JP7505974B2 - Vehicle control device - Google Patents
Vehicle control device Download PDFInfo
- Publication number
- JP7505974B2 JP7505974B2 JP2020209723A JP2020209723A JP7505974B2 JP 7505974 B2 JP7505974 B2 JP 7505974B2 JP 2020209723 A JP2020209723 A JP 2020209723A JP 2020209723 A JP2020209723 A JP 2020209723A JP 7505974 B2 JP7505974 B2 JP 7505974B2
- Authority
- JP
- Japan
- Prior art keywords
- torque
- learning
- clutch
- engine
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Hybrid Electric Vehicles (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Control Of Transmission Device (AREA)
Description
本発明は、エンジンと、電動機と、エンジンと電動機との間の連結を切り離し可能なクラッチと、を備えた車両の制御装置に関するものである。 The present invention relates to a control device for a vehicle equipped with an engine, an electric motor, and a clutch capable of disconnecting the engine from the electric motor.
エンジンと、前記エンジンと駆動輪との間の動力伝達経路に動力伝達可能に連結された電動機と、前記動力伝達経路における前記エンジンと前記電動機との間に設けられた、油圧式のクラッチアクチュエータが制御されることによって制御状態が切り替えられるクラッチと、前記クラッチアクチュエータへ調圧された油圧を供給する油圧制御回路と、を備えた車両の制御装置が良く知られている。例えば、特許文献1に記載された車両の制御装置がそれである。この特許文献1には、エンジンを始動するときに、クラッチを滑らせながら係合させてエンジンの回転速度を上昇させると共に、クラッチの係合により発生する減速トルクを打ち消すように電動機から補償トルクを出力させること、クラッチの伝達トルクと補償トルクとの発生タイミングのずれを補正するタイミング学習を先ずは行うこと、発生タイミングのずれが収束した後に、クラッチの伝達トルクと補償トルクとの大きさのずれを補正する大きさ学習を行うこと、大きさのずれが収束した後に、クラッチの係合開始時の油圧指令値を一時的に高めてクラッチのパック詰めを促進する為のファーストフィルの時間を補正するファーストフィル時間学習を行うことが開示されている。
A vehicle control device is well known that includes an engine, an electric motor connected to a power transmission path between the engine and driving wheels so as to be capable of transmitting power, a clutch that is provided between the engine and the electric motor in the power transmission path and whose control state is switched by controlling a hydraulic clutch actuator, and a hydraulic control circuit that supplies regulated hydraulic pressure to the clutch actuator. For example, a vehicle control device described in
ところで、クラッチの係合制御は、ファーストフィル後に、クラッチの伝達トルクを発生させるように進行させられるので、ファーストフィル時間の変更は、ファーストフィル後の油圧制御に影響を与える。例えば、タイミング学習による発生タイミングの収束後に、ファーストフィル時間学習を行うと、再び、発生タイミングのずれが拡大して、発生タイミングのずれが収束させられない可能性がある。その為、結果的に、エンジン始動時におけるクラッチの係合に関わる学習制御の進行が遅れてしまうおそれがある。 However, since clutch engagement control is performed so as to generate clutch transmission torque after first fill, a change in the first fill time affects hydraulic control after first fill. For example, if first fill time learning is performed after the occurrence timing has converged due to timing learning, the occurrence timing deviation may increase again, and the occurrence timing deviation may not be able to converge. As a result, there is a risk that the progress of learning control related to clutch engagement at engine start may be delayed.
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、エンジン始動時におけるクラッチの係合に関わる学習制御を速やかに進行させることができる車両の制御装置を提供することにある。 The present invention was made against the background of the above circumstances, and its purpose is to provide a vehicle control device that can quickly progress learning control related to clutch engagement at engine start.
第1の発明の要旨とするところは、(a)エンジンと、前記エンジンと駆動輪との間の動力伝達経路に動力伝達可能に連結された電動機と、前記動力伝達経路における前記エンジンと前記電動機との間に設けられた、油圧式のクラッチアクチュエータが制御されることによって制御状態が切り替えられるクラッチと、前記クラッチアクチュエータへ調圧された油圧を供給する油圧制御回路と、を備えた車両の、制御装置であって、(b)前記エンジンの始動に際して、前記電動機の出力トルクを前記エンジンのクランキングに必要なトルクである必要クランキングトルク分増加するように前記電動機を制御すると共に前記エンジンが運転を開始するように前記エンジンを制御する始動制御部と、(c)前記エンジンの始動に際して、前記クラッチの制御状態を解放状態から係合状態へ切り替える係合過渡中に、前記油圧を供給させる油圧指令値として、前記必要クランキングトルクを前記クラッチが伝達するように前記クラッチアクチュエータへの前記油圧を調圧するクランキング用油圧指令値を前記油圧制御回路へ出力すると共に、前記クランキング用油圧指令値の出力に先立って、前記油圧指令値として、前記クラッチを速やかに前記クラッチのパッククリアランスが詰められたパック詰め完了状態とするように前記クラッチアクチュエータへの前記油圧の応答性を向上させる急速充填用油圧指令値を前記油圧制御回路へ出力するクラッチ制御部と、(d)前記クラッチの前記係合過渡中における前記油圧と前記油圧指令値との相関を表す関係を補正する複数種類の学習制御を行う学習制御部と、を含んでおり、(e)前記学習制御部は、前記複数種類の学習制御のうちの、前記急速充填用油圧指令値が出力される急速充填時間を補正する急速充填時間学習を最も優先して実行するものであり、(f)前記急速充填時間学習における学習値である前記急速充填時間が収束したと判定した後に、前記複数種類の学習制御のうちの、前記クラッチを前記パック詰め完了状態とする前記油圧を補正するパック詰め完了油圧学習、前記クラッチの伝達トルクが前記必要クランキングトルクに向けて立ち上がる伝達トルク立ち上がり時点と前記電動機による前記必要クランキングトルク分の増大が開始させられる電動機トルク立ち上がり時点とのずれを補正する立ち上がり時点学習、及び前記必要クランキングトルクと前記クランキング用油圧指令値により生じる前記クラッチの伝達トルクとのずれを補正する伝達トルク学習の少なくとも一つにおける学習値が収束したか否かを判定することにある。 The gist of the first invention is a control device for a vehicle including: (a) an engine; an electric motor connected to a power transmission path between the engine and drive wheels so as to be capable of transmitting power; a clutch whose control state is switched by controlling a hydraulic clutch actuator provided between the engine and the electric motor in the power transmission path; and a hydraulic control circuit that supplies regulated hydraulic pressure to the clutch actuator, (b) a start control unit that controls the electric motor so as to increase the output torque of the electric motor by a required cranking torque, which is a torque required for cranking the engine, when the engine is started, and controls the engine so that the engine starts operating; and (c) a hydraulic pressure command value for cranking that adjusts the hydraulic pressure to the clutch actuator so that the clutch transmits the required cranking torque is output to the hydraulic control circuit as a hydraulic pressure command value for supplying the hydraulic pressure during an engagement transition in which the control state of the clutch is switched from a released state to an engaged state, and prior to the output of the hydraulic pressure command value for cranking, a hydraulic pressure command value for adjusting the hydraulic pressure to the clutch actuator is output to the hydraulic control circuit so as to adjust the hydraulic pressure to the clutch actuator so that the clutch transmits the required cranking torque, and a hydraulic pressure command value for adjusting the hydraulic pressure to the clutch actuator so that the clutch transmits the required cranking torque, and a hydraulic pressure command value for adjusting the hydraulic pressure to the clutch actuator so that the clutch transmits the required cranking torque, when the clutch is started, is output as a hydraulic pressure command value. (d) a learning control unit that performs a plurality of types of learning controls to correct a relationship that represents a correlation between the hydraulic pressure during the engagement transition of the clutch and the hydraulic pressure command value, (e) the learning control unit gives highest priority to quick fill time learning among the plurality of types of learning controls, which corrects a quick fill time for which the quick fill hydraulic pressure command value is output, and (f) after it is determined that the quick fill time, which is a learned value in the quick fill time learning, has converged, The object of the present invention is to determine whether or not a learning value has converged in at least one of the multiple types of learning controls: packing completion hydraulic pressure learning, which corrects the hydraulic pressure to bring the clutch into the packing completion state; rising time point learning, which corrects the difference between the transmission torque rising time point at which the transmission torque of the clutch rises toward the required cranking torque and the electric motor torque rising time point at which the electric motor starts to increase the required cranking torque; and transmission torque learning, which corrects the difference between the required cranking torque and the transmission torque of the clutch caused by the cranking hydraulic pressure command value.
また、第2の発明は、前記第1の発明に記載の車両の制御装置において、前記学習制御部は、前記クラッチが前記パック詰め完了状態とされてから、前記必要クランキングトルクに向けて増加させられる前記クラッチの伝達トルクの応答特性を反映した予め定められた関数を用いて算出した前記伝達トルクの推定値と前記必要クランキングトルクとの差が前記伝達トルクの推定値が前記必要クランキングトルクに近づいたと判断できる予め定められた所定値以下となるまでの期間における、前記学習制御における学習値が収束させられていないことによって生じる現象の程度を表す数値に基づいて、前記立ち上がり時点学習を行うことにある。 The second invention is a vehicle control device according to the first invention, in which the learning control unit performs the rising edge learning based on a numerical value that indicates the degree of a phenomenon that occurs due to the learning value in the learning control not being converged during the period from when the clutch is in the packing completion state until the difference between the estimated value of the transmission torque calculated using a predetermined function that reflects the response characteristics of the transmission torque of the clutch that is increased toward the required cranking torque and the required cranking torque becomes equal to or less than a predetermined value at which it can be determined that the estimated value of the transmission torque is approaching the required cranking torque.
前記第1の発明によれば、複数種類の学習制御のうちの急速充填時間学習が最も優先して実行されるものであり、急速充填時間学習における学習値である急速充填時間が収束したと判定された後に、複数種類の学習制御のうちの、パック詰め完了油圧学習、立ち上がり時点学習、及び伝達トルク学習の少なくとも一つにおける学習値が収束したか否かが判定されるので、急速充填時間学習により急速充填時間が速やかに収束させられると共に、急速充填時間の補正の影響を受け難くされた状態で、急速充填時間学習とは別の学習制御における学習値が適切に収束させられる。よって、エンジン始動時におけるクラッチの係合に関わる学習制御を速やかに進行させることができる。 According to the first invention, among the multiple types of learning controls, the rapid fill time learning is executed with the highest priority, and after it is determined that the rapid fill time, which is the learning value in the rapid fill time learning, has converged, it is determined whether or not the learning value in at least one of the multiple types of learning controls, the packing completion hydraulic pressure learning, the rising point learning, and the transmission torque learning, has converged. Therefore, the rapid fill time is quickly converged by the rapid fill time learning, and the learning value in the learning control other than the rapid fill time learning is appropriately converged in a state in which it is less susceptible to the influence of the correction of the rapid fill time. Therefore, the learning control related to the engagement of the clutch at the time of engine start can be quickly progressed.
また、前記第2の発明によれば、クラッチがパック詰め完了状態とされてから、クラッチの伝達トルクの推定値と必要クランキングトルクとの差が所定値以下となるまでの期間における、学習制御における学習値が収束させられていないことによって生じる現象の程度を表す数値に基づいて、立ち上がり時点学習が行われるので、必要クランキングトルクとクランキング用油圧指令値により生じるクラッチの伝達トルクとのずれの影響を抑制した状態で、立ち上がり時点学習を適切に行うことができる。 In addition, according to the second invention, the rising point learning is performed based on a numerical value that indicates the degree of the phenomenon caused by the learning value in the learning control not converging during the period from when the clutch is in the packing completion state until the difference between the estimated value of the clutch transmission torque and the required cranking torque becomes equal to or less than a predetermined value. Therefore, the rising point learning can be performed appropriately while suppressing the influence of the deviation between the required cranking torque and the clutch transmission torque caused by the cranking hydraulic pressure command value.
以下、本発明の実施例を図面を参照して詳細に説明する。 The following describes in detail an embodiment of the present invention with reference to the drawings.
