referred to as "reused parts".
In this specification, the term "carburized part" refers to a part in which a surface layer (carburized layer) with a high carbon content is formed by diffusing and penetrating carbon from the surface of a steel part, and then the carburized layer is hardened by quenching. The term "carburized part" is not limited to carburized parts as long as it is a part in which a carburized layer is formed on the surface layer, and includes parts in which other elements are diffused and penetrated together with carbon, for example, nitriding parts in which nitrogen is diffused and penetrated. The term "carburized part" is produced by subjecting a steel part to surface heat treatment classified as surface hardening and thermal diffusion treatment, and this surface hardening includes known surface hardening such as induction hardening, and thermal diffusion treatment includes known thermal diffusion treatment such as carburizing. Such parts are not particularly limited as long as they are steel parts, but typically include mechanical parts such as gears and bearings. Examples of such parts include, but are not limited to, cutlery, springs, wheel spindles, piston ring grooves, connecting rods, shafts, pulleys, etc. If a steel part that has been carburized and has a carburized layer on the surface is quenched, the carburized layer will have a higher martensite structure, which will be harder than the core and improve wear resistance. On the other hand, it is possible to leave some austenite structure (retained austenite) without transforming everything during quenching. Since the austenite structure is soft and highly ductile, the retained austenite portion acts as a shock absorber and improves toughness.
In addition, a carburized part has a carburized layer and a core. When the carburized part consists of a carburized layer and a core, the carburized layer refers to the part from the surface of the carburized part to a depth where the hardness is indistinguishable from that of the core, and the core refers to the part that is located deeper than the carburized layer.

<構造上の特徴>
再処理部品100は、浸炭層10と心部20とを有する点は浸炭処理部品と共通する。
再処理部品100は、硬度が最も高い第1硬化層1に隣接して、硬度が最も低い(換言すると第1硬化層1及び第3硬化層に比べて相対的に軟らかい)第2硬化層2を備える。また、再処理部品100は、硬度が高い第1硬化層と第3硬化層との間に相対的に軟らかい第2硬化層2を備える。いわば硬化層と軟化層がラメラ状に構成されることによって複合強化をなして靭性の点で有利に働いている。すなわち、硬いだけでは脆いが、硬い層の中に軟い層があって全体として靭性を上げている。
かかる構造上の特徴は、従来の浸炭処理部品(すなわち、表面に浸炭層を有する部品)に対して、一定時間使用後、又は、未使用の段階において、その浸炭処理部品に対して後述する「瞬間焼入れ」処理を施すによって得ることができる。
<Structural features>
The reprocessed part 100 has a common feature with the carburized part in that it has a carburized layer 10 and a core 20 .
The reprocessed part 100 includes a first hardened layer 1 having the highest hardness, and a second hardened layer 2 having the lowest hardness (in other words, relatively softer than the first hardened layer 1 and the third hardened layer). The reprocessed part 100 also includes a second hardened layer 2 having a relatively softer hardness between the first and third hardened layers having high hardness. The hardened layer and the softened layer are so-called lamellar-shaped, which provides composite reinforcement and is advantageous in terms of toughness. In other words, a hard layer alone would be brittle, but the presence of a soft layer within the hard layer increases the toughness as a whole.
Such structural features can be obtained by subjecting conventional carburized parts (i.e., parts having a carburized layer on their surface) to a "flash hardening" treatment, which will be described later, after a certain period of use or when the carburized part is still unused.

<浸炭層>
浸炭層10は、後述する「瞬間焼入れ」処理を施す前の段階で既に存在していたものである。浸炭層10は、心部20より硬度が高い。
浸炭層10の厚さは限定するものではないが、通常は数mm程度であり、典型的には2~5mm程度である。
<Carburized layer>
The carburized layer 10 is already present at a stage before the "flash hardening" treatment described later is performed. The carburized layer 10 has a higher hardness than the core 20.
The thickness of the carburized layer 10 is not limited, but is usually about several mm, typically about 2 to 5 mm.

歯車やベアリング等では長寿命化のため、一般に浸炭処理や高周波焼入れ等が施されており、最表面から数mm程度の範囲まで表層部位が硬化され、浸炭層10が形成されている。表層部位に配置して心部よりも硬度が高い浸炭層は、稼働中、経時的に負荷を受け、組織や機械的性質が変化する。表層部位の組織的な変化としては、残留オーステナイト(γ)相の加工誘起マルテンサイト変態が例示でき、機械的性質の変化としては、残留応力や半価幅の値(転位密度を反映している)の変化が例示できる。To extend the service life of gears, bearings, etc., carburizing and induction hardening are generally performed, and the surface area is hardened from the outermost surface to a depth of several mm to form a carburized layer 10. The carburized layer, which is located on the surface and has a harder hardness than the core, is subjected to load over time during operation, and its structure and mechanical properties change. An example of a structural change in the surface area is processing-induced martensitic transformation of the retained austenite (γ) phase, and an example of a change in mechanical properties is a change in residual stress and half-value width (reflecting dislocation density).

稼働中、経時的に負荷を受ける浸炭処理部品の表層部位では、残留γ相が減少し加工誘起マルテンサイト相の割合が増加するが、この時点では部品に欠損は生じていない。例えば、減速機について、定期メンテナンスが遵守されている1回目あるいは2回目のメンテナンス時においては、多くの歯車やベアリングでは残留γ相は減少しても欠損は生じていない。
本発明者は、欠損を伴わない浸炭処理部品(一定時間使用後のものだけでなく、未使用の段階のものを含む)を対象に、熱処理のみの簡便かつ安価な手法で表層組織のみを制御し、大幅な寿命向上を図ることを達成した。本発明者は、浸炭処理部品のリマニュファクチャリング(再生利用)において、瞬間焼入れ(瞬間加熱及び瞬間冷却)を適用し、大幅な寿命向上を図ることを達成した。
During operation, the surface layer of a carburized part that is subjected to load over time decreases the residual γ phase and increases the ratio of the processing-induced martensite phase, but no damage occurs in the part at this point. For example, in the case of a reducer, at the first or second maintenance, when regular maintenance is observed, the residual γ phase decreases in many gears and bearings, but no damage occurs.
The inventors have succeeded in significantly improving the lifespan of carburized parts without defects (including not only those that have been used for a certain period of time, but also those that are unused) by controlling only the surface structure using a simple and inexpensive method of heat treatment alone. The inventors have succeeded in significantly improving the lifespan of carburized parts by applying flash quenching (instantaneous heating and cooling) in the remanufacturing (recycling) of the carburized parts.

図2に、本実施形態に係る再処理部品の典型的な断面深さ方向の硬度分布のグラフを示す。横軸は表面からの深さ(mm)であり、縦軸はビッカース硬度(Hv)である。
図2中の(1)は使用前の浸炭処理部品の深さ方向の硬度分布であり、(2)は使用後の浸炭処理部品の深さ方向の硬度分布であり、(3)は使用後の浸炭処理部品について瞬間焼入れ(再熱処理)を行った本実施形態に係る再処理部品の深さ方向の硬度分布である。
2 shows a graph of the hardness distribution in the depth direction of a typical cross section of the reprocessed part according to this embodiment, where the horizontal axis is the depth (mm) from the surface, and the vertical axis is the Vickers hardness (Hv).
In FIG. 2, (1) shows the hardness distribution in the depth direction of the carburized part before use, (2) shows the hardness distribution in the depth direction of the carburized part after use, and (3) shows the hardness distribution in the depth direction of the reprocessed part according to this embodiment, in which the carburized part after use has been flash-quenched (reheat treated).