図1は、本発明が適用される車両10の概略構成を説明する図であると共に、車両10における各種制御の為の制御機能及び制御系統の要部を説明する図である。図1において、車両10は、走行用の駆動力源である、エンジン12及び電動機MGを備えたハイブリッド車両である。又、車両10は、駆動輪14と、エンジン12と駆動輪14との間の動力伝達経路に設けられた動力伝達装置16と、を備えている。
Figure 1 is a diagram illustrating the general configuration of a
エンジン12は、ガソリンエンジンやディーゼルエンジン等の公知の内燃機関である。エンジン12は、後述する電子制御装置90によって、車両10に備えられたスロットルアクチュエータや燃料噴射装置や点火装置等を含むエンジン制御装置50が制御されることによりエンジン12の出力トルクであるエンジントルクTeが制御される。
The
電動機MGは、電力から機械的な動力を発生させる発動機としての機能及び機械的な動力から電力を発生させる発電機としての機能を有する回転電気機械であって、所謂モータジェネレータである。電動機MGは、車両10に備えられたインバータ52を介して、車両10に備えられたバッテリ54に接続されている。電動機MGは、後述する電子制御装置90によってインバータ52が制御されることにより、電動機MGの出力トルクであるMGトルクTmが制御される。MGトルクTmは、例えば電動機MGの回転方向がエンジン12の運転時と同じ回転方向である正回転の場合、加速側となる正トルクでは力行トルクであり、減速側となる負トルクでは回生トルクである。具体的には、電動機MGは、エンジン12に替えて或いはエンジン12に加えて、インバータ52を介してバッテリ54から供給される電力により走行用の動力を発生する。又、電動機MGは、エンジン12の動力や駆動輪14側から入力される被駆動力により発電を行う。電動機MGの発電により発生させられた電力は、インバータ52を介してバッテリ54に蓄積される。バッテリ54は、電動機MGに対して電力を授受する蓄電装置である。前記電力は、特に区別しない場合には電気エネルギも同意である。前記動力は、特に区別しない場合にはトルクや力も同意である。
The electric motor MG is a rotating electric machine that functions as a motor to generate mechanical power from electric power and as a generator to generate electric power from mechanical power, and is a so-called motor generator. The electric motor MG is connected to a
動力伝達装置16は、車体に取り付けられる非回転部材であるケース18内において、K0クラッチ20、トルクコンバータ22、自動変速機24等を備えている。K0クラッチ20は、エンジン12と駆動輪14との間の動力伝達経路におけるエンジン12と電動機MGとの間に設けられたクラッチである。トルクコンバータ22は、K0クラッチ20を介してエンジン12に連結されている。自動変速機24は、トルクコンバータ22に連結されており、トルクコンバータ22と駆動輪14との間の動力伝達経路に介在させられている。トルクコンバータ22及び自動変速機24は、各々、エンジン12と駆動輪14との間の動力伝達経路の一部を構成している。又、動力伝達装置16は、自動変速機24の出力回転部材である変速機出力軸26に連結されたプロペラシャフト28、プロペラシャフト28に連結されたディファレンシャルギヤ30、ディファレンシャルギヤ30に連結された1対のドライブシャフト32等を備えている。又、動力伝達装置16は、エンジン12とK0クラッチ20とを連結するエンジン連結軸34、K0クラッチ20とトルクコンバータ22とを連結する電動機連結軸36等を備えている。
The
電動機MGは、ケース18内において、電動機連結軸36に動力伝達可能に連結されている。電動機MGは、エンジン12と駆動輪14との間の動力伝達経路、特にはK0クラッチ20とトルクコンバータ22との間の動力伝達経路に動力伝達可能に連結されている。つまり、電動機MGは、K0クラッチ20を介することなくトルクコンバータ22や自動変速機24と動力伝達可能に連結されている。見方を換えれば、トルクコンバータ22及び自動変速機24は、各々、電動機MGと駆動輪14との間の動力伝達経路の一部を構成している。トルクコンバータ22及び自動変速機24は、各々、エンジン12及び電動機MGの駆動力源の各々からの駆動力を駆動輪14へ伝達する。
The electric motor MG is connected to the electric
トルクコンバータ22は、電動機連結軸36と連結されたポンプ翼車22a、及び自動変速機24の入力回転部材である変速機入力軸38と連結されたタービン翼車22bを備えている。ポンプ翼車22aは、K0クラッチ20を介してエンジン12と連結されていると共に、直接的に電動機MGと連結されている。ポンプ翼車22aはトルクコンバータ22の入力部材であり、タービン翼車22bはトルクコンバータ22の出力部材である。電動機連結軸36は、トルクコンバータ22の入力回転部材でもある。変速機入力軸38は、タービン翼車22bによって回転駆動されるタービン軸と一体的に形成されたトルクコンバータ22の出力回転部材でもある。トルクコンバータ22は、駆動力源(エンジン12、電動機MG)の各々からの駆動力を流体を介して変速機入力軸38へ伝達する流体式伝動装置である。トルクコンバータ22は、ポンプ翼車22aとタービン翼車22bとを連結するLUクラッチ40を備えている。LUクラッチ40は、トルクコンバータ22の入出力回転部材を連結する直結クラッチ、すなわち公知のロックアップクラッチである。
The
LUクラッチ40は、車両10に備えられた油圧制御回路56から供給される調圧された油圧であるLU油圧PRluによりLUクラッチ40のトルク容量であるLUトルクTluが変化させられることで、作動状態つまり制御状態が切り替えられる。LUクラッチ40の制御状態としては、LUクラッチ40が解放された状態である完全解放状態、LUクラッチ40が滑りを伴って係合された状態であるスリップ状態、及びLUクラッチ40が係合された状態である完全係合状態がある。LUクラッチ40が完全解放状態とされることにより、トルクコンバータ22はトルク増幅作用が得られるトルクコンバーター状態とされる。又、LUクラッチ40が完全係合状態とされることにより、トルクコンバータ22はポンプ翼車22a及びタービン翼車22bが一体回転させられるロックアップ状態とされる。
The
自動変速機24は、例えば不図示の1組又は複数組の遊星歯車装置と、複数の係合装置CBと、を備えている、公知の遊星歯車式の自動変速機である。係合装置CBは、例えば油圧アクチュエータにより押圧される多板式或いは単板式のクラッチやブレーキ、油圧アクチュエータによって引き締められるバンドブレーキなどにより構成される、油圧式の摩擦係合装置である。係合装置CBは、各々、油圧制御回路56から供給される調圧された油圧であるCB油圧PRcbによりそれぞれのトルク容量であるCBトルクTcbが変化させられることで、係合状態や解放状態などの制御状態が切り替えられる。
The
自動変速機24は、係合装置CBのうちの何れかの係合装置が係合されることによって、変速比(ギヤ比ともいう)γat(=AT入力回転速度Ni/AT出力回転速度No)が異なる複数の変速段(ギヤ段ともいう)のうちの何れかのギヤ段が形成される有段変速機である。自動変速機24は、後述する電子制御装置90によって、ドライバー(=運転者)のアクセル操作や車速V等に応じて形成されるギヤ段が切り替えられる、すなわち複数のギヤ段が選択的に形成される。AT入力回転速度Niは、変速機入力軸38の回転速度であり、自動変速機24の入力回転速度である。AT入力回転速度Niは、トルクコンバータ22の出力回転部材の回転速度でもあり、トルクコンバータ22の出力回転速度であるタービン回転速度Ntと同値である。AT入力回転速度Niは、タービン回転速度Ntで表すことができる。AT出力回転速度Noは、変速機出力軸26の回転速度であり、自動変速機24の出力回転速度である。
The
K0クラッチ20は、例えば後述する油圧式のクラッチアクチュエータ120により押圧される多板式或いは単板式のクラッチにより構成される湿式又は乾式の摩擦係合装置である。K0クラッチ20は、後述する電子制御装置90によりクラッチアクチュエータ120が制御されることによって、係合状態や解放状態などの制御状態が切り替えられる。
The
図2は、K0クラッチ20の一例を示す部分断面図である。図2において、K0クラッチ20は、クラッチドラム100と、クラッチハブ102と、セパレートプレート104と、摩擦プレート106と、ピストン108と、リターンスプリング110と、バネ受板112と、スナップリング114と、を含んでいる。クラッチドラム100とクラッチハブ102とは、同じ軸心CS上に設けられている。図2では、軸心CSの上半分におけるK0クラッチ20の径方向外周部分が示されている。軸心CSは、エンジン連結軸34、電動機連結軸36などの軸心である。クラッチドラム100は、例えばエンジン連結軸34と連結されており、エンジン連結軸34と一体的に回転させられる。クラッチハブ102は、例えば電動機連結軸36と連結されており、電動機連結軸36と一体的に回転させられる。セパレートプレート104は、複数枚の略円環板状の外周縁がクラッチドラム100の筒部100aの内周面に相対回転不能に嵌合されている、すなわちスプライン嵌合されている。摩擦プレート106は、複数枚のセパレートプレート104の間に介在させられて、複数枚の略円環板状の内周縁がクラッチハブ102の外周面に相対回転不能に嵌合されている、すなわちスプライン嵌合されている。ピストン108は、セパレートプレート104及び摩擦プレート106の方向に伸びる押圧部108aが外周縁に設けられている。リターンスプリング110は、ピストン108とバネ受板112との間に介在させられており、ピストン108の一部をクラッチドラム100の底板部100bに当接するように付勢する。つまり、リターンスプリング110は、セパレートプレート104と摩擦プレート106とを非係合側とするようにピストン108を付勢するバネ要素として機能する。スナップリング114は、ピストン108の押圧部108aとの間にセパレートプレート104及び摩擦プレート106を挟む位置において、クラッチドラム100の筒部100aに固定されている。K0クラッチ20には、ピストン108とクラッチドラム100の底板部100bとの間に油室116が形成されている。クラッチドラム100には、油室116に通じる油路118が形成されている。K0クラッチ20では、クラッチドラム100、ピストン108、リターンスプリング110、バネ受板112、油室116などによって油圧アクチュエータとしてのクラッチアクチュエータ120が構成されている。
Figure 2 is a partial cross-sectional view showing an example of the
油圧制御回路56は、クラッチアクチュエータ120へ調圧された油圧であるK0油圧PRk0を供給する。K0クラッチ20において、油圧制御回路56からK0油圧PRk0が油路118を通って油室116に供給されると、K0油圧PRk0によってピストン108がリターンスプリング110の付勢力に抗してセパレートプレート104及び摩擦プレート106の方向に移動し、ピストン108の押圧部108aがセパレートプレート104及び摩擦プレート106を押圧する。K0クラッチ20は、セパレートプレート104及び摩擦プレート106が押圧されると、係合状態へ切り替えられる。K0クラッチ20は、K0油圧PRk0によりK0クラッチ20のトルク容量であるK0トルクTk0が変化させられることで、制御状態が切り替えられる。尚、LUトルクTlu、CBトルクTcb、K0トルクTk0などの係合装置のトルク容量は、係合装置が伝達できる最大のトルクすなわち最大伝達トルクに相当し、狭義には、係合装置が実際に伝達するトルクに相当する係合装置の伝達トルクとは異なるが、本実施例では、特に区別しない場合には、係合装置の伝達トルクも係合装置が伝達できる最大のトルクを表すものとする。例えば、K0トルクTk0は、K0クラッチ20の伝達トルクと同意である。
The
K0トルクTk0は、例えば摩擦プレート106の摩擦材の摩擦係数やK0油圧PRk0等によって決まるものである。K0クラッチ20では、油室116に作動油OILが充填され、リターンスプリング110による付勢力に対抗するピストン108の押し付け力(=PRk0×ピストン受圧面積)によってセパレートプレート104と摩擦プレート106との間のクリアランスが詰められた状態、すなわちK0クラッチ20のパッククリアランスが詰められた状態とされると、所謂パック詰めが完了させられる。本実施例では、K0クラッチ20のパッククリアランスが詰められた状態をパック詰め完了状態と称する。K0クラッチ20は、パック詰め完了状態から更にK0油圧PRk0が増大させられることで、K0トルクTk0が発生させられる。つまり、K0クラッチ20のパック詰め完了状態は、そのパック詰め完了状態からK0油圧PRk0を増大させればK0クラッチ20がトルク容量を持ち始める状態すなわちK0トルクTk0が発生し始める状態である。K0クラッチ20のパック詰めの為のK0油圧PRk0は、ピストン108がストロークエンドに到達し、且つK0トルクTk0が発生していない状態とする為のK0油圧PRk0である。
The K0 torque Tk0 is determined by, for example, the friction coefficient of the friction material of the
図1に戻り、K0クラッチ20の係合状態では、エンジン連結軸34を介してポンプ翼車22aとエンジン12とが一体的に回転させられる。すなわち、K0クラッチ20は、係合されることによってエンジン12と駆動輪14とを動力伝達可能に連結する。一方で、K0クラッチ20の解放状態では、エンジン12とポンプ翼車22aとの間の動力伝達が遮断される。すなわち、K0クラッチ20は、解放されることによってエンジン12と駆動輪14との間の連結を切り離す。電動機MGはポンプ翼車22aに連結されているので、K0クラッチ20は、エンジン12と電動機MGとの間の動力伝達経路に設けられて、その動力伝達経路を断接するクラッチ、すなわちエンジン12を電動機MGと断接するクラッチとして機能する。つまり、K0クラッチ20は、係合されることによってエンジン12と電動機MGとを連結する一方で、解放されることによってエンジン12と電動機MGとの間の連結を切り離す断接用クラッチである。
Returning to FIG. 1, when the
動力伝達装置16において、エンジン12から出力される動力は、K0クラッチ20が係合された場合に、エンジン連結軸34から、K0クラッチ20、電動機連結軸36、トルクコンバータ22、自動変速機24、プロペラシャフト28、ディファレンシャルギヤ30、及びドライブシャフト32等を順次介して駆動輪14へ伝達される。又、電動機MGから出力される動力は、K0クラッチ20の制御状態に拘わらず、電動機連結軸36から、トルクコンバータ22、自動変速機24、プロペラシャフト28、ディファレンシャルギヤ30、及びドライブシャフト32等を順次介して駆動輪14へ伝達される。
In the
車両10は、機械式のオイルポンプであるMOP58、電動式のオイルポンプであるEOP60、ポンプ用モータ62等を備えている。MOP58は、ポンプ翼車22aに連結されており、駆動力源(エンジン12、電動機MG)により回転駆動させられて動力伝達装置16にて用いられる作動油OILを吐出する。ポンプ用モータ62は、EOP60を回転駆動する為のEOP60専用のモータである。EOP60は、ポンプ用モータ62により回転駆動させられて作動油OILを吐出する。MOP58やEOP60が吐出した作動油OILは、油圧制御回路56へ供給される。油圧制御回路56は、MOP58及び/又はEOP60が吐出した作動油OILを元にして各々調圧した、CB油圧PRcb、K0油圧PRk0、LU油圧PRluなどを供給する。