図2で示す再処理部品の深さ方向の硬度分布において、深さ方向において符号Aで示す領域は第1硬化層を指し、深さ方向において符号Bで示す領域は第2硬化層を指し、深さ方向において符号Cで示す領域は第3硬化層を指し、深さ方向において符号Dで示す領域は浸炭層を指す。In the hardness distribution in the depth direction of the reprocessed part shown in Figure 2, the region indicated by the symbol A in the depth direction indicates the first hardened layer, the region indicated by the symbol B in the depth direction indicates the second hardened layer, the region indicated by the symbol C in the depth direction indicates the third hardened layer, and the region indicated by the symbol D in the depth direction indicates the carburized layer.

本明細書において、第1硬化層、第2硬化層及び第3硬化層は図2で示す典型的な断面深さ方向の硬度分布を用いて、以下のように定義する。
第2硬化層は硬度の極小値(符号b)を含む範囲とする。この極小の硬度(符号b)と第1硬化層内の最大の硬度(符号a)の1/2(中間)の硬度である位置を、第1硬化層と第2硬化層の境界の位置(符号Aの領域と符号Bの領域との境界位置)とする。また、第2硬化層の極小の硬度(符号b)と第3硬化層の最大の硬度(符号c1)の1/2(中間)の硬度(符号P)の位置を、第2硬化層と第3硬化層の境界の位置(符号Bの領域と符号Cの領域との境界位置)とする。また、第3硬化層の内部側の境界の位置は、第3硬化層の最大の硬度(符号c1)を示す位置より深い内部において、第2硬化層の極小の硬度(符号b)と第3硬化層の最大の硬度(符号c1)の1/2(中間)の硬度(符号P)を示す位置(符号c2)とする。
なお、第3硬化層と心部との間に第3硬化層の硬度より低く、心部の硬度より高い硬度の層4(図1参照)がある。
In this specification, the first hardened layer, the second hardened layer and the third hardened layer are defined as follows, using the typical cross-sectional depth-wise hardness distribution shown in FIG.
The second hardened layer is a range including the minimum hardness (symbol b). The position where the minimum hardness (symbol b) and the maximum hardness (symbol a) in the first hardened layer are 1/2 (intermediate) is defined as the boundary position between the first hardened layer and the second hardened layer (the boundary position between the region of symbol A and the region of symbol B). The position where the minimum hardness (symbol b) of the second hardened layer and the maximum hardness (symbol c1) of the third hardened layer are 1/2 (intermediate) is defined as the boundary position between the region of symbol B and the region of symbol C. The position of the inner boundary of the third hardened layer is a position (symbol c2) that is deeper inside than the position showing the maximum hardness (symbol c1) of the third hardened layer and 1/2 (intermediate) is defined as the hardness (symbol P) of the minimum hardness (symbol b) of the second hardened layer and the maximum hardness (symbol c1) of the third hardened layer.
Between the third hardened layer and the core there is a layer 4 (see FIG. 1) whose hardness is lower than that of the third hardened layer and higher than that of the core.

<第1硬化層>
第1硬化層は、上記三層中で最も表面側に配置する層であり、三層中で最も硬度が高い領域を有する。また、第1硬化層は、平均硬度も三層中で最も高い。
第1硬化層の硬度は典型的には、ビッカース硬度(Hv)でHv700以上、Hv900以下である。Hv700は表層硬度の焼入れ硬さに相当し、Hv900はレーザー焼入れの硬化層域の硬さに相当する。
図2に示す例では、第1硬化層の硬度の最大値はビッカース硬度(Hv)でHv900程度である。レーザー焼入れ(再熱処理)前に第1硬化層近傍の硬度はHv700程度であったものが、それよりも硬度が高くなっており、第1硬化層の耐摩耗性はレーザー焼入れ(再熱処理)前よりも向上している。
<First hardened layer>
The first hardened layer is the layer disposed closest to the surface of the three layers, and has the highest hardness region among the three layers. The first hardened layer also has the highest average hardness among the three layers.
The hardness of the first hardened layer is typically in the range of Vickers hardness (Hv) of Hv 700 to Hv 900. Hv 700 corresponds to the hardening hardness of the surface layer, and Hv 900 corresponds to the hardness of the laser hardened hardened layer region.
In the example shown in Fig. 2, the maximum hardness of the first hardened layer is about Hv 900 in Vickers hardness (Hv). Before the laser hardening (reheat treatment), the hardness in the vicinity of the first hardened layer was about Hv 700, but the hardness is now higher, and the wear resistance of the first hardened layer is improved compared to before the laser hardening (reheat treatment).

第1硬化層の厚みは50μm以上、300μm以下であることが好ましい。
第1硬化層の厚みを適度に制御することにより、第1硬化層より内側の第2硬化層(相対的に軟相)との巨視的な複合強化を発現し、強靭性に寄与するからである。
図2に示す例では、第1硬化層の厚みは200μm程度である。
The thickness of the first hardened layer is preferably 50 μm or more and 300 μm or less.
By appropriately controlling the thickness of the first hardened layer, macroscopic composite reinforcement with the second hardened layer (relatively soft phase) located inside the first hardened layer is realized, which contributes to toughness.
In the example shown in FIG. 2, the thickness of the first hardened layer is about 200 μm.

本発明者は、第1硬化層について、瞬間加熱・瞬間冷却による焼入れ処理を施すことにより、浸炭処理より受け継いだ高濃度の炭素の含有状態を保持させ、新品材(未使用材)と同等もしくはそれ以上の高頻度の割合で残留γ相を現出させることに成功した。また、個々の残留γ相のサイズは新品材と同等もしくはそれ以下に微細化され、均一に分散されている。なお、瞬間加熱・瞬間冷却は雰囲気を制御する必要はなく、大気中にて実施できる。 By subjecting the first hardened layer to a quenching treatment that involves instantaneous heating and cooling, the inventors have succeeded in retaining the high carbon concentration inherited from the carburizing treatment and in revealing the residual gamma phase at a frequency equal to or higher than that of new material (unused material). In addition, the size of each residual gamma phase is refined to the same or smaller size as that of new material, and is uniformly dispersed. Incidentally, instantaneous heating and cooling do not require atmospheric control and can be performed in air.

また、瞬間加熱・瞬間冷却により、第1硬化層では新品の浸炭処理部品よりも旧オーステナイト(γ)粒径の微細化が達成されている。
実施例において、浸炭された鋼材の旧γ粒径は10μm程度であったものが、瞬間加熱・瞬間冷却による焼入れ処理により、旧γ粒径は5μm程度に微細化された場合を例示した。
瞬間加熱・瞬間冷却による第1硬化層はビッカース高度(Hv)でHv900と硬化するものの、結晶粒微細化効果、残留γ相(軟相)とマルテンサイト相(硬相)の複合強化効果により、高い靭性を保持できる。金属材料は一般に粒界から破壊されやすい。微細化され粒径を小さくなり、粒界がたくさんあると一つの粒界に力が集中しない。そのため、相対的に粒界がたくさんある方が壊れにくくなり、粒界破壊を起こしにくくなる。その結果、疲労寿命が延びる。
In addition, by instantaneous heating and cooling, the grain size of prior austenite (γ) in the first hardened layer is made finer than that of a new carburized part.
In the examples, the prior γ grain size of the carburized steel material was about 10 μm, but was refined to about 5 μm by quenching treatment using instantaneous heating and instantaneous cooling.
Although the first hardened layer produced by instantaneous heating and cooling hardens to a Vickers hardness (Hv) of Hv900, it maintains high toughness due to the effect of refining the crystal grains and the combined strengthening effect of the residual gamma phase (soft phase) and martensite phase (hard phase). Metal materials are generally prone to fracture from grain boundaries. When the grain size is reduced and there are many grain boundaries, forces are not concentrated on one grain boundary. Therefore, the more grain boundaries there are, the less likely the material is to break and the less likely grain boundary fracture will occur. As a result, the fatigue life is extended.