The
車両10は、更に、エンジン12の始動制御などに関連する車両10の制御装置を含む電子制御装置90を備えている。電子制御装置90は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。電子制御装置90は、必要に応じてエンジン制御用、電動機制御用、油圧制御用等の各コンピュータを含んで構成される。
The
電子制御装置90には、車両10に備えられた各種センサ等(例えばエンジン回転速度センサ70、タービン回転速度センサ72、出力回転速度センサ74、MG回転速度センサ76、アクセル開度センサ78、スロットル弁開度センサ80、ブレーキスイッチ82、バッテリセンサ84、油温センサ86など)による検出値に基づく各種信号等(例えばエンジン12の回転速度であるエンジン回転速度Ne、AT入力回転速度Niと同値であるタービン回転速度Nt、車速Vに対応するAT出力回転速度No、電動機MGの回転速度であるMG回転速度Nm、運転者の加速操作の大きさを表す運転者のアクセル操作量であるアクセル開度θacc、電子スロットル弁の開度であるスロットル弁開度θth、ホイールブレーキを作動させる為のブレーキペダルが運転者によって操作されている状態を示す信号であるブレーキオン信号Bon、バッテリ54のバッテリ温度THbatやバッテリ充放電電流Ibatやバッテリ電圧Vbat、油圧制御回路56内の作動油OILの温度である作動油温THoilなど)が、それぞれ供給される。
The
電子制御装置90からは、車両10に備えられた各装置(例えばエンジン制御装置50、インバータ52、油圧制御回路56、ポンプ用モータ62など)に各種指令信号(例えばエンジン12を制御する為のエンジン制御指令信号Se、電動機MGを制御する為のMG制御指令信号Sm、係合装置CBを制御する為のCB油圧制御指令信号Scb、K0クラッチ20を制御する為のK0油圧制御指令信号Sk0、LUクラッチ40を制御する為のLU油圧制御指令信号Slu、EOP60を制御する為のEOP制御指令信号Seopなど)が、それぞれ出力される。
The
電子制御装置90は、車両10における各種制御を実現する為に、ハイブリッド制御手段すなわちハイブリッド制御部92、クラッチ制御手段すなわちクラッチ制御部94、及び変速制御手段すなわち変速制御部96を備えている。
The
ハイブリッド制御部92は、エンジン12の作動を制御するエンジン制御手段すなわちエンジン制御部92aとしての機能と、インバータ52を介して電動機MGの作動を制御する電動機制御手段すなわち電動機制御部92bとしての機能と、を含んでおり、それらの制御機能によりエンジン12及び電動機MGによるハイブリッド駆動制御等を実行する。
The
ハイブリッド制御部92は、例えば駆動要求量マップにアクセル開度θacc及び車速Vを適用することで、運転者による車両10に対する駆動要求量を算出する。前記駆動要求量マップは、予め実験的に或いは設計的に求められて記憶された関係すなわち予め定められた関係である。前記駆動要求量は、例えば駆動輪14における要求駆動トルクTrdemである。要求駆動トルクTrdem[Nm]は、見方を換えればそのときの車速Vにおける要求駆動パワーPrdem[W]である。前記駆動要求量としては、駆動輪14における要求駆動力Frdem[N]、変速機出力軸26における要求AT出力トルク等を用いることもできる。前記駆動要求量の算出では、車速Vに替えてAT出力回転速度Noなどを用いても良い。
The
ハイブリッド制御部92は、伝達損失、補機負荷、自動変速機24の変速比γat、バッテリ54の充電可能電力Winや放電可能電力Wout等を考慮して、要求駆動パワーPrdemを実現するように、エンジン12を制御するエンジン制御指令信号Seと、電動機MGを制御するMG制御指令信号Smと、を出力する。エンジン制御指令信号Seは、例えばそのときのエンジン回転速度NeにおけるエンジントルクTeを出力するエンジン12のパワーであるエンジンパワーPeの指令値である。MG制御指令信号Smは、例えばそのときのMG回転速度NmにおけるMGトルクTmを出力する電動機MGの消費電力Wmの指令値である。
The
バッテリ54の充電可能電力Winは、バッテリ54の入力電力の制限を規定する入力可能な最大電力であり、バッテリ54の入力制限を示している。バッテリ54の放電可能電力Woutは、バッテリ54の出力電力の制限を規定する出力可能な最大電力であり、バッテリ54の出力制限を示している。バッテリ54の充電可能電力Winや放電可能電力Woutは、例えばバッテリ温度THbat及びバッテリ54の充電状態値SOC[%]に基づいて電子制御装置90により算出される。バッテリ54の充電状態値SOCは、バッテリ54の充電状態を示す値であり、例えばバッテリ充放電電流Ibat及びバッテリ電圧Vbatなどに基づいて電子制御装置90により算出される。
The chargeable power Win of the
ハイブリッド制御部92は、電動機MGの出力のみで要求駆動トルクTrdemを賄える場合には、走行モードをモータ走行(=EV走行)モードとする。ハイブリッド制御部92は、EV走行モードでは、K0クラッチ20の解放状態で電動機MGのみを駆動力源として走行するEV走行を行う。一方で、ハイブリッド制御部92は、少なくともエンジン12の出力を用いないと要求駆動トルクTrdemを賄えない場合には、走行モードをエンジン走行モードすなわちハイブリッド走行(=HV走行)モードとする。ハイブリッド制御部92は、HV走行モードでは、K0クラッチ20の係合状態で少なくともエンジン12を駆動力源として走行するエンジン走行すなわちHV走行を行う。他方で、ハイブリッド制御部92は、電動機MGの出力のみで要求駆動トルクTrdemを賄える場合であっても、バッテリ54の充電状態値SOCが予め定められたエンジン始動閾値未満となる場合やエンジン12等の暖機が必要な場合などには、HV走行モードを成立させる。前記エンジン始動閾値は、エンジン12を強制的に始動してバッテリ54を充電する必要がある充電状態値SOCであることを判断する為の予め定められた閾値である。このように、ハイブリッド制御部92は、要求駆動トルクTrdem等に基づいて、HV走行中にエンジン12を自動停止したり、そのエンジン停止後にエンジン12を再始動したり、EV走行中にエンジン12を始動したりして、EV走行モードとHV走行モードとを切り替える。
When the required drive torque Trdem can be satisfied only by the output of the electric motor MG, the
ハイブリッド制御部92は、始動制御手段すなわち始動制御部92cとしての機能と、停止制御手段すなわち停止制御部92dとしての機能と、を更に含んでいる。
The
始動制御部92cは、エンジン12の始動要求の有無を判定する。例えば、始動制御部92cは、EV走行モード時に、要求駆動トルクTrdemが電動機MGの出力のみで賄える範囲よりも増大したか否か、又は、エンジン12等の暖機が必要であるか否か、又は、バッテリ54の充電状態値SOCが前記エンジン始動閾値未満であるか否かなどに基づいて、エンジン12の始動要求が有るか否かを判定する。又、始動制御部92cは、エンジン12の始動制御が完了したか否かを判定する。
The
クラッチ制御部94は、エンジン12の始動制御を実行するようにK0クラッチ20を制御する。例えば、クラッチ制御部94は、始動制御部92cによりエンジン12の始動要求が有ると判定された場合には、エンジン回転速度Neを引き上げるトルクであるエンジン12のクランキングに必要なトルクをエンジン12側へ伝達する為のK0トルクTk0が得られるように、解放状態のK0クラッチ20を係合状態に向けて制御する為のK0油圧制御指令信号Sk0を油圧制御回路56へ出力する。つまり、クラッチ制御部94は、エンジン12の始動に際して、K0クラッチ20の制御状態を解放状態から係合状態へ切り替えるようにクラッチアクチュエータ120を制御する為のK0油圧制御指令信号Sk0を油圧制御回路56へ出力する。本実施例では、エンジン12のクランキングに必要なトルクを必要クランキングトルクTcrnという。
The
始動制御部92cは、エンジン12の始動制御を実行するようにエンジン12及び電動機MGを制御する。例えば、始動制御部92cは、エンジン12の始動要求が有ると判定した場合には、クラッチ制御部94によるK0クラッチ20の係合状態への切替えに合わせて、電動機MGが必要クランキングトルクTcrnを出力する為のMG制御指令信号Smをインバータ52へ出力する。つまり、始動制御部92cは、エンジン12の始動に際して、必要クランキングトルクTcrnを電動機MGが出力するように、すなわちMGトルクTmを必要クランキングトルクTcrn分増加するように、電動機MGを制御する為のMG制御指令信号Smをインバータ52へ出力する。
The
又、始動制御部92cは、エンジン12の始動要求が有ると判定した場合には、K0クラッチ20及び電動機MGによるエンジン12のクランキングに連動して、燃料供給やエンジン点火などを開始する為のエンジン制御指令信号Seをエンジン制御装置50へ出力する。つまり、始動制御部92cは、エンジン12の始動に際して、エンジン12が運転を開始するようにエンジン12を制御する為のエンジン制御指令信号Seをエンジン制御装置50へ出力する。
When the
エンジン12のクランキング時には、K0クラッチ20の係合に伴う反力トルクであるクランキング反力トルクTrfcrが生じる。このクランキング反力トルクTrfcrは、EV走行時には、エンジン始動中のイナーシャによる車両10の引き込み感、つまり駆動トルクTrの落ち込みを生じさせる。その為、エンジン12を始動する際に必要クランキングトルクTcrnに向けて増加させられるMGトルクTmは、クランキング反力トルクTrfcrを打ち消す為のMGトルクTmであって、クランキング反力トルクTrfcrを補償するMGトルクTm分すなわちK0反力補償分のMGトルクTmである。必要クランキングトルクTcrnは、エンジン12のクランキングに必要なK0トルクTk0であり、電動機MG側からK0クラッチ20を介してエンジン12側へ流れる、エンジン12のクランキングに必要なMGトルクTmである。必要クランキングトルクTcrnは、例えばエンジン12の諸元、エンジン12の始動方法等に基づいて予め定められた例えば一定のクランキングトルクTcrである。
When cranking the
始動制御部92cは、EV走行中のエンジン12の始動の際には、EV走行用のMGトルクTmつまり駆動トルクTrを生じさせるMGトルクTmに加えて、必要クランキングトルクTcrn分のMGトルクTmを電動機MGから出力させる。その為、EV走行中には、エンジン12の始動に備えて、必要クランキングトルクTcrn分を担保しておく必要がある。従って、電動機MGの出力のみで要求駆動トルクTrdemを賄える範囲は、出力可能な電動機MGの最大トルクに対して、必要クランキングトルクTcrn分を減じたトルク範囲となる。出力可能な電動機MGの最大トルクは、バッテリ54の放電可能電力Woutによって出力可能な最大のMGトルクTmである。
When starting the
停止制御部92dは、エンジン12の停止要求の有無を判定する。例えば、停止制御部92dは、HV走行モード時に、要求駆動トルクTrdemが電動機MGの出力のみで賄える範囲内であって、エンジン12等の暖機が不要であり、バッテリ54の充電状態値SOCが前記エンジン始動閾値以上であるか否かなどに基づいて、エンジン12の停止要求が有るか否かを判定する。
The
停止制御部92dは、エンジン12の停止制御を実行するようにエンジン12を制御する。例えば、停止制御部92dは、エンジン12の停止要求が有ると判定した場合には、エンジン12への燃料供給を停止する為のエンジン制御指令信号Seをエンジン制御装置50へ出力する。つまり、停止制御部92dは、エンジン12の停止に際して、エンジン12が運転を停止するようにエンジン12を制御する為のエンジン制御指令信号Seをエンジン制御装置50へ出力する。
The
クラッチ制御部94は、エンジン12の停止制御が行われる際に、K0クラッチ20を制御する。例えば、クラッチ制御部94は、停止制御部92dによりエンジン12の停止要求が有ると判定された場合には、係合状態のK0クラッチ20を解放状態に向けて制御する為のK0油圧制御指令信号Sk0を油圧制御回路56へ出力する。つまり、クラッチ制御部94は、エンジン12の停止要求が有ると判定されたときであるエンジン12の停止要求時に、K0クラッチ20の制御状態を係合状態から解放状態へ切り替えるようにクラッチアクチュエータ120を制御する為のK0油圧制御指令信号Sk0を油圧制御回路56へ出力する。
The
変速制御部96は、例えば予め定められた関係である変速マップを用いて自動変速機24の変速判断を行い、必要に応じて自動変速機24の変速制御を実行する為のCB油圧制御指令信号Scbを油圧制御回路56へ出力する。前記変速マップは、例えば車速V及び要求駆動トルクTrdemを変数とする二次元座標上に、自動変速機24の変速が判断される為の変速線を有する所定の関係である。前記変速マップでは、車速Vに替えてAT出力回転速度Noなどを用いても良いし、又、要求駆動トルクTrdemに替えて要求駆動力Frdemやアクセル開度θaccやスロットル弁開度θthなどを用いても良い。
The
ここで、エンジン12の始動に際してK0クラッチ20の制御状態が精度良く制御される為に、エンジン12の始動過程において切り替えられるK0クラッチ20の制御状態毎に区分された複数の進行段階すなわちフェーズがクラッチアクチュエータ120の制御用に定義されたK0制御用フェーズ定義Dphk0が電子制御装置90に予め定められている。
Here, in order to accurately control the control state of the K0 clutch 20 when starting the
図3は、K0制御用フェーズ定義Dphk0における各フェーズの一例を説明する図表である。図3において、K0制御用フェーズ定義Dphk0は、「K0待機」、「クイックアプライ」、「パック詰め時定圧待機」、「K0クランキング」、「クイックドレン」、「再係合前定圧待機」、「回転同期初期」、「回転同期中期」、「回転同期終期」、「係合移行スイープ」、「完全係合移行スイープ」、「完全係合」、「バックアップスイープ」、「算出停止」などのフェーズが定義されている。 Figure 3 is a chart explaining an example of each phase in the K0 control phase definition Dphk0. In Figure 3, the K0 control phase definition Dphk0 defines phases such as "K0 standby", "quick apply", "constant pressure standby when packing", "K0 cranking", "quick drain", "constant pressure standby before re-engagement", "initial rotation synchronization", "middle rotation synchronization", "final rotation synchronization", "engagement transition sweep", "full engagement transition sweep", "full engagement", "backup sweep", and "calculation stop".