また、瞬間加熱・瞬間冷却により、第1硬化層では残留γ相の体積率が新品の浸炭処理部品よりも増大する。
実施例において、摺動疲労前に第1硬化層の残留γ相の体積率は20%程度であったが、摺動疲労によって残留γ相の体積率は10%程度まで減少し、瞬間加熱・瞬間冷却によって、残留γ相の体積率は30%程度に増加した場合を例示した。また、粗大な残留γ(例えば、2μm以上)は形成されなかった。
In addition, due to the instantaneous heating and cooling, the volume fraction of the residual γ phase in the first hardened layer becomes larger than that of a new carburized part.
In the examples, the volume fraction of the residual γ phase in the first hardened layer was about 20% before sliding fatigue, but the volume fraction of the residual γ phase decreased to about 10% due to sliding fatigue, and the volume fraction of the residual γ phase increased to about 30% by instantaneous heating and cooling. In addition, no coarse residual γ (e.g., 2 μm or more) was formed.

<第2硬化層>
第2硬化層は、第1硬化層に隣接して第1硬化層より深い位置に配置する層であり、三層中で極小の硬度の領域を含む。また、第2硬化層は、平均硬度も三層中で最も低い。第2硬化層2は、硬度が高い第1硬化層1と第3硬化層3との間に配置する相対的に軟らかい層であり、硬い層の中にあって全体としての靭性を向上している。
第2硬化層の硬度の最小値は心部の硬度よりも高いことが好ましい。この場合、硬化層として耐摩耗性にも寄与できるからである。
第2硬化層の硬度は、ビッカース硬度(Hv)でHv500以上、Hv700未満であることが好ましい。Hv500以上であると心部よりも硬度が高く、Hv700未満であると第1硬化層より相対的に軟硬度であり(最大硬度に対して概ね約Hv300の差であることが靭性向上のために好ましい。)、第1硬化層の下限値を第2硬化層の上限値とすることができる。
図2に示す例では、第2硬化層の硬度の最小値はビッカース硬度(Hv)でHv530程度である。レーザー焼入れ(再熱処理)前に第1硬化層近傍の硬度はHv700弱程度であったものが、それよりも硬度が低くなっており、強靭性に寄与している。
<Second hardened layer>
The second hardened layer is adjacent to the first hardened layer and is located deeper than the first hardened layer, and includes a region with the lowest hardness among the three layers. The second hardened layer also has the lowest average hardness among the three layers. The second hardened layer 2 is a relatively soft layer located between the first hardened layer 1 and the third hardened layer 3, which have high hardness, and improves the overall toughness among the hard layers.
It is preferable that the minimum hardness of the second hardened layer is higher than the hardness of the core, because in this case, the second hardened layer can also contribute to wear resistance.
The hardness of the second hardened layer is preferably, in Vickers hardness (Hv), Hv 500 or more and less than Hv 700. If it is Hv 500 or more, it is harder than the core, and if it is less than Hv 700, it is relatively softer than the first hardened layer (a difference of about Hv 300 from the maximum hardness is preferable for improving toughness), and the lower limit of the first hardened layer can be set as the upper limit of the second hardened layer.
In the example shown in Fig. 2, the minimum hardness of the second hardened layer is about Hv 530 in Vickers hardness (Hv). Before the laser hardening (reheat treatment), the hardness in the vicinity of the first hardened layer was slightly less than Hv 700, but the hardness is now lower, which contributes to toughness.

第2硬化層の厚みは焼入れ条件に依存するが、典型的には、200μm以上、300μm以下程度である。The thickness of the second hardened layer depends on the hardening conditions, but is typically approximately 200 μm or more and 300 μm or less.

<第3硬化層>
第3硬化層は、第2硬化層に隣接して第2硬化層より深い位置に配置する層であり、第1硬化層よりも硬度が低く、第2硬化層よりも硬度が高い。
第3硬化層の硬度は典型的には、ビッカース硬度(Hv)でHv550以上、Hv600以下である。Hv550は第2硬化層の下限値よりも典型的にはHv50ほど高く、Hv600は、硬度として、第1硬化層の下限値よりも低く、第2硬化層や深さ1.5mmの硬度よりも高い状態である。
<Third hardened layer>
The third hardened layer is a layer disposed adjacent to the second hardened layer at a deeper position than the second hardened layer, and has a lower hardness than the first hardened layer and a higher hardness than the second hardened layer.
The hardness of the third hardened layer is typically, in Vickers hardness (Hv), Hv 550 or more and Hv 600 or less. Hv 550 is typically about Hv 50 higher than the lower limit of the second hardened layer, and Hv 600 is a state in which the hardness is lower than the lower limit of the first hardened layer and higher than the hardness of the second hardened layer and the hardness at a depth of 1.5 mm.

(再処理部品の製造方法)
本発明に係る再処理部品の製造方法は、表面に浸炭層を有する浸炭処理部品を準備する工程と、浸炭処理部品に瞬間焼入れを行い、浸炭層内に前記三層を形成する工程(瞬間焼入れ工程)と、を有する。瞬間焼入れ工程は雰囲気を制御することなく、大気中にて実施できる。
(Manufacturing method for reprocessed parts)
The method for producing a reprocessed part according to the present invention includes the steps of preparing a carburized part having a carburized layer on its surface, and flash-quenching the carburized part to form the three layers in the carburized layer (flash-quenching step). The flash-quenching step can be performed in air without controlling the atmosphere.

本明細書において、「瞬間焼入れ」とは、レーザー光や電子線や中性子線等の粒子線(以下、まとめて「レーザー光等」ということがある)を部品の表面に照射し、瞬間加熱及び瞬間冷却によって焼入硬化させる焼入れを意味する。この原理は、レーザー光等の照射により表層が局部的に且つごく短時間に熱処理温度に到達し(「瞬間加熱」)、レーザー光等の照射を中断すると熱が部品内部に速やかに伝導して表層が急速に冷却(自然冷却)され(すなわち、「瞬間冷却」)、焼入れされるというものである。 In this specification, "instantaneous hardening" refers to hardening in which the surface of a part is irradiated with particle beams such as laser light, electron beams, or neutron beams (hereinafter collectively referred to as "laser light, etc.") and then quenched and hardened by instantaneous heating and instantaneous cooling. The principle is that the surface layer reaches the heat treatment temperature locally and in a very short time by irradiation with laser light, etc. ("instantaneous heating"), and when the irradiation with laser light, etc. is stopped, the heat is quickly conducted to the inside of the part, causing the surface layer to cool rapidly (natural cooling) (i.e., "instantaneous cooling"), and the part is hardened.