「K0待機」フェーズは、エンジン12の始動制御時に、K0クラッチ20の制御を開始させずに待機させるフェーズである。「K0待機」フェーズは、エンジン12の始動制御を開始するときにK0待機判定が有る場合に遷移させられる。
The "K0 standby" phase is a phase in which control of the
「クイックアプライ」フェーズは、速やかにK0クラッチ20のパック詰めを完了させる為に、一時的に高いK0油圧PRk0の指令値を印加するクイックアプライを実行し、K0油圧PRk0の初期応答性を向上させるフェーズである。「クイックアプライ」フェーズは、エンジン12の始動制御を開始するときにK0待機判定が無い場合に遷移させられる。又は、「クイックアプライ」フェーズは、K0クラッチ20の制御開始の待機中にK0待機判定が取り下げられた場合に、「K0待機」フェーズから遷移させられる。
The "quick apply" phase is a phase in which a quick apply is performed to apply a temporarily high command value for the K0 oil pressure PRk0 in order to quickly complete packing of the
K0油圧PRk0の指令値は、油圧制御回路56に調圧されたK0油圧PRk0を供給させる為の油圧指令値である。本実施例では、K0油圧PRk0の指令値をK0油圧指令値Spk0と称する。K0油圧指令値Spk0は、電子制御装置90に備えられた、K0クラッチ20用ソレノイドバルブを駆動するソレノイド用ドライバに対する指示電流に一意に変換される。K0クラッチ20用ソレノイドバルブは、油圧制御回路56に備えられたK0油圧PRk0を出力するソレノイドバルブである。K0油圧制御指令信号Sk0は、K0クラッチ20用ソレノイドバルブを駆動するソレノイド用ドライバに対する指示電流、又は、このソレノイド用ドライバが供給する駆動電流又は駆動電圧である。つまり、K0油圧指令値Spk0は、K0油圧制御指令信号Sk0に変換されて油圧制御回路56へ出力される。本実施例では、便宜上、K0油圧指令値Spk0とK0油圧制御指令信号Sk0とを同意に取り扱う。
The command value of the K0 hydraulic pressure PRk0 is a hydraulic pressure command value for causing the
「パック詰め時定圧待機」フェーズは、K0クラッチ20のパック詰めを完了させる為に、一定圧で待機するフェーズである。「パック詰め時定圧待機」フェーズは、クイックアプライが完了した場合に、「クイックアプライ」フェーズから遷移させられる。
The "constant pressure standby during packing" phase is a phase in which the system waits at a constant pressure to complete packing of the
「K0クランキング」フェーズは、K0クラッチ20によるエンジン12のクランキングを行うフェーズである。「K0クランキング」フェーズは、K0クラッチ20のパック詰めが完了させられた場合に、「パック詰め時定圧待機」フェーズから遷移させられる。
The "K0 cranking" phase is a phase in which the
「クイックドレン」フェーズは、次のフェーズである「再係合前定圧待機」フェーズにおいて速やかに所定のK0油圧PRk0例えばパックエンド圧PRk0pkで待機できるように、一時的に低いK0油圧指令値Spk0を出力するクイックドレンを実行し、K0油圧PRk0の初期応答性を向上させるフェーズである。「クイックドレン」フェーズは、エンジン12のクランキングが完了し、クイックドレン実施判定が有る場合に、「K0クランキング」フェーズから遷移させられる。
The "quick drain" phase is a phase in which a quick drain is executed to output a temporarily low K0 oil pressure command value Spk0 so that the next phase, the "constant pressure standby before re-engagement," can quickly wait at a predetermined K0 oil pressure PRk0, for example, the pack end pressure PRk0pk, thereby improving the initial responsiveness of the K0 oil pressure PRk0. The "quick drain" phase is entered from the "K0 cranking" phase when cranking of the
「再係合前定圧待機」フェーズは、エンジン12の完爆の外乱とならないように、所定のK0トルクTk0で待機するフェーズである。エンジン12の完爆は、例えばエンジン12の点火が開始された初爆後にエンジン12の爆発による自立回転が安定した状態である。エンジン12の完爆の外乱とならないということとは、エンジン12の自立回転を妨げないということである。「再係合前定圧待機」フェーズは、エンジン12のクランキングが完了し、クイックドレン実施判定が無い場合に、「K0クランキング」フェーズから遷移させられる。又は、「再係合前定圧待機」フェーズは、クイックドレンが完了した場合に、「クイックドレン」フェーズから遷移させられる。
The "constant pressure standby before re-engagement" phase is a phase in which the engine waits at a predetermined K0 torque Tk0 so as not to disturb the complete combustion of the
「回転同期初期」フェーズは、速やかにエンジン回転速度NeとMG回転速度Nmとを同期させる為に、K0トルクTk0を制御してエンジン回転速度Neの上昇を補助するフェーズである。「回転同期初期」フェーズは、エンジン制御部92aからの完爆通知時に、「回転同期終期」フェーズへの遷移条件及び「回転同期中期」フェーズへの遷移条件が何れも不成立であった場合に、「再係合前定圧待機」フェーズから遷移させられる。尚、エンジン制御部92aは、例えばエンジン回転速度Neが予め定められたエンジン12の完爆回転速度に到達した時点からの経過時間が予め定められた完爆通知待機時間TMengを超えたときにエンジン12の完爆通知を出力する(後述の図4参照)。完爆通知待機時間TMengは、例えばエンジン12の排ガス要件が考慮されて予め定められている。
The "initial rotation synchronization" phase is a phase in which the K0 torque Tk0 is controlled to assist in increasing the engine speed Ne in order to quickly synchronize the engine speed Ne with the MG speed Nm. The "initial rotation synchronization" phase is transitioned from the "constant pressure standby before re-engagement" phase if the transition conditions to the "final rotation synchronization" phase and the "middle rotation synchronization" phase are not satisfied when the engine control unit 92a notifies the
「回転同期中期」フェーズは、エンジン12が適切な吹き量(=Ne-Nm)となるようにK0トルクTk0を制御するフェーズである。「回転同期中期」フェーズは、エンジン制御部92aからの完爆通知時に、「回転同期中期」フェーズへの遷移条件が成立した場合に、「再係合前定圧待機」フェーズから遷移させられる。又は、「回転同期中期」フェーズは、「回転同期初期」フェーズの実行中に、「回転同期中期」フェーズへの遷移条件が成立した場合に、「回転同期初期」フェーズから遷移させられる。
The "rotational synchronization middle" phase is a phase in which the K0 torque Tk0 is controlled so that the
「回転同期終期」フェーズは、K0トルクTk0を制御し、エンジン回転速度NeとMG回転速度Nmとを同期させるフェーズである。「回転同期終期」フェーズは、エンジン制御部92aからの完爆通知時に、「回転同期終期」フェーズへの遷移条件が成立した場合に、「再係合前定圧待機」フェーズから遷移させられる。又は、「回転同期終期」フェーズは、「回転同期初期」フェーズの実行中に、「回転同期終期」フェーズへの遷移条件が成立した場合に、「回転同期初期」フェーズから遷移させられる。又は、「回転同期終期」フェーズは、「回転同期中期」フェーズの実行中に、「回転同期終期」フェーズへの遷移条件が成立した場合に、「回転同期中期」フェーズから遷移させられる。又は、「回転同期終期」フェーズは、「回転同期中期」フェーズの実行中に、自動変速機24の変速制御中ではなく、且つ、エンジン回転速度NeとMG回転速度Nmとの同期が不可能であると予測された状態が強制回転同期移行判定時間以上連続して成立した場合に、「回転同期中期」フェーズから遷移させられる。
The "rotational synchronization end" phase controls the K0 torque Tk0 to synchronize the engine rotation speed Ne and the MG rotation speed Nm. The "rotational synchronization end" phase is transitioned from the "constant pressure wait before re-engagement" phase if the transition condition to the "rotational synchronization end" phase is satisfied when the engine control unit 92a notifies the engine control unit 92a of complete explosion. Alternatively, the "rotational synchronization end" phase is transitioned from the "rotational synchronization initial" phase if the transition condition to the "rotational synchronization end" phase is satisfied during the execution of the "rotational synchronization initial" phase. Alternatively, the "rotational synchronization end" phase is transitioned from the "rotational synchronization middle" phase if the transition condition to the "rotational synchronization end" phase is satisfied during the execution of the "rotational synchronization middle" phase. Alternatively, the "rotation synchronization end" phase is transitioned from the "rotation synchronization middle" phase when the
「係合移行スイープ」フェーズは、K0トルクTk0を漸増してK0クラッチ20を係合状態にするフェーズである。「係合移行スイープ」フェーズは、「回転同期終期」フェーズの実行中に、回転同期判定が成立した場合に、「回転同期終期」フェーズから遷移させられる。 The "engagement transition sweep" phase is a phase in which the K0 torque Tk0 is gradually increased to bring the K0 clutch 20 into an engaged state. The "engagement transition sweep" phase is transitioned from the "rotational synchronization end" phase if a rotational synchronization determination is made during execution of the "rotational synchronization end" phase.