本発明の再処理部品の製造方法において、瞬間焼入れは、簡便さ及びコストの観点で、レーザーで行うことが好ましい。
本明細書においては、レーザーによる瞬間焼入れを単に「レーザー焼入れ」と称することがあり、瞬間焼入れ工程をレーザー焼入れ工程と称することがある。
In the method for producing reprocessed parts of the present invention, the flash hardening is preferably performed by a laser from the viewpoints of simplicity and cost.
In this specification, instantaneous hardening by laser may be simply referred to as "laser hardening", and the instantaneous hardening process may be referred to as the laser hardening process.

瞬間焼入れをレーザーによって行う場合、瞬間焼入れを行う際のレーザーの出力の範囲を、第1硬化層に割れが入らず、かつ、第1硬化層の厚みが所定の厚さとなるように決定する工程を有することが好ましい。かかる工程を有することで、装置等ごとに本発明に係る再処理部品を得るのに必要なレーザーの出力範囲を確認した後に瞬間焼入れ工程を行うことが可能になり、装置や環境依存の問題を回避することができる。
この所定の厚さは、上述したような、浸炭層内に特徴的な深さ方向の硬度分布を有する構成が得られる厚さである。第1硬化層は、厚すぎると硬度が硬くなって割れが入ることがあり、一方で、薄すぎると焼入れの効果が得られない。かかる厚さは例えば、100μm以上、300μm以下である。
When the flash hardening is performed by a laser, it is preferable to have a step of determining the range of laser output when performing the flash hardening so that no cracks are generated in the first hardened layer and the thickness of the first hardened layer is a predetermined thickness. By having such a step, it is possible to perform the flash hardening step after confirming the laser output range required to obtain the reprocessed parts according to the present invention for each device, etc., and to avoid problems depending on the device and environment.
This predetermined thickness is a thickness that provides a characteristic hardness distribution in the depth direction in the carburized layer as described above. If the first hardened layer is too thick, it may become too hard and crack, whereas if it is too thin, the effect of hardening cannot be obtained. The thickness is, for example, 100 μm or more and 300 μm or less.

かかるレーザーの出力の範囲は典型的には、750W~1150Wの範囲である。この場合、1150Wを超えると出力が大き過ぎて割れが入ることがあり、また、750W未満の場合には焼入れ効果が得られない。The output of such lasers typically ranges from 750 W to 1150 W. In this case, if the output exceeds 1150 W, the output is too high and may cause cracks, and if the output is less than 750 W, the hardening effect cannot be achieved.

図3(a)に、レーザー焼入れ工程を行うための装置構成の一例の概略図を示す。図3(b)はレーザー焼入れ工程後、評価体における瞬間冷却を説明するための概念図である。
レーザー発振器101からのレーザー光を光ファイバー102で搬送し、集光レンズ103で収束し、収束したレーザー光Lを評価体Sに照射する。レーザー光Lに照射された評価体の表層では局所的に瞬間加熱が生じ、次いで、レーザー照射の中断により瞬間冷却が生じて、表層の焼入れがなされる。
レーザー焼入れを行うレーザー装置としては公知の装置を用いることができる。
Fig. 3(a) shows a schematic diagram of an example of an apparatus configuration for performing the laser hardening process, and Fig. 3(b) is a conceptual diagram for explaining instantaneous cooling of the evaluation body after the laser hardening process.
Laser light from a laser oscillator 101 is conveyed through an optical fiber 102 and converged by a condenser lens 103, and the converged laser light L is irradiated onto an evaluation object S. Instantaneous heating occurs locally on the surface layer of the evaluation object irradiated with the laser light L, and then instantaneous cooling occurs when the laser irradiation is interrupted, thereby hardening the surface layer.
As the laser device for performing the laser hardening, a known device can be used.

〔実施例〕
本発明に係る再処理部品を作製し、摺動疲労試験を実施して疲労寿命を評価した。
[Example]
Reprocessed parts according to the present invention were produced, and a sliding fatigue test was carried out to evaluate the fatigue life.

図4(a)に実施した摺動疲労試験のフロー図を示す。また、図4(b)は各ステップを説明する概念図である。
摺動疲労試験は以下の4つのステップで構成されている;
ステップ1:評価体(浸炭処理部品)を準備するステップ。
ステップ2:摺動接触を行うステップ。
ステップ3:ステップ2の後、レーザー焼入れを行うステップ。
ステップ4:ステップ3の後、再度、摺動接触を行うステップ(再稼働ステップ)。
Fig. 4(a) shows a flow diagram of the sliding fatigue test carried out, and Fig. 4(b) is a conceptual diagram explaining each step.
The sliding fatigue test consists of the following four steps:
Step 1: preparing an evaluation object (carburized part).
Step 2: Making a sliding contact.
Step 3: After step 2, laser hardening is performed.
Step 4: After step 3, a step of performing sliding contact again (restart step).

ステップ1において準備する評価体は、浸炭処理部品に相当する。
ステップ2における摺動接触は、浸炭処理部品の稼働を模擬するものである。実施例では、評価体とローラ(図5参照)との摺動面の幅は約2mmであった。
ステップ3を実施することは、一定時間稼働後の浸炭処理部品に対して、レーザーを用いた瞬間焼入れを行い、浸炭層内に第1硬化層、第2硬化層及び第2硬化層の三層構造を形成して、本発明に係る再処理部品を作製することに相当する。実施例では、レーザー焼入れの際のレーザー光の出力は1050W(ピーク出力)であり、レーザー光の評価体上の移動速度は1500mm/minであった。
ステップ4は、ステップ3で作製した再処理部品について再度、摺動接触を行うステップである。
The evaluation specimen prepared in step 1 corresponds to a carburized part.
The sliding contact in step 2 simulates the operation of a carburized part. In the example, the width of the sliding surface between the evaluation body and the roller (see FIG. 5) was about 2 mm.
Carrying out step 3 corresponds to performing instantaneous hardening using a laser on the carburized part after operation for a certain period of time, forming a three-layer structure of a first hardened layer, a second hardened layer and a third hardened layer in the carburized layer, thereby producing a reprocessed part according to the present invention. In the embodiment, the output of the laser light during laser hardening was 1050 W (peak output), and the moving speed of the laser light on the evaluation body was 1500 mm/min.
Step 4 is a step of performing sliding contact again on the reprocessed part produced in step 3.

<疲労寿命評価法>
疲労寿命評価としては、評価体(テストピース)200とローラRとを用いて「滑り(摺動)疲労試験」を行った。図5にその概略を示す。図5(a)は平面模式図であり、(b)は側面模式図である。
<Fatigue life evaluation method>
For the fatigue life evaluation, a "sliding (sliding) fatigue test" was performed using the evaluation body (test piece) 200 and the roller R. An outline of the test is shown in Fig. 5. Fig. 5(a) is a schematic plan view, and (b) is a schematic side view.

評価体200としては、JIS規格SCM420の鋼素材を用いた。
具体的には、以下の組成の鋼を用いた;
C:0.18-0.23%、Mn:0.60-0.85%、Si:0.15-0.35%、Cr:0.90-1.20%、Mo:0.15-0.30%、P≦0.030%、Si≦0.030%、Ni≦0.25%、Cu≦0.30%;以上の%は、質量%(mass%)である。
As the evaluation body 200, a steel material of JIS standard SCM420 was used.
Specifically, the following steel composition was used:
C: 0.18-0.23%, Mn: 0.60-0.85%, Si: 0.15-0.35%, Cr: 0.90-1.20%, Mo: 0.15-0.30%, P≦0.030%, Si≦0.030%, Ni≦0.25%, Cu≦0.30%; the above percentages are mass%.

評価体200は、浸炭後に歯研(研削)を行い、表面(摺動面)200aを整えた。用いた評価体200の形状および寸法は図5(b)に示した。浸炭処理は、評価体200の表面(摺動面)200aに4mm~5mm程度の浸炭層が形成されるように行った。After carburizing, the evaluation body 200 was ground (sharpened) to prepare the surface (sliding surface) 200a. The shape and dimensions of the evaluation body 200 used are shown in FIG. 5(b). The carburizing process was carried out so that a carburized layer of about 4 mm to 5 mm was formed on the surface (sliding surface) 200a of the evaluation body 200.

また、摺動疲労試験時に評価体200と組み合わせて用いたローラRの形状および寸法についても図5(b)に示した。このローラRは、JIS規格SCM420の鋼素材のものを用いた。尚、図1中の寸法数字の単位は、全てミリメートル[mm]である。 Figure 5(b) also shows the shape and dimensions of the roller R used in combination with the evaluation body 200 during the sliding fatigue test. This roller R is made of steel material of JIS standard SCM420. Note that all dimensional numbers in Figure 1 are in millimeters [mm].

摺動疲労試験は、評価体200の摺動面(摺動面の幅は約2mm(図4参照)にローラRの外径表面を3.4[GPa]の面圧荷重で当接させた状態で、両者の当接表面がそれぞれ1890rpm、2700rpmの回転速度となるように、評価体200とローラRとをそれぞれ軸回りに回転させ、摺動(滑り)を伴う接触(摺動接触)が生じるようにした。尚、本試験では、この摺動接触部分に温度80±5[℃]の潤滑油(GL490(ENEOSホールディング株式会社製))をフロー速度300-450[mm/分]で供給しながら、試験を行った。The sliding fatigue test was performed by contacting the outer diameter surface of roller R with the sliding surface of evaluation body 200 (width of sliding surface is approximately 2 mm (see Figure 4)) with a surface pressure load of 3.4 [GPa], and rotating evaluation body 200 and roller R around their respective axes so that the contact surfaces of both rotate at speeds of 1890 rpm and 2700 rpm, respectively, to create contact (sliding contact) accompanied by sliding (sliding). Note that in this test, lubricating oil (GL490 (manufactured by ENEOS Holdings Corporation)) with a temperature of 80±5 [°C] was supplied to this sliding contact area at a flow rate of 300-450 [mm/min] while the test was performed.

摺動疲労試験の試験条件をまとめると、以下の通りである;
・荷重:3.4[GPa]
・すべり率:30%(=100×(2700rpm-1890rpm)/2700rpm)
・潤滑油:GL490(ENEOSホールディング株式会社製)
・潤滑油温度:80±5[℃]
・フロー速度:300-450[mm/分]
The test conditions for the sliding fatigue test are as follows:
Load: 3.4 [GPa]
Slip rate: 30% (= 100 x (2700 rpm - 1890 rpm) / 2700 rpm)
Lubricant: GL490 (manufactured by ENEOS Holdings Corporation)
・Lubricating oil temperature: 80±5 [℃]
Flow rate: 300-450 [mm/min]

以上の構成および条件で評価体200について摺動疲労試験を行い、摺動面200aに径が1mm以上のピッチング(剥離痕)が発生した時点で試験を停止し、その時点での総回転数をピッチング発生サイクル数(摺動疲労寿命)とした。ここで、1mm以上の径における“径”とは、ピッチング(剥離痕)の平面視形状のうち、一端から他端までの径のうち最大径である。A sliding fatigue test was performed on the evaluation body 200 with the above configuration and conditions, and the test was stopped when pitting (peeling marks) with a diameter of 1 mm or more occurred on the sliding surface 200a, and the total number of rotations at that point was defined as the number of cycles until pitting occurred (sliding fatigue life). Here, the "diameter" of 1 mm or more refers to the maximum diameter from one end to the other end of the planar shape of the pitting (peeling marks).

図6は、評価体1~6について、摺動疲労試験を行い、ピッチング(剥離痕)が発生したピッチング発生サイクル数(摺動疲労寿命)を測定した結果を示すグラフである。横軸の数字は評価体の番号であり、縦軸はピッチング発生サイクル数を示す。
評価体1は、従来の浸炭処理部品に相当するものであり、図6中の凡例の「浸炭処理品」に対応する。
評価体2~6は、本発明の再処理部品に相当する。そのうち、評価体2~5は、使用済みの浸炭処理部品に対して瞬間焼入れ処理を施したものに相当し、図6中の凡例の「再処理品(中断試験材)」に対応する。また、評価体2~5は上述の「再利用部品」に相当する。評価体6は、未使用の浸炭処理部品に対して瞬間焼入れ処理を施したものに相当し、図6中の凡例の「再処理品(未試験材)」に対応する。
6 is a graph showing the results of measuring the number of cycles to pitting (sliding fatigue life) at which pitting (peeling marks) occurred when a sliding fatigue test was performed on evaluation specimens 1 to 6. The numbers on the horizontal axis are the numbers of the evaluation specimens, and the vertical axis shows the number of cycles to pitting.
The evaluation sample 1 corresponds to a conventional carburized part, and corresponds to the "carburized product" in the legend in FIG.
Evaluation specimens 2 to 6 correspond to the reprocessed parts of the present invention. Of these, evaluation specimens 2 to 5 correspond to used carburized parts that were subjected to flash quenching, and correspond to the "reprocessed part (interrupted test material)" in the legend in Fig. 6. Evaluation specimens 2 to 5 also correspond to the above-mentioned "reused parts." Evaluation specimen 6 corresponds to an unused carburized part that was subjected to flash quenching, and corresponds to the "reprocessed part (untested material)" in the legend in Fig. 6.

評価体1は、ステップ2の段階で、ステップ3(レーザー焼入れ(再熱処理))に進まずに、ピッチング発生サイクル数を測定したものである。
評価体2~5は評価体1の疲労サイクルを基準にして、それぞれ順にその基準サイクルの15%のサイクル、50%のサイクル、75%のサイクル、85%のサイクルまでステップ2(稼働ステップ)を行い、その後、ステップ3(レーザー焼入れ(再熱処理))を行い、さらに、ステップ4(再稼働ステップ)を行ってピッチング発生サイクル数を測定したものである。
評価体6はステップ2(稼働ステップ)を行わずに、ステップ3(レーザー焼入れ(再熱処理))を行い、さらに、ステップ4(再稼働ステップ)を行ってピッチング発生サイクル数を測定したものである。
For evaluation sample 1, the number of cycles at which pitting occurred was measured at step 2 without proceeding to step 3 (laser hardening (reheat treatment)).
For evaluation specimens 2 to 5, the fatigue cycle of evaluation specimen 1 was used as the standard, and step 2 (operation step) was carried out up to 15%, 50%, 75%, and 85% of the standard cycle, respectively, and then step 3 (laser hardening (reheat treatment)) was carried out, and further step 4 (re-operation step) was carried out to measure the number of cycles until pitting occurred.
For evaluation sample 6, step 2 (operation step) was not carried out, but step 3 (laser hardening (reheat treatment)) was carried out, and then step 4 (restart step) was carried out to measure the number of cycles at which pitting occurred.