「完全係合移行スイープ」フェーズは、K0トルクTk0を漸増してK0クラッチ20を完全係合状態にするフェーズである。K0クラッチ20を完全係合状態にするとは、例えばK0クラッチ20の係合保障ができる安全率を加えた状態までK0トルクTk0を上げることである。「完全係合移行スイープ」フェーズは、「係合移行スイープ」フェーズの実行中に、K0係合判定が成立した場合に、「係合移行スイープ」フェーズから遷移させられる。又は、「完全係合移行スイープ」フェーズは、「係合移行スイープ」フェーズの実行中に、K0クラッチ20の回転同期状態を維持できない場合に、「係合移行スイープ」フェーズから遷移させられる。又は、「完全係合移行スイープ」フェーズは、「係合移行スイープ」フェーズ開始からの経過時間が予め定められた強制係合移行判定時間を超え、且つ、K0差回転ΔNk0の絶対値が予め定められた完全係合移行スイープ強制移行判定差回転以上であると判定された場合に、「係合移行スイープ」フェーズから遷移させられる。K0差回転ΔNk0は、K0クラッチ20の差回転速度(=Nm-Ne)である。
The "full engagement transition sweep" phase is a phase in which the K0 torque Tk0 is gradually increased to bring the K0 clutch 20 into a fully engaged state. Bringing the K0 clutch 20 into a fully engaged state means, for example, increasing the K0 torque Tk0 to a state in which a safety factor is added to ensure that the
「完全係合」フェーズは、K0クラッチ20の完全係合状態を維持するフェーズである。「完全係合」フェーズは、「完全係合移行スイープ」フェーズの実行中に、完全係合判定が成立した場合に、「完全係合移行スイープ」フェーズから遷移させられる。又は、「完全係合」フェーズは、「完全係合移行スイープ」フェーズ開始からの経過時間が予め定められた強制完全係合移行判定時間以上となり、且つ、K0差回転ΔNk0の絶対値が予め定められた完全係合強制移行判定差回転以上であると判定された場合に、「完全係合移行スイープ」フェーズから遷移させられる。
The "fully engaged" phase is a phase in which the
「完全係合」フェーズは、「バックアップスイープ」フェーズからも遷移させられる。「完全係合」フェーズは、「バックアップスイープ」フェーズの実行中に、完全係合判定が成立し、且つ、K0差回転ΔNk0の絶対値が予め定められたバックアップ時回転同期判定差回転以下であるとの判定が予め定められたバックアップ時回転同期判定回数以上連続して成立した場合に、「バックアップスイープ」フェーズから遷移させられる。又は、「完全係合」フェーズは、「バックアップスイープ」フェーズの実行中に、エンジン12の始動制御の開始後に「K0待機」フェーズ以外のフェーズに遷移してからの経過時間が予め定められたエンジン始動制御タイムアウト時間以上となり、且つ、K0差回転ΔNk0の絶対値が完全係合強制移行判定差回転以上であると判定された場合に、「バックアップスイープ」フェーズから遷移させられる。
The "fully engaged" phase can also be transitioned from the "backup sweep" phase. The "fully engaged" phase is transitioned from the "backup sweep" phase when a fully engaged determination is made during execution of the "backup sweep" phase, and a determination that the absolute value of the K0 differential rotation ΔNk0 is equal to or less than the predetermined backup-time rotation synchronization determination differential rotation is made consecutively for a predetermined number of times or more. Alternatively, the "fully engaged" phase is transitioned from the "backup sweep" phase when, during execution of the "backup sweep" phase, the elapsed time from the transition to a phase other than the "K0 standby" phase after the start of
「バックアップスイープ」フェーズは、K0トルクTk0を漸増してK0クラッチ20を係合するバックアップ制御を行うフェーズである。「バックアップスイープ」フェーズは、例えば「K0クランキング」フェーズ、「再係合前定圧待機」フェーズ、「回転同期初期」フェーズ、「回転同期中期」フェーズ、及び「回転同期終期」フェーズの各フェーズのうちの何れかのフェーズの実行中に、制御スタックを防止する為、実行中のフェーズ開始からの経過時間が予め定められた実行中のフェーズ用のバックアップ移行判定時間を超え、且つ、K0差回転ΔNk0が予め定められた実行中のフェーズ用のバックアップ移行判定差回転以上であると判定された場合に、実行中のフェーズから遷移させられる。
The "backup sweep" phase is a phase in which backup control is performed by gradually increasing the K0 torque Tk0 to engage the
「算出停止」フェーズは、エンジン12の始動に際して、フェールセーフ制御が実行されている間は、エンジン12の始動制御に用いられるK0油圧PRk0のベース補正圧や要求K0トルクTk0dの算出を停止するフェーズである。前記フェールセーフ制御は、例えばK0クラッチ20用ソレノイドバルブから調圧されたK0油圧PRk0が出力されないフェールが発生したときに、K0クラッチ20用ソレノイドバルブを介することなくK0クラッチ20の完全係合状態を維持することが可能なK0油圧PRk0をクラッチアクチュエータ120に供給するように油圧制御回路56内の油路を切り替える制御である。完全係合状態を維持することが可能なK0油圧PRk0は、例えばK0クラッチ20用ソレノイドバルブなどに供給されるライン圧などの元圧である。前記ベース補正圧は、エンジン12の始動制御に用いられるK0油圧PRk0のベース圧が作動油温THoilなどに基づいて補正された値である。要求K0トルクTk0dは、エンジン12の始動制御時にエンジン12のクランキングやK0クラッチ20を係合状態へ切り替える為に要求されるK0トルクTk0である。
The "calculation stop" phase is a phase in which calculation of the base correction pressure of the K0 oil pressure PRk0 used for the start control of the
K0制御用フェーズ定義Dphk0は、例えばエンジン12の始動制御に用いられるK0油圧PRk0のベース補正圧や要求K0トルクTk0dの算出を目的に作成されている。K0制御用フェーズ定義Dphk0は、K0油圧PRk0やK0トルクTk0を制御したいという、K0クラッチ20に対する制御の要求状態に基づいて各フェーズが定義されている。つまり、K0制御用フェーズ定義Dphk0は、K0クラッチ20の制御状態を切り替える制御要求に基づいて定義されている。
The K0 control phase definition Dphk0 is created for the purpose of calculating the base correction pressure of the K0 oil pressure PRk0 and the required K0 torque Tk0d used, for example, in the start-up control of the
クラッチ制御部94は、エンジン12の始動に際して、K0制御用フェーズ定義Dphk0に基づいて、K0クラッチ20の制御状態を解放状態から係合状態へ切り替えるようにクラッチアクチュエータ120を制御する。
When starting the
始動制御部92cは、エンジン12の始動の際には、K0クラッチ20の制御状態に合わせて電動機MG及びエンジン12を制御する。エンジン12の始動制御では、必要クランキングトルクTcrnを電動機MGが出力するように電動機MGを制御すれば良く、又、エンジン12が運転を開始するようにエンジン12を制御すれば良い。その為、エンジン12の始動の際、始動制御部92cは、K0制御用フェーズ定義Dphk0のうちの電動機MG及びエンジン12の制御に必要なフェーズに基づいて、電動機MG及びエンジン12を制御する。これにより、エンジン12の始動に際して制御の簡素化を図ることができる。
When starting the
図4は、エンジン12の始動制御が実行された場合のタイムチャートの一例を示す図である。図4において、「K0制御フェーズ」は、K0制御用フェーズ定義Dphk0における各フェーズの遷移状態を示している。又、要求K0トルクTk0dをK0油圧PRk0に換算した油圧値をK0油圧PRk0のベース補正圧に加算した合計油圧値が、K0油圧指令値Spk0として出力される。t1時点は、アイドル状態で停車しているEV走行モード時に、又は、EV走行中に、エンジン12の始動要求が為され、エンジン12の始動制御が開始された時点を示している。エンジン12の始動制御の開始後、「K0待機」フェーズ(t1時点-t2時点参照)、「クイックアプライ」フェーズ(t2時点-t3時点参照)、「パック詰め時定圧待機」フェーズ(t3時点-t4時点参照)が実行されている。K0クラッチ20のパック詰め制御に続いて、「K0クランキング」フェーズが実行される(t4時点-t5時点参照)。図4の実施態様では、「パック詰め時定圧待機」フェーズにおいて、「K0クランキング」フェーズで要求される必要クランキングトルクTcrnに相当するK0油圧PRk0が加えられている。「パック詰め時定圧待機」フェーズでは、実際のK0油圧PRk0はK0トルクTk0を生じさせる値以上には上昇させられていない。「K0クランキング」フェーズにおいて、実際のK0油圧PRk0はK0トルクTk0を生じさせる値以上に上昇させられる。尚、「パック詰め時定圧待機」フェーズでは、K0クラッチ20をパック詰め完了状態に維持する為のK0油圧PRk0が加えられても良い。「K0クランキング」フェーズでは、要求K0トルクTk0dつまり必要クランキングトルクTcrnに相当する大きさのMGトルクTmが電動機MGから出力させられる。「K0クランキング」フェーズにおいて、エンジン回転速度Neが引き上げられると、エンジン点火などが開始されてエンジン12が初爆させられる。尚、着火始動が行われる場合には、例えばエンジン回転速度Neの引き上げ開始と略同時にエンジン12が初爆させられる。エンジン12の初爆後、エンジン12の完爆の外乱とならないように、「K0クランキング」フェーズに続いて、「クイックドレン」フェーズ(t5時点-t6時点参照)、「再係合前定圧待機」フェーズ(t6時点-t7時点参照)が実行され、一時的に低いK0油圧指令値Spk0が出力される。エンジン制御部92aからエンジン完爆通知が出力されると(t7時点参照)、「回転同期初期」フェーズ(t7時点-t8時点参照)、「回転同期中期」フェーズ(t8時点-t9時点参照)、「回転同期終期」フェーズ(t9時点-t10時点参照)、「係合移行スイープ(図中の「係合移行SW」)」フェーズ(t10時点-t11時点参照)が実行され、エンジン12と電動機MGとの回転同期制御が行われる。「係合移行スイープ」フェーズに続いて、「完全係合移行スイープ(図中の「完全係合移行SW」)」フェーズが実行され(t11時点-t12時点参照)、K0クラッチ20の係合保障ができる安全率を加えた状態までK0トルクTk0が漸増させられる。K0トルクTk0がK0クラッチ20の係合保障ができる安全率を加えた状態まで上昇させられると、「完全係合」フェーズが実行され(t12時点-t13時点参照)、K0クラッチ20の完全係合状態が維持される。t13時点は、エンジン12の始動制御が完了させられた時点を示している。
Figure 4 is a diagram showing an example of a time chart when the start control of the
図3や図4の「K0クランキング」フェーズを参照すれば、クラッチ制御部94は、エンジン12の始動に際して、K0クラッチ20の制御状態を解放状態から係合状態へ切り替える過渡中である係合過渡中に、K0油圧指令値Spk0として、必要クランキングトルクTcrnをK0クラッチ20が伝達するようにクラッチアクチュエータ120へのK0油圧PRk0を調圧する為のクランキング用のK0油圧指令値Spk0を油圧制御回路56へ出力する。本実施例では、クランキング用のK0油圧指令値Spk0を、クランキング用油圧指令値Spk0crと称する。
Referring to the "K0 cranking" phase in FIG. 3 and FIG. 4, during the engagement transition in which the control state of the
図3や図4の「クイックアプライ」フェーズを参照すれば、クラッチ制御部94は、エンジン12の始動に際して、「K0クランキング」フェーズにおけるクランキング用油圧指令値Spk0crの出力に先立って、K0油圧指令値Spk0として、K0クラッチ20を速やかにパック詰め完了状態とするようにクラッチアクチュエータ120へのK0油圧PRk0の応答性を向上させる為のクイックアプライ用のK0油圧指令値Spk0を油圧制御回路56へ出力する。「クイックアプライ」フェーズにおけるクイックアプライは、クラッチアクチュエータ120の油室116に作動油OILを速やかに充填させるファーストフィル(=急速充填)でもあるので、クイックアプライ用のK0油圧指令値Spk0は、急速充填用のK0油圧指令値Spk0でもある。本実施例では、急速充填用のK0油圧指令値Spk0を、急速充填用油圧指令値Spk0ffと称する。
3 and 4, when starting the
一方で、K0油圧PRk0やK0トルクTk0は、K0油圧指令値Spk0に対して種々の要因によってばらつきが発生する。そうすると、エンジン12の始動制御におけるK0クラッチ20の係合過渡中において、MG回転速度Nm等が狙いの回転速度からずれてしまうおそれがある。その為、エンジン始動時におけるK0クラッチ20の係合に関わる学習制御、例えばK0油圧PRk0とK0油圧指令値Spk0との相関を表す関係を補正する学習制御を行うことが望まれる。
On the other hand, the K0 oil pressure PRk0 and the K0 torque Tk0 vary with respect to the K0 oil pressure command value Spk0 due to various factors. This can cause the MG rotation speed Nm, etc. to deviate from the target rotation speed during the engagement transition of the K0 clutch 20 during
そこで、電子制御装置90は、エンジン12の始動に際して、K0クラッチ20の係合制御を適切に行う為の制御作動を実現する為に、更に、学習制御手段すなわち学習制御部98を備えている。
The
学習制御部98は、エンジン12の始動に関わるK0クラッチ20の係合過渡中におけるK0油圧PRk0とK0油圧指令値Spk0との相関を表す関係を補正する複数種類の学習制御を行う。K0油圧PRk0とK0油圧指令値Spk0との相関を表す関係は、例えばK0油圧PRk0の実際値である実K0油圧PRk0rとK0油圧指令値Spk0との相関関係、実K0油圧PRk0rと要求K0トルクTk0dとの相関関係、K0トルクTk0の実際値である実K0トルクTk0rとK0油圧指令値Spk0との相関関係、実K0トルクTk0rと要求K0トルクTk0dとの相関関係などである。K0油圧PRk0とK0油圧指令値Spk0との相関を表す関係を補正する学習制御は、例えばK0油圧指令値Spk0に対する実K0油圧PRk0rのばらつきを補正する学習制御である。見方を換えれば、K0油圧PRk0とK0油圧指令値Spk0との相関を表す関係を補正する学習制御は、実K0トルクTk0rを要求K0トルクTk0dとする為のK0油圧指令値Spk0のばらつきを補正する学習制御である。本実施例では、この学習制御をK0学習制御CTlrnk0と称する。尚、本実施例では、特に区別しない場合には、K0油圧PRk0やK0トルクTk0などは、各々の実際値を表しているものとする。又、K0油圧PRk0のばらつきとK0トルクTk0のばらつきとは、同意である。
The
複数種類のK0学習制御CTlrnk0は、例えばK0トルクTk0の発生前となる「クイックアプライ」フェーズにおけるクイックアプライの実行期間であるクイックアプライ時間(=QA時間)TMqaを補正する学習制御、つまり急速充填用油圧指令値Spk0ffが出力される実行期間である急速充填時間を補正する急速充填時間学習を含んでいる。急速充填時間は、QA時間TMqaと同意であり、本実施例では、急速充填時間学習をQA時間学習CTlrnqaと称する。 The multiple types of K0 learning control CTlrnk0 include, for example, learning control that corrects the quick apply time (=QA time) TMqa, which is the execution period of the quick apply in the "quick apply" phase before the generation of the K0 torque Tk0, that is, quick fill time learning that corrects the quick fill time, which is the execution period during which the quick fill hydraulic pressure command value Spk0ff is output. The quick fill time is the same as the QA time TMqa, and in this embodiment, the quick fill time learning is referred to as QA time learning CTlrnqa.