評価体2~5の摺動疲労寿命はそれぞれ、評価体1の摺動疲労寿命に比べて、3.8倍、3.2倍、2.7倍、1.3倍のレーザー焼入れによる再熱処理の寿命向上効果が得られた。この結果から、一定時間稼働しても欠損が生じていない浸炭処理部品は、再瞬間焼入れ処理を施すことにより、寿命が向上することがわかった。
評価体6の摺動疲労寿命は、評価体1の摺動疲労寿命に比べて、8.2倍の寿命向上効果が得られた。
評価体2~6の結果から、使用前、使用後に関わらず、浸炭処理部品に対して瞬間焼入れ処理を施すことによって、浸炭処理部品は長寿命化された部品として生まれ変わることがわかった。瞬間焼入れ処理による長寿命化の効果は、使用前が最も大きく、使用後は使用時間が短いほど大きいことがわかった。
The sliding fatigue lives of evaluation bodies 2 to 5 showed a life improvement effect of reheat treatment by laser hardening of 3.8 times, 3.2 times, 2.7 times, and 1.3 times, respectively, compared to the sliding fatigue life of evaluation body 1. From this result, it was found that the life of carburized parts that did not suffer any damage even after operating for a certain period of time can be improved by performing flash re-hardening treatment.
The sliding fatigue life of evaluation body 6 was improved by 8.2 times compared with the sliding fatigue life of evaluation body 1.
The results of evaluation samples 2 to 6 show that by applying flash quenching to carburized parts, whether before or after use, the carburized parts are reborn as parts with a longer life. The effect of flash quenching on the extension of life is greatest before use, and the shorter the time of use after use, the greater the effect.

図7は、レーザー焼入れによる残留γ相の割合と摺動疲労寿命との関係を示すグラフである。横軸は評価体1(従来の浸炭処理部品に相当(評価体2~6のステップ2実施前(稼働前)の状態に相当))の残留γ相の割合に対する評価体2~6のステップ3(レーザー焼入れ)後の残留γ相の割合の比、縦軸は評価体1の摺動疲労寿命に対する評価体2~6の摺動疲労寿命の比である。残留γ相の割合は、X線回折法(XRD)により決定した。 Figure 7 is a graph showing the relationship between the proportion of residual gamma phase due to laser hardening and sliding fatigue life. The horizontal axis is the ratio of the proportion of residual gamma phase after step 3 (laser hardening) of evaluation bodies 2 to 6 to the proportion of residual gamma phase in evaluation body 1 (equivalent to a conventionally carburized part (equivalent to the state of evaluation bodies 2 to 6 before step 2 (before operation))), and the vertical axis is the ratio of the sliding fatigue life of evaluation bodies 2 to 6 to the sliding fatigue life of evaluation body 1. The proportion of residual gamma phase was determined by X-ray diffraction (XRD).

評価体1~6は、上述の通りである。
図7において、摺動疲労寿命比が1.3、2.7、3.2、3.8はそれぞれ、評価体5、4、3、2のそれぞれの結果であり、摺動疲労寿命比が8.2は評価体6の結果である。
図7から、残留γ相の割合が所定の範囲までは残留γ相の割合の増加とともに、摺動疲労寿命が向上しており、残留γ相と寿命との相関がみられる。
The evaluation samples 1 to 6 are as described above.
In FIG. 7, the sliding fatigue life ratios of 1.3, 2.7, 3.2, and 3.8 are the results for evaluation samples 5, 4, 3, and 2, respectively, and the sliding fatigue life ratio of 8.2 is the result for evaluation sample 6.
From FIG. 7, it can be seen that, up to a certain range of the ratio of the residual γ phase, the sliding fatigue life improves with an increase in the ratio of the residual γ phase, and a correlation between the residual γ phase and the life can be seen.

図8は、評価体のステップ1段階の深さ方向の硬度分布(従来の浸炭処理部品の深さ方向の硬度分布に相当)、及び、評価体のステップ3(レーザー焼入れ)後の深さ方向の硬度分布を示す図である。 Figure 8 shows the hardness distribution in the depth direction of the evaluation body at step 1 (corresponding to the hardness distribution in the depth direction of a conventional carburized part) and the hardness distribution in the depth direction of the evaluation body after step 3 (laser hardening).

レーザー焼入れを行う前の評価体のステップ1段階の深さ方向の硬度分布は、表面からの深さが深くなるにつれて徐々に硬度が低くなり、心部の硬度に漸近していることがわかる。
これに対して、レーザー焼入れ(再熱処理)を行った評価体(本発明の再生処理品に相当)の深さ方向の硬度分布は、最表面に700Hv~900Hvの硬度の第1硬化層があり、第1硬化層よりも心部側に極小の硬度を示す第2硬化層があり、さらに第2硬化層よりも心部側に第2硬化層よりも硬度が高い第3硬化層を有することがわかる。
It can be seen that the hardness distribution in the depth direction at step 1 of the evaluation body before laser hardening gradually decreases with increasing depth from the surface, and gradually approaches the hardness of the core.
In contrast, the hardness distribution in the depth direction of the evaluation body (corresponding to the recycled product of the present invention) that had been laser hardened (reheat treated) showed that there was a first hardened layer with a hardness of 700 Hv to 900 Hv on the outermost surface, a second hardened layer exhibiting extremely low hardness closer to the core than the first hardened layer, and a third hardened layer with a harderness than the second hardened layer closer to the core than the second hardened layer.

図9(a)はステップ1段階の評価体の断面の電子顕微鏡(SEM)像であり、(b)はレーザー焼入れ(再熱処理)を行った評価体の断面のSEM像である。
図9(b)のSEM像ではその濃淡において、表面から深さ200μm程度まで、レーザー焼入れによる組織の違いに相当する濃い部分が存在する。この層が第1硬度層に相当する。一方、図9(a)のSEM像ではこのような濃い部分は存在しない。
FIG. 9(a) is a scanning electron microscope (SEM) image of a cross section of the evaluation body at step 1, and (b) is a SEM image of a cross section of the evaluation body that has been laser hardened (reheat treated).
In the SEM image of Fig. 9(b), there is a dark area from the surface to a depth of about 200 μm, which corresponds to the difference in structure due to laser hardening. This layer corresponds to the first hardness layer. On the other hand, there is no such dark area in the SEM image of Fig. 9(a).

図10(a)~(d)、ステップ1~ステップ4に関する評価体のSEM観察による断面組織を示す。
SEM像中の矢印は残留γ相の領域を示す。
SEM像に基づくと、ステップ1において高い割合で存在していた残留γ相はステップ2(摺動接触(稼働)後に減少したが、ステップ3(レーザー焼入れ)後に再び高い割合に回復していることがわかる。
10(a) to (d) show cross-sectional structures of evaluation samples for steps 1 to 4 observed by SEM.
The arrows in the SEM images indicate areas of residual γ phase.
Based on the SEM images, it can be seen that the residual γ phase, which was present at a high ratio in step 1, decreased after step 2 (sliding contact (operation)), but recovered to a high ratio again after step 3 (laser hardening).

また、X線回折法(XRD)により、各ステップ後の評価体について表層部位の組織変化の評価(残留γ相の割合、残留応力、FWHM)を行った結果を表1に示す; In addition, the results of evaluating the microstructural changes in the surface layer of the specimens after each step (ratio of residual γ phase, residual stress, FWHM) using X-ray diffraction (XRD) are shown in Table 1;

Figure 0007595312000001
Figure 0007595312000001

XRDによる解析の結果、ステップ1において18%程度存在していた残留γ相はステップ2(摺動接触(稼働)後に10%程度にまで減少したが、ステップ3(レーザー焼入れ)後には摺動接触前より高い28%程度にまで増加していることがわかった。 XRD analysis revealed that the residual gamma phase, which was present at about 18% in step 1, decreased to about 10% after step 2 (sliding contact (operation)), but increased to about 28% after step 3 (laser hardening), higher than before the sliding contact.

図11(a)にステップ1段階の評価体のSEM像、(b)にステップ3後の評価体のSEM像を示す。それぞれのSEM像で囲んでいる箇所が結晶粒である。
図11(a)から、摺動接触(稼働)前に旧γ粒径(第1硬化層内)は10μm程度であることがわかる。また、図11(b)から、レーザー焼入れ(再熱処理)によって5μm程度に微細化されていることがわかる。
瞬間焼入れによって第1硬化層のビッカース硬度が700Hv~900Hvと硬化するものの、結晶粒微細化効果、残留γ相(軟相)とマルテンサイト相(硬相)の複合強化効果により、高い靭性を保持できる。
11A shows an SEM image of the evaluation body at step 1, and (b) shows an SEM image of the evaluation body after step 3. The areas surrounded in each SEM image are crystal grains.
From Fig. 11(a), it can be seen that the prior γ grain size (in the first hardened layer) was about 10 μm before sliding contact (operation), and from Fig. 11(b), it can be seen that the prior γ grain size was refined to about 5 μm by laser hardening (reheat treatment).
Although the Vickers hardness of the first hardened layer is hardened to 700Hv to 900Hv by flash quenching, high toughness can be maintained due to the effect of refining crystal grains and the combined strengthening effect of the residual γ phase (soft phase) and the martensite phase (hard phase).

図12は、STEM(走査型透過電子顕微鏡)による第1硬化層の表層からの深さ10μm程度の内部組織の観察結果である。ステップ1の低倍率像において、黄色の矢印で示した帯状かつ同一のコントラストで並列に配列しているのが、ラスマルテンサイトである。これらは、結晶方位が同じ向きで並んでおり、配列されている向きに応じて、いくつかのパケットの存在もわかる。一方で高倍率の画像では、ラスマルテンサイト内でコントラストの不均一性も視認出来る。これは転位密度が高いことを示している。摺動疲労を伴うステップ2では、AとBの領域における赤矢印の通り、すべり線を伴い粒界に沿った形で、双晶変形の様相を呈していることがわかる。これらのすべり線は、200nmのスケールに対して、概ね10のラインを確認できる。したがって、すべり線の間隔は、約10nmと想定され、これは1サイクル毎のき裂進展速度に対応すると考えらえる。対して、すべり線が視認できないCの様な領域もあり、この視野像より、すべり線が未導入であり局在化していることを反映されている。ステップ3では、赤矢印部近傍における一部のパケット領域にて、すべり線が一部残存しているが、全体を見渡すと全域にわたってすべり線は漸減しており、その間隔も広くなりステップ1の状態へ回復していることが明瞭に確認出来る。これはレーザー焼き入れ処理による特徴的な効果の一つといえる。最後にステップ4では、経時的な負荷に伴い塑性流動の影響が大きく、すべり線が不明瞭な状態となり、サブグレイン化が進行している。これらは、摺動疲労の進行と共に、等方的形状に伸長されることで形成し、再配列によりサブグレイン化していると考えられる。また、すべり線は視野全体に一方向に見えている。 Figure 12 shows the results of an observation of the internal structure of the first hardened layer at a depth of about 10 μm from the surface layer using a STEM (scanning transmission electron microscope). In the low-magnification image of step 1, the lath martensite is arranged in parallel in a band shape with the same contrast, as indicated by the yellow arrow. These are aligned in the same crystal orientation, and the presence of several packets can be seen depending on the orientation of the arrangement. On the other hand, in the high-magnification image, the contrast in the lath martensite is also visible. This indicates a high dislocation density. In step 2, which involves sliding fatigue, as indicated by the red arrows in areas A and B, it can be seen that the twin deformation is observed along the grain boundaries with slip lines. These slip lines can be seen in approximately 10 lines on a scale of 200 nm. Therefore, the interval between the slip lines is assumed to be about 10 nm, which is considered to correspond to the crack growth rate per cycle. On the other hand, there are regions like C where slip lines are not visible, and this view reflects that slip lines have not been introduced and are localized. In step 3, some slip lines remain in some packet regions near the red arrow, but when viewed overall, it can be clearly seen that the slip lines are gradually decreasing over the entire area, and the intervals between them are also widening, and the state has been restored to that of step 1. This can be said to be one of the characteristic effects of laser hardening. Finally, in step 4, the influence of plastic flow is large with the load over time, and the slip lines become unclear, and subgrain formation is progressing. It is thought that these are formed by elongation into an isotropic shape as sliding fatigue progresses, and then subgrain formation occurs due to rearrangement. In addition, slip lines are visible in one direction throughout the entire view.

図13は、TEM(透過電子顕微鏡)による第1硬化層の内部組織の観察結果である。ステップ1では、図12の組織像と同様に試験前は、ラスマルテンサイト(黄色矢印)が顕在化している。その後にステップ2での摺動疲労と共にサブグレイン化(橙色の矢印)していく。しかし、レーザー焼き入れ処理を施したステップ3では、サブグレインが減少する反面、ラスマルテンサイトが回復し、そのラス内のコントラストは、一様となっている。最終的にピッチングを呈する段階となるステップ4では、過度な塑性流動に伴い、ラスマルテンサイトも不明瞭な程にサブグレイン化が顕著に進行することがTEMの組織像から確認できた。 Figure 13 shows the results of observation of the internal structure of the first hardened layer using a TEM (transmission electron microscope). In step 1, lath martensite (yellow arrow) is apparent before testing, as in the structure image in Figure 12. This is followed by subgrain formation (orange arrow) along with sliding fatigue in step 2. However, in step 3, where laser hardening was performed, the subgrains decrease, but the lath martensite recovers and the contrast within the lath becomes uniform. In step 4, which is the stage at which pitting finally occurs, the TEM structure image confirmed that excessive plastic flow causes subgrain formation to progress so significantly that even the lath martensite becomes unclear.

本発明の再処理部品を模擬する評価体は、浸炭処理部品が熱処理のみの簡便かつ安価な方法によって、靭性、耐摩耗性が向上し、また、機能の復元や長寿命化が図れていることがわかった。 The evaluation specimens simulating the reprocessed parts of the present invention showed that the toughness and wear resistance of the carburized parts were improved by a simple and inexpensive method of heat treatment alone, and that functionality was restored and the lifespan was extended.