又、複数種類のK0学習制御CTlrnk0は、例えばK0トルクTk0の発生直前となる、「クイックアプライ」フェーズ後の「パック詰め時定圧待機」フェーズにおける一定圧待機時のK0油圧PRk0であるパックエンド圧PRk0pkを補正する学習制御、つまりK0クラッチ20をパック詰め完了状態とする為のK0油圧PRk0であるパックエンド圧PRk0pkを補正するパック詰め完了油圧学習としてのタッチ点学習CTlrnpkを含んでいる。 The multiple types of K0 learning control CTlrnk0 also include a learning control that corrects the pack end pressure PRk0pk, which is the K0 oil pressure PRk0 during constant pressure standby in the "constant pressure standby during packing" phase after the "quick apply" phase, which occurs immediately before the generation of the K0 torque Tk0, that is, touch point learning CTlrnpk as packing completion oil pressure learning that corrects the pack end pressure PRk0pk, which is the K0 oil pressure PRk0 for bringing the K0 clutch 20 into a packing completion state.
尚、本実施例では、「パック詰め時定圧待機」フェーズにおけるK0油圧指令値Spk0として、例えばクランキング用油圧指令値Spk0crとパック詰め用油圧指令値Spk0pkとが車両10の状況に応じて選択的に油圧制御回路56へ出力される。パック詰め用油圧指令値Spk0pkは、エンジン12の始動に際して、「K0クランキング」フェーズにおけるクランキング用油圧指令値Spk0crの出力に先立って、K0クラッチ20をパック詰め完了状態に維持するようにつまりK0油圧PRk0をパックエンド圧PRk0pkに維持するようにクラッチアクチュエータ120へのK0油圧PRk0を調圧する為のパック詰め用のK0油圧指令値Spk0である。タッチ点学習CTlrnpkは、「パック詰め時定圧待機」フェーズにおいて、パック詰め用油圧指令値Spk0pkが出力される場合に実行可能とされ、クランキング用油圧指令値Spk0crが出力される場合には実行されない。パック詰め用油圧指令値Spk0pkは、車両10の状況が、例えばエンジン始動が遅くなっても運転者に違和感を生じさせ難い状況のとき、始動ショックが生じ易い状況のときなどに出力される。エンジン始動が遅くなっても運転者に違和感を生じさせ難い状況のときとは、例えばエンジン12等の暖機が必要なときなどの、運転者の運転操作に因らずエンジン12の始動が要求されたときである。始動ショックが生じ易い状況のときとは、例えば自動変速機24の変速制御などの、エンジン12の始動制御とは別の他制御と協調してエンジン12を始動するときである。クランキング用油圧指令値Spk0crは、車両10の状況が、例えばエンジン始動が遅くなると運転者に違和感を生じさせ易い状況のとき、始動ショックが生じ難い状況のときなどに出力される。エンジン始動が遅くなると運転者に違和感を生じさせ易い状況のときとは、例えば運転者による車両10に対する駆動要求量が増大したことによってエンジン12の始動が要求されたときである。始動ショックが生じ難い状況のときとは、例えばエンジン12の始動制御とは別の他制御と協調することなくエンジン12を始動するときである。「パック詰め時定圧待機」フェーズにおいて、「パック詰め時定圧待機」フェーズ開始時点から予め定められた定圧待機継続時間経過したことによってK0クラッチ20のパック詰めが完了させられたと判定された場合に、「K0クランキング」フェーズへ遷移させられる。パック詰め用油圧指令値Spk0pkが出力される状況時の定圧待機継続時間は、基本的には、クランキング用油圧指令値Spk0crが出力される状況時の定圧待機継続時間よりも長い値が設定される。
In this embodiment, as the K0 hydraulic command value Spk0 in the "constant pressure standby during packing" phase, for example, the cranking hydraulic command value Spk0cr and the packing hydraulic command value Spk0pk are selectively output to the
又、複数種類のK0学習制御CTlrnk0は、例えば「パック詰め時定圧待機」フェーズ後の「K0クランキング」フェーズにおける、K0トルクTk0とK0反力補償分のMGトルクTmとの立ち上がりタイミングの誤差を補正する学習制御、つまりK0トルクTk0が必要クランキングトルクTcrnに向けて立ち上がる伝達トルク立ち上がり時点と電動機MGによる必要クランキングトルクTcrn分の増大が開始させられる電動機トルク立ち上がり時点とのずれを補正する立ち上がり時点学習を含んでいる。この立ち上がり時点学習は、「K0クランキング」フェーズ開始時点からクランキング用油圧指令値Spk0crに対してK0トルクTk0が立ち上がった時点までの無駄時間TMwtを補正する無駄時間学習CTlrntmでもある。 The multiple types of K0 learning control CTlrnk0 include, for example, learning control that corrects the error in the rise timing between the K0 torque Tk0 and the MG torque Tm for the K0 reaction force compensation in the "K0 cranking" phase after the "constant pressure standby during packing" phase, that is, rise time learning that corrects the difference between the transmission torque rise time when the K0 torque Tk0 rises toward the required cranking torque Tcrn and the motor torque rise time when the motor MG starts to increase the required cranking torque Tcrn. This rise time learning is also dead time learning CTlrntm that corrects the dead time TMwt from the start of the "K0 cranking" phase to the time when the K0 torque Tk0 rises relative to the cranking hydraulic pressure command value Spk0cr.
又、複数種類のK0学習制御CTlrnk0は、例えばK0トルクTk0の発生後となる「K0クランキング」フェーズにおけるクランキング用油圧指令値Spk0crに対するK0トルクTk0のばらつきを補正する学習制御、つまり必要クランキングトルクTcrnとクランキング用油圧指令値Spk0crにより生じるK0トルクTk0とのずれを補正する伝達トルク学習CTlrntkを含んでいる。 The multiple types of K0 learning control CTlrnk0 also include a learning control that corrects the variation in K0 torque Tk0 relative to the cranking hydraulic command value Spk0cr in the "K0 cranking" phase that occurs after the generation of K0 torque Tk0, that is, a transmission torque learning CTlrntk that corrects the deviation between the required cranking torque Tcrn and the K0 torque Tk0 caused by the cranking hydraulic command value Spk0cr.
学習制御部98は、複数種類のK0学習制御CTlrnk0を各々行う為の各学習パラメータPAlrnを必要に応じて取得し、取得した学習パラメータPAlrnに基づいて、学習値VALlrnを補正するK0学習制御CTlrnk0を行う。例えば、学習制御部98は、学習パラメータPAlrnの値をゼロにするように学習値VALlrnを補正して、学習値VALlrnを収束させる。学習値VALlrnが収束させられた状態は、学習値VALlrnの変化が抑制された状態である。学習パラメータPAlrnは、例えばK0学習制御CTlrnk0における学習値VALlrnが収束させられていないことによって生じる現象の程度を表す数値である。QA時間学習CTlrnqaにおける学習値VALlrnは、例えばQA時間TMqaである。タッチ点学習CTlrnpkにおける学習値VALlrnは、例えばパックエンド圧PRk0pkである。無駄時間学習CTlrntmにおける学習値VALlrnは、例えば無駄時間TMwtである。伝達トルク学習CTlrntkにおける学習値VALlrnは、例えばクランキング用油圧指令値Spk0crにより生じるK0トルクTk0、K0トルクTk0を必要クランキングトルクTcrnとする為のクランキング用油圧指令値Spk0crなどである。
The
本来はK0トルクTk0の発生前となる「クイックアプライ」フェーズや「パック詰め時定圧待機」フェーズにおいてK0油圧PRk0がオーバーシュートしてK0トルクTk0が発生したり、「K0クランキング」フェーズにおいてK0トルクTk0の大きさや発生タイミングが狙いからずれてしまうなどの、学習値VALlrnが収束させられていないことによるK0油圧PRk0やK0トルクTk0のばらつきは、例えばMG回転速度Nmの吹き上がりや落ち込み等の変動として現れる。例えば、K0トルクTk0が狙いの値よりも小さかったり、K0トルクTk0の発生タイミングが狙いよりも遅いと、エンジン12側へ流れるMGトルクTmが狙いよりも小さくされ、狙いよりも相対的に大きくされたMGトルクTmによってつまりエンジン12側へ流れない余剰分のMGトルクTmによってMG回転速度Nmが吹き上げられ、K0トルクTk0のばらつきはMG回転速度Nmの吹き量として現れる。MG回転速度Nmの吹き量は、MG回転速度Nmの変動量であるMG回転変動量ΔNm(=Nm-Nmtgt)のうちの正の値である。上記「Nmtgt」は、MG回転速度Nmの目標回転速度すなわち目標MG回転速度である。一方で、本来はK0トルクTk0の発生前となるフェーズにおいてK0トルクTk0が発生したり、K0トルクTk0が狙いの値よりも大きかったり、K0トルクTk0の発生タイミングが狙いよりも早いと、駆動トルクTr分のMGトルクTmのうちの一部がエンジン12側へ流れることになり、狙いよりも相対的に小さくされたMGトルクTmによってつまり駆動トルクTr分のMGトルクTmの不足によってMG回転速度Nmが落ち込まされ、K0トルクTk0のばらつきはMG回転速度Nmの落ち込み量として現れる。MG回転速度Nmの落ち込み量は、MG回転変動量ΔNmのうちの負の値である。このように、学習パラメータPAlrnの一例は、MG回転変動量ΔNmである。
The variation in the K0 oil pressure PRk0 and the K0 torque Tk0 due to the learning value VALlrn not being converged, such as the K0 oil pressure PRk0 overshooting and generating the K0 torque Tk0 in the "quick apply" phase or the "constant pressure standby during packing" phase, which should occur before the generation of the K0 torque Tk0, or the magnitude or generation timing of the K0 torque Tk0 deviating from the target in the "K0 cranking" phase, appears as a fluctuation in the MG rotation speed Nm, such as a rise or fall. For example, if the K0 torque Tk0 is smaller than the target value or the generation timing of the K0 torque Tk0 is slower than the target, the MG torque Tm flowing to the
又は、例えばMG回転速度Nmが目標MG回転速度Nmtgtに維持されるようにフィードバック制御によってMGトルクTmの過不足を補償する制御であるMGフィードバック制御CTfbmが行われる場合がある。MGフィードバック制御CTfbmが行われる場合には、K0トルクTk0のばらつきは、例えばMGフィードバック制御CTfbmによって過不足が補償された後の補償後MGトルクTmfbの変動量であるMGトルク変動量ΔTm(=Tmfb-Tmb)として現れる。上記「Tmb」は、MG回転速度Nmが目標MG回転速度Nmtgtからずれていないときの基本MGトルクである。このように、MGトルク変動量ΔTmも学習パラメータPAlrnの一例である。 Alternatively, for example, MG feedback control CTfbm may be performed, which is a control that compensates for the surplus or deficiency of MG torque Tm by feedback control so that the MG rotation speed Nm is maintained at the target MG rotation speed Nmtgt. When MG feedback control CTfbm is performed, the variation in K0 torque Tk0 appears as, for example, MG torque fluctuation amount ΔTm (= Tmfb - Tmb), which is the amount of fluctuation in the compensated MG torque Tmfb after the surplus or deficiency has been compensated for by the MG feedback control CTfbm. The above "Tmb" is the basic MG torque when the MG rotation speed Nm does not deviate from the target MG rotation speed Nmtgt. In this way, the MG torque fluctuation amount ΔTm is also an example of a learning parameter PAlrn.