1 第1硬化層
2 第2硬化層
3 第3硬化層
10 浸炭層
20 心部
100 再処理部品
Reference Signs List 1: First hardened layer 2: Second hardened layer 3: Third hardened layer 10: Carburized layer 20: Core 100: Reprocessed part

Claims (8)

表面に浸炭層を備え、
前記浸炭層内において、表面から深さ方向に、いずれも心部よりも硬度が高い第1硬化層、第2硬化層及び第3硬化層の三層を順に隣接して有し、
前記第1硬化層は前記三層の中で硬度が最も高く、かつ、前記第2硬化層は前記三層の中で硬度が最も低く、
前記第1硬化層の旧γ粒径が5μm以上、15μm以下であり、前記第1硬化層の残留オーステナイトの体積率が10%以上、35%以下である、再処理部品。
With a carburized layer on the surface,
the carburized layer has three adjacent layers in order from the surface to the depth direction, the first hardened layer, the second hardened layer and the third hardened layer, each of which has a hardness higher than that of the core;
The first hardened layer has the highest hardness among the three layers, and the second hardened layer has the lowest hardness among the three layers;
A reprocessed component, wherein the prior gamma grain size of the first hardened layer is 5 μm or more and 15 μm or less, and the volume fraction of retained austenite in the first hardened layer is 10% or more and 35% or less.
(削除) (delete) 前記第1硬化層の厚みは50μm以上、300μm以下である、請求項1に記載の再処理部品。 The reprocessed part described in claim 1, wherein the thickness of the first hardened layer is 50 μm or more and 300 μm or less. (削除) (delete) (削除) (delete) 請求項1または請求項3に記載の再処理部品を製造する方法であって、
表面に浸炭層を有する浸炭処理部品を準備する工程と、
前記浸炭処理部品に瞬間焼入れを行い、前記浸炭層内に前記三層を形成する工程と、を有する、再処理部品の製造方法。
A method for manufacturing a reworked part according to claim 1 or claim 3, comprising the steps of:
preparing a carburized component having a carburized layer on a surface thereof;
and flash quenching the carburized component to form the three layers within the carburized layer.
前記瞬間焼入れをレーザーによって行うものであって、
前記瞬間焼入れを行う際のレーザーの出力の範囲を、前記第1硬化層に割れが入らず、かつ、前記第1硬化層の厚みが所定の厚さとなるように決定する工程と、
決定した出力の範囲内でレーザーによる瞬間焼入れを行う工程と、を有する、請求項6に記載の再処理部品の製造方法。
The instantaneous hardening is performed by a laser,
determining a range of laser output when performing the instantaneous hardening such that no cracks are generated in the first hardened layer and the thickness of the first hardened layer is a predetermined thickness;
and performing a laser flash hardening within the determined power range.
前記再処理部品は、一定時間の使用により経時的に負荷を受けた浸炭処理部品である請求項1または請求項3に記載の再処理部品。4. The reprocessed part according to claim 1, wherein the reprocessed part is a carburized part that has been subjected to load over time due to use for a certain period of time.
JP2023517596A 2021-04-28 2022-04-27 Reprocessed parts and manufacturing method for reprocessed parts Active JP7595312B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021076702 2021-04-28
JP2021076702 2021-04-28
PCT/JP2022/019085 WO2022230937A1 (en) 2021-04-28 2022-04-27 Reprocessed component and method for manufacturing reprocessed component

Publications (3)

Publication Number Publication Date
JPWO2022230937A1 JPWO2022230937A1 (en) 2022-11-03
JPWO2022230937A5 JPWO2022230937A5 (en) 2024-04-01
JP7595312B2 true JP7595312B2 (en) 2024-12-06

Family

ID=83848555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023517596A Active JP7595312B2 (en) 2021-04-28 2022-04-27 Reprocessed parts and manufacturing method for reprocessed parts

Country Status (2)

Country Link
JP (1) JP7595312B2 (en)
WO (1) WO2022230937A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199599A1 (en) 2014-06-27 2015-12-30 Aktiebolaget Skf Method for surface hardening a metal component
WO2017154964A1 (en) 2016-03-08 2017-09-14 アイシン・エィ・ダブリュ株式会社 Steel component, gear component, and method for manufacturing steel component
CN111041406A (en) 2019-11-29 2020-04-21 西安交通大学 A composite process method for improving the anti-wear/fatigue performance of engine gears

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013045B2 (en) * 1978-09-27 1985-04-04 株式会社日立製作所 Hardening processing method for carbon steel parts
JPH0339459A (en) * 1989-07-06 1991-02-20 Sumitomo Metal Ind Ltd Surface hardened parts and their production
JP5319866B2 (en) * 2004-05-24 2013-10-16 株式会社小松製作所 Rolling member and manufacturing method thereof
US20190284676A1 (en) * 2016-11-08 2019-09-19 Hitachi, Ltd. Structural material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199599A1 (en) 2014-06-27 2015-12-30 Aktiebolaget Skf Method for surface hardening a metal component
WO2017154964A1 (en) 2016-03-08 2017-09-14 アイシン・エィ・ダブリュ株式会社 Steel component, gear component, and method for manufacturing steel component
CN111041406A (en) 2019-11-29 2020-04-21 西安交通大学 A composite process method for improving the anti-wear/fatigue performance of engine gears

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUI, Katsuyuki, et al.,Increase in Fatigue Limit of Gears by Compound Surface Refining Using Vacuum Carburizing, Contour In,JSME International Journal,日本,2002年,第45巻,第2号,p.290-297,https://doi.org/10.1299/jsmea.45.290

Also Published As

Publication number Publication date
JPWO2022230937A1 (en) 2022-11-03
WO2022230937A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
JP5494433B2 (en) Wheel steel
WO2011114836A1 (en) Steel for case-hardening treatment, case-hardened steel component, and method for producing same
Kunz et al. Mechanical properties of high‐speed steel AISI M50 produced by laser powder bed fusion
Schmitt et al. Laser-based powder bed fusion of 16MnCr5 and resulting material properties
Molina et al. Fatigue life of laser additive manufacturing repaired steel component
Soodi Investigation of laser deposited wear resistant coatings on railway axle steels
JP5886119B2 (en) Case-hardened steel
Torkamani et al. Micro-pitting and wear damage characterization of through hardened 100Cr6 and surface induction hardened C56E2 bearing steels
CN102639735A (en) Ingot for bearing, and process for producing bearing steel
Haghshenas et al. A case study on fatigue failure of a transmission gearbox input shaft
JP7595312B2 (en) Reprocessed parts and manufacturing method for reprocessed parts
BE1018151A5 (en) METHOD FOR INCREASING THE TIRES OF STRENGTH OF A MAINLY STEEL TOOL PART AND / OR REDUCING THE INCLUSION TO CREATE CALLED &#34;WHITE ETCHING CRACKS&#34; OR BRITTLE FLAKES IN SUCH SAMPLES.
JP5643622B2 (en) Case-hardened steel and machine structural parts using the same
JP4940849B2 (en) Vacuum carburized parts and method for manufacturing the same
JP5403945B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
US12180995B2 (en) Crankshaft and method of manufacturing the same
Zheng et al. Novel water-air circulation quenching process for AISI 4140 steel
US12352309B2 (en) Crankshaft
Ketmuang et al. Fracture Analysis of S45C Medium Carbon Steel for the Van Front Drive Shaft
Guterres et al. The Effect of Temperature in Induction Surface Hardening on the Distortion of Gear
TW201739933A (en) Case hardened steel
Tchórz et al. Contact fatigue strength of 21NiCrMo2 steel gears subjected to shot peening treatment
Boonmag et al. Micro-crack analyses of chromium steel JIS-SCr 420 for helical gear transmission
Baskar et al. Hardening Characteristics of 16MnCr5 Metals for Engine Block
Etemadi et al. Metallurgical Analysis of Crack Initiation of Wire-Cut Electrical Discharge-Machined Spline Actuators Made of 17-4 PH Stainless Steel

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20231013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241115

R150 Certificate of patent or registration of utility model

Ref document number: 7595312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150