ところで、エンジン12の始動過程において係合状態へ切り替えられるK0クラッチ20の制御では、先ず、「クイックアプライ」フェーズが実行されてK0油圧PRk0が発生させられるので、QA時間学習CTlrnqaによるQA時間TMqaの変更やQA時間TMqaが収束していないことによるK0油圧PRk0のオーバーシュートは、例えばパックエンド圧PRk0pkの特性に影響を与えてしまう可能性がある。又、パックエンド圧PRk0pkが収束していないと、例えばK0トルクTk0のゼロ点に対応するK0油圧PRk0が変動し、クランキング用油圧指令値Spk0crとK0トルクTk0との相関関係に影響を与えてしまう可能性がある。又、伝達トルク学習CTlrntkにおける学習値VALlrnが収束していないと、例えばクランキング用油圧指令値Spk0crが変動し、K0トルクTk0の応答特性つまり無駄時間TMwtに影響を与えてしまう可能性がある。その為、複数種類のK0学習制御CTlrnk0における個々のK0学習制御CTlrnk0の実行順によっては、例えば無駄時間学習CTlrntmによって無駄時間TMwtが一旦収束させられた後に、QA時間学習CTlrnqaによってQA時間TMqaが変更させられて無駄時間TMwtが再び収束させられず、結果的に、エンジン始動時におけるK0クラッチ20の係合に関わる複数種類のK0学習制御CTlrnk0の進行が遅れてしまうおそれがある。
In the control of the
そこで、互いのばらつきが互いに影響を与えて誤学習することが抑制されるように、複数種類のK0学習制御CTlrnk0における個々のK0学習制御CTlrnk0を実行する優先順位が予め定められている。又、優先順位が上位のK0学習制御CTlrnk0から順番に学習値VALlrnを収束させ、複数種類のK0学習制御CTlrnk0を進行させる。上述した、QA時間TMqaの変更がパックエンド圧PRk0pkの特性に影響を与えてしまうなどを考慮すると、K0学習制御CTlrnk0を実行する優先順位の最上位は、例えばQA時間学習CTlrnqaであり、学習値VALlrnを収束させる優先順位は、上位から順に、例えばQA時間学習CTlrnqa、タッチ点学習CTlrnpk、伝達トルク学習CTlrntk、無駄時間学習CTlrntmである。 Therefore, in order to prevent erroneous learning due to the mutual influence of the variations among the multiple types of K0 learning controls CTlrnk0, the priority order for executing the individual K0 learning controls CTlrnk0 is determined in advance. Also, the learning value VALlrn is converged in order starting from the K0 learning control CTlrnk0 with the highest priority, and the multiple types of K0 learning controls CTlrnk0 are advanced. Considering that the change in the QA time TMqa affects the characteristics of the pack end pressure PRk0pk as described above, the highest priority order for executing the K0 learning control CTlrnk0 is, for example, the QA time learning CTlrnqa, and the priority order for converging the learning value VALlrn is, for example, the QA time learning CTlrnqa, touch point learning CTlrnpk, transmission torque learning CTlrntk, and dead time learning CTlrntm, in order from the highest.
学習値VALlrnを収束させる優先順位は、エンジン12の始動に伴うK0クラッチ20の係合制御において、一回のエンジン始動に際して、二つ以上のK0学習制御CTlrnk0を実行することを排除するというものではない。つまり、優先順位が上位のK0学習制御CTlrnk0における学習値VALlrnが収束させられているか否かに基づいて下位のK0学習制御CTlrnk0を実行するか否かが判断されても良いが、上位の学習値VALlrnが収束させられていないと、下位のK0学習制御CTlrnk0が実行させられない訳ではなく、上位の学習値VALlrnが収束させられていなくても、車両10の状態や必要に応じて下位のK0学習制御CTlrnk0が実行させられても良い。学習値VALlrnを収束させる優先順位は、自身のK0学習制御CTlrnk0よりも優先順位が高いK0学習制御CTlrnk0における学習値VALlrnが収束させられていない場合には、自身を含む優先順位が低いK0学習制御CTlrnk0における学習値VALlrnは収束していないとみなされるというものである。
The priority order for converging the learning value VALlrn does not exclude the execution of two or more K0 learning controls CTlrnk0 in one engine start in the engagement control of the K0 clutch 20 accompanying the start of the
学習制御部98は、複数種類のK0学習制御CTlrnk0のうちのQA時間学習CTlrnqaを最も優先して実行する。又、学習制御部98は、QA時間学習CTlrnqaにおける学習値VALlrnであるQA時間TMqaが収束したと判定した後に、複数種類のK0学習制御CTlrnk0のうちの、タッチ点学習CTlrnpk、無駄時間学習CTlrntm、及び伝達トルク学習CTlrntkの少なくとも一つにおける学習値VALlrnが収束したか否かを判定する。
The
具体的には、学習制御部98は、始動制御部92cによりエンジン12の始動要求が有ると判定された場合には、今回のエンジン始動制御の際にK0学習制御CTlrnk0を実施するか否かを判定する。学習制御部98は、例えば車両10が安定している状態であって、K0クラッチ20用ソレノイドバルブなどが故障していないと判定されている状態であるときには、K0学習制御CTlrnk0を実施すると判定する。学習制御部98は、例えば車速V、アクセル開度θacc、自動変速機24のギヤ段、MG回転速度Nm等に基づいて、車両10が安定している状態であるか否かを判断する。学習制御部98は、例えば車両10が安定していない状態、又は、K0クラッチ20用ソレノイドバルブなどが故障していると判定されている状態であるときには、K0学習制御CTlrnk0を実施しないと判定する。
Specifically, when the
学習制御部98は、K0学習制御CTlrnk0を実施すると判定した場合には、優先順位が最上位のK0学習制御CTlrnk0例えばQA時間学習CTlrnqaを優先的に実行する。
When the
学習制御部98は、実行したK0学習制御CTlrnk0における学習値VALlrnが収束したか否かを判定する。例えば、学習制御部98は、実行したK0学習制御CTlrnk0における学習パラメータPAlrnの値が、学習値VALlrnが収束したと判断する為の予め定められた所定変動量よりも小さいか否かに基づいて、学習値VALlrnが収束したか否かを判定する。又は、学習制御部98は、実行したK0学習制御CTlrnk0による学習値VALlrnの補正量が、学習値VALlrnが収束したと判断する為の予め定められた所定補正量よりも小さいか否かに基づいて、学習値VALlrnが収束したか否かを判定する。
The
学習制御部98は、実行したK0学習制御CTlrnk0における学習値VALlrnが収束していないと判定した場合には、必要に応じて、実行したK0学習制御CTlrnk0よりも優先順位が下位のK0学習制御CTlrnk0を実行する。
If the
学習制御部98は、実行したK0学習制御CTlrnk0における学習値VALlrnが収束したと判定した場合には、学習値VALlrnが収束したと判定したK0学習制御CTlrnk0よりも優先順位が次の順位のK0学習制御CTlrnk0を実行する。
When the
学習制御部98は、今回のエンジン始動制御におけるK0学習制御CTlrnk0を終了するか否かを判定する。学習制御部98は、例えば今回のエンジン始動制御における複数種類のK0学習制御CTlrnk0のうちの何れもを実施したか否かに基づいて、K0学習制御CTlrnk0を終了するか否かを判定する。
The
図5は、電子制御装置90の制御作動の要部を説明するフローチャートであって、エンジン始動時におけるK0クラッチ20の係合に関わるK0学習制御CTlrnk0を速やかに進行させる為の制御作動を説明するフローチャートであり、例えば繰り返し実行される。
Figure 5 is a flowchart that explains the main control operations of the
図5において、先ず、始動制御部92cの機能に対応するステップ(以下、ステップを省略する)S10において、エンジン12の始動要求が有るか否かが判定される。つまりエンジン12の始動制御が開始されるか否かが判定される。このS10の判断が否定される場合は本ルーチンが終了させられる。このS10の判断が肯定される場合は学習制御部98の機能に対応するS20において、今回のエンジン始動制御の際にK0学習制御CTlrnk0を実施するか否かが判定される。このS20の判断が否定される場合は本ルーチンが終了させられる。このS20の判断が肯定される場合は学習制御部98の機能に対応するS30において、優先順位が最上位のK0学習制御CTlrnk0例えばQA時間学習CTlrnqaが優先的に実行される。次いで、学習制御部98の機能に対応するS40において、実行されたK0学習制御CTlrnk0における学習値VALlrnが収束したか否かが判定される。このS40の判断が否定される場合は学習制御部98の機能に対応するS50において、必要に応じて、実行されたK0学習制御CTlrnk0よりも優先順位が下位のK0学習制御CTlrnk0が実行される。上記S40の判断が肯定される場合は学習制御部98の機能に対応するS60において、学習値VALlrnが収束したと判定されたK0学習制御CTlrnk0よりも優先順位が次の順位のK0学習制御CTlrnk0が実行される。次いで、学習制御部98の機能に対応するS70において、今回のエンジン始動制御におけるK0学習制御CTlrnk0を終了するか否かが判定される。このS70の判断が否定される場合は上記S40に戻される。このS70の判断が肯定される場合は本ルーチンが終了させられる。
In FIG. 5, first, in step S10 (hereinafter, step will be omitted) corresponding to the function of the
上述のように、本実施例によれば、複数種類のK0学習制御CTlrnk0のうちのQA時間学習CTlrnqaが最も優先して実行されるものであり、QA時間学習CTlrnqaにおける学習値VALlrnであるQA時間TMqaが収束したと判定された後に、複数種類のK0学習制御CTlrnk0のうちの、タッチ点学習CTlrnpk、無駄時間学習CTlrntm、及び伝達トルク学習CTlrntkの少なくとも一つにおける学習値VALlrnが収束したか否かが判定されるので、QA時間学習CTlrnqaによりQA時間TMqaが速やかに収束させられると共に、QA時間TMqaの補正の影響を受け難くされた状態で、QA時間学習CTlrnqaとは別のK0学習制御CTlrnk0における学習値VALlrnが適切に収束させられる。よって、エンジン始動時におけるK0クラッチ20の係合に関わるK0学習制御CTlrnk0を速やかに進行させることができる。 As described above, according to this embodiment, the QA time learning CTlrnqa among the multiple types of K0 learning control CTlrnk0 is executed with the highest priority, and after it is determined that the QA time TMqa, which is the learning value VALlrn in the QA time learning CTlrnqa, has converged, it is determined whether or not the learning value VALlrn in at least one of the touch point learning CTlrnpk, the dead time learning CTlrntm, and the transmission torque learning CTlrntk among the multiple types of K0 learning control CTlrnk0 has converged. Therefore, the QA time TMqa is quickly converged by the QA time learning CTlrnqa, and the learning value VALlrn in the K0 learning control CTlrnk0, which is different from the QA time learning CTlrnqa, is appropriately converged in a state in which it is less susceptible to the influence of the correction of the QA time TMqa. Therefore, the K0 learning control CTlrnk0 related to the engagement of the K0 clutch 20 at the time of engine start can be quickly progressed.
次に、本発明の他の実施例を説明する。なお、以下の説明において実施例相互に共通する部分には同一の符号を付して説明を省略する。 Next, other embodiments of the present invention will be described. In the following description, parts common to the embodiments will be given the same reference numerals and will not be described.
複数種類のK0学習制御CTlrnk0のうちの一つのK0学習制御CTlrnk0が行われるときに取得される学習パラメータPAlrnには、その一つのK0学習制御CTlrnk0とは別のK0学習制御CTlrnk0における学習値VALlrnが収束させられていないことに起因する変化分が含まれている可能性がある。 The learning parameter PAlrn acquired when one of the multiple types of K0 learning control CTlrnk0 is performed may contain a change due to the fact that the learning value VALlrn in a K0 learning control CTlrnk0 other than that one K0 learning control CTlrnk0 has not converged.
そこで、学習制御部98は、複数種類のK0学習制御CTlrnk0のうちの一つのK0学習制御CTlrnk0とは別のK0学習制御CTlrnk0における学習値VALlrnが収束させられていないことに起因する影響を抑制した状態で、その一つのK0学習制御CTlrnk0を実行する。例えば、複数種類のK0学習制御CTlrnk0のうちの一つのK0学習制御CTlrnk0に用いる学習パラメータPAlrnを取得する期間としてのK0学習対象期間TMlrnk0は、その一つのK0学習制御CTlrnk0とは別のK0学習制御CTlrnk0に用いる学習パラメータPAlrnを取得するK0学習対象期間TMlrnk0と重ならないように予め定められている。
Therefore, the
無駄時間学習CTlrntmを例示して、K0学習対象期間TMlrnk0を説明する。「K0クランキング」フェーズにおいて、K0油圧指令値Spk0に対するK0トルクTk0のばらつきの成分は、例えば無駄時間TMwtのばらつきの他に、定常的なばらつきである必要クランキングトルクTcrnとクランキング用油圧指令値Spk0crにより生じるK0トルクTk0とのずれを含んでいる。無駄時間TMwtのばらつきは、無駄時間学習CTlrntmによって補正されれば良いし、定常的なばらつきは、伝達トルク学習CTlrntkによって補正されれば良い。しかしながら、各々のK0学習対象期間TMlrnk0が重なりあっていると、例えば無駄時間学習CTlrntm時に取得した学習パラメータPAlrnが定常的なばらつきに起因する変化分を含んでいる可能性がある。無駄時間学習CTlrntmを実行するときのK0学習対象期間TMlrnk0は、「K0クランキング」フェーズにおいて、K0トルクTk0が必要クランキングトルクTcrnに向けて立ち上がり、必要クランキングトルクTcrnに近づいた時点までの期間であれば、定常的なばらつきの影響を抑制又は排除することができる。 The K0 learning target period TMlrnk0 will be explained using the dead time learning CTlrntm as an example. In the "K0 cranking" phase, the components of the variation of the K0 torque Tk0 relative to the K0 hydraulic command value Spk0 include, for example, the variation of the dead time TMwt, as well as the deviation between the required cranking torque Tcrn, which is a steady variation, and the K0 torque Tk0 caused by the cranking hydraulic command value Spk0cr. The variation of the dead time TMwt may be corrected by the dead time learning CTlrntm, and the steady variation may be corrected by the transmission torque learning CTlrntk. However, if the respective K0 learning target periods TMlrnk0 overlap, for example, the learning parameter PAlrn acquired during the dead time learning CTlrntm may include a change due to the steady variation. The K0 learning target period TMlrnk0 when executing the dead time learning CTlrntm can suppress or eliminate the effects of steady-state variation if it is the period from when the K0 torque Tk0 rises toward the required cranking torque Tcrn in the "K0 cranking" phase until it approaches the required cranking torque Tcrn.
従って、無駄時間学習CTlrntmを実行するときのK0学習対象期間TMlrnk0は、「パック詰め時定圧待機」フェーズから「K0クランキング」フェーズへ遷移させられた時点から、K0トルクTk0が必要クランキングトルクTcrnに近づいた時点までの期間である。但し、K0トルクTk0は、ばらつきを有する値であって、K0学習制御CTlrnk0の対象となる値である為、K0トルクTk0の推定値である推定K0トルクTk0eを用いてK0学習対象期間TMlrnk0の終了時点を特定する。つまり、無駄時間学習CTlrntmを実行するときのK0学習対象期間TMlrnk0は、「K0クランキング」フェーズが開始されてから、推定K0トルクTk0eが必要クランキングトルクTcrnに近づくまでの期間である。推定K0トルクTk0eは、例えば必要クランキングトルクTcrnに向けて増加させられるK0トルクTk0の応答特性を反映した予め定められた関数fで示される値である。関数fは、例えば必要クランキングトルクTcrnに対する推定K0トルクTk0eの変化推移を、無駄時間及び零から1に向かうステップ応答における一次遅れ系の関数で表したモデル式である。 Therefore, the K0 learning target period TMlrnk0 when the dead time learning CTlrntm is executed is the period from the point when the "constant pressure waiting during packing" phase is transitioned to the "K0 cranking" phase to the point when the K0 torque Tk0 approaches the required cranking torque Tcrn. However, since the K0 torque Tk0 is a value with variation and is a value that is the target of the K0 learning control CTlrnk0, the end point of the K0 learning target period TMlrnk0 is determined using the estimated K0 torque Tk0e, which is an estimated value of the K0 torque Tk0. In other words, the K0 learning target period TMlrnk0 when the dead time learning CTlrntm is executed is the period from the start of the "K0 cranking" phase to the time when the estimated K0 torque Tk0e approaches the required cranking torque Tcrn. The estimated K0 torque Tk0e is, for example, a value indicated by a predetermined function f that reflects the response characteristics of the K0 torque Tk0 that is increased toward the required cranking torque Tcrn. The function f is a model equation that expresses, for example, the change in the estimated K0 torque Tk0e relative to the required cranking torque Tcrn as a function of a first-order lag system in the dead time and step response from zero to one.
学習制御部98は、K0クラッチ20がパック詰め完了状態とされてから、関数fを用いて算出した推定K0トルクTk0eと必要クランキングトルクTcrnとの差であるクランキングトルク差ΔTcr(=Tcrn-Tk0e)が所定トルク差ΔTcrf以下となるまでの期間における、学習パラメータPAlrnに基づいて、無駄時間学習CTlrntmを行う。所定トルク差ΔTcrfは、例えば推定K0トルクTk0eが必要クランキングトルクTcrnに近づいたと判断できる予め定められた所定値である。
The
上述のように、本実施例によれば、K0クラッチ20がパック詰め完了状態とされてからクランキングトルク差ΔTcrが所定トルク差ΔTcrf以下となるまでの期間における学習パラメータPAlrnに基づいて無駄時間学習CTlrntmが行われるので、必要クランキングトルクTcrnとクランキング用油圧指令値Spk0crにより生じるK0トルクTk0とのずれの影響を抑制した状態で、無駄時間学習CTlrntmを適切に行うことができる。
As described above, according to this embodiment, the dead time learning CTlrntm is performed based on the learning parameter PAlrn during the period from when the
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。 The above describes in detail an embodiment of the present invention based on the drawings, but the present invention can also be applied in other aspects.
例えば、前述の実施例において、一回のエンジン始動に際して、複数種類のK0学習制御CTlrnk0が実行可能なときに、K0制御用フェーズ定義Dphk0における各フェーズの遷移順で見たときの前のK0学習制御CTlrnk0が何らかの原因で満足に学習ができなかった場合、後のK0学習制御CTlrnk0における学習パラメータPAlrnを適切に検出できず誤学習の懸念がある為、満足に学習ができなかったK0学習制御CTlrnk0よりも後のK0学習制御CTlrnk0を実行しないようにしても良い。 For example, in the above-mentioned embodiment, when multiple types of K0 learning control CTlrnk0 can be executed at one engine start, if the previous K0 learning control CTlrnk0 in terms of the transition order of each phase in the K0 control phase definition Dphk0 cannot be learned satisfactorily for some reason, the learning parameter PAlrn in the subsequent K0 learning control CTlrnk0 cannot be detected properly, which may lead to erroneous learning. Therefore, it is possible to not execute the K0 learning control CTlrnk0 subsequent to the K0 learning control CTlrnk0 that could not be learned satisfactorily.
また、前述の実施例において、車両10の走行状態やK0制御用フェーズ定義Dphk0におけるフェーズによって、例えばMGフィードバック制御CTfbmを行わない場合があるのであれば、複数種類のK0学習制御CTlrnk0の各々毎に、取得する学習パラメータPAlrnを適切に切り替えても良い。
In addition, in the above-mentioned embodiment, if there are cases where, for example, MG feedback control CTfbm is not performed depending on the running state of the
また、前述の実施例において、学習パラメータPAlrnは、K0学習制御CTlrnk0における学習値VALlrnが収束させられていないことによって生じる現象の程度を表す数値、又は、K0油圧指令値Spk0に対するK0油圧PRk0のばらつきによって生じる現象の程度を表す数値であれば良く、MG回転変動量ΔNm又はMGトルク変動量ΔTmに限らない。 In addition, in the above-mentioned embodiment, the learning parameter PAlrn may be a numerical value representing the degree of a phenomenon caused by the learning value VALlrn in the K0 learning control CTlrnk0 not being converged, or a numerical value representing the degree of a phenomenon caused by the variation of the K0 hydraulic pressure PRk0 relative to the K0 hydraulic pressure command value Spk0, and is not limited to the MG rotation fluctuation amount ΔNm or the MG torque fluctuation amount ΔTm.
また、前述の実施例では、エンジン12の始動方法として、K0クラッチ20が解放状態から係合状態へ切り替えられる過渡状態におけるエンジン12のクランキングに合わせてエンジン12を点火し、エンジン12自体でもエンジン回転速度Neを上昇させる始動方法を例示したが、この態様に限らない。例えば、エンジン12の始動方法は、K0クラッチ20が完全係合状態又は完全係合状態に近い状態とされるまでエンジン12をクランキングした後にエンジン12を点火する始動方法などであっても良い。尚、MG回転速度Nmがゼロの状態とされているときの車両10の停止時には、K0クラッチ20の完全係合状態において電動機MGによってエンジン12をクランキングした後にエンジン12を点火する始動方法を採用することができる。又、エンジン12をクランキングする専用のモーターであるスターターが車両10に備えられている場合、MG回転速度Nmがゼロの状態とされているときの車両10の停止時に、例えば外気温が極低温の為に電動機MGによるクランキングが十分にできなかったり不可能なときには、スターターによってエンジン12をクランキングした後にエンジン12を点火する始動方法を採用することができる。
In the above embodiment, the
また、前述の実施例では、自動変速機24として遊星歯車式の自動変速機を例示したが、この態様に限らない。自動変速機24は、公知のDCT(Dual Clutch Transmission)を含む同期噛合型平行2軸式自動変速機、公知のベルト式無段変速機などであっても良い。
In addition, in the above embodiment, a planetary gear type automatic transmission is exemplified as the
また、前述の実施例では、流体式伝動装置としてトルクコンバータ22が用いられたが、この態様に限らない。例えば、流体式伝動装置として、トルクコンバータ22に替えて、トルク増幅作用のないフルードカップリングなどの他の流体式伝動装置が用いられても良い。又は、流体式伝動装置は、必ずしも備えられている必要はなく、例えば発進用のクラッチに置き換えられても良い。
In addition, in the above-mentioned embodiment, the
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 The above is merely one embodiment, and the present invention can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art.
10:車両
12:エンジン
14:駆動輪
20:K0クラッチ(クラッチ)
56:油圧制御回路
90:電子制御装置(制御装置)
92c:始動制御部
94:クラッチ制御部
98:学習制御部
120:クラッチアクチュエータ
MG:電動機
10: Vehicle 12: Engine 14: Drive wheels 20: K0 clutch (clutch)
56: Hydraulic control circuit 90: Electronic control device (control device)
92c: Start control unit 94: Clutch control unit 98: Learning control unit 120: Clutch actuator MG: Electric motor
Claims (2)
前記エンジンの始動に際して、前記電動機の出力トルクを前記エンジンのクランキングに必要なトルクである必要クランキングトルク分増加するように前記電動機を制御すると共に前記エンジンが運転を開始するように前記エンジンを制御する始動制御部と、
前記エンジンの始動に際して、前記クラッチの制御状態を解放状態から係合状態へ切り替える係合過渡中に、前記油圧を供給させる油圧指令値として、前記必要クランキングトルクを前記クラッチが伝達するように前記クラッチアクチュエータへの前記油圧を調圧するクランキング用油圧指令値を前記油圧制御回路へ出力すると共に、前記クランキング用油圧指令値の出力に先立って、前記油圧指令値として、前記クラッチを速やかに前記クラッチのパッククリアランスが詰められたパック詰め完了状態とするように前記クラッチアクチュエータへの前記油圧の応答性を向上させる急速充填用油圧指令値を前記油圧制御回路へ出力するクラッチ制御部と、
前記クラッチの前記係合過渡中における前記油圧と前記油圧指令値との相関を表す関係を補正する複数種類の学習制御を行う学習制御部と、
を含んでおり、
前記学習制御部は、
前記複数種類の学習制御のうちの、前記急速充填用油圧指令値が出力される急速充填時間を補正する急速充填時間学習を最も優先して実行するものであり、
前記急速充填時間学習における学習値である前記急速充填時間が収束したと判定した後に、前記複数種類の学習制御のうちの、前記クラッチを前記パック詰め完了状態とする前記油圧を補正するパック詰め完了油圧学習、前記クラッチの伝達トルクが前記必要クランキングトルクに向けて立ち上がる伝達トルク立ち上がり時点と前記電動機による前記必要クランキングトルク分の増大が開始させられる電動機トルク立ち上がり時点とのずれを補正する立ち上がり時点学習、及び前記必要クランキングトルクと前記クランキング用油圧指令値により生じる前記クラッチの伝達トルクとのずれを補正する伝達トルク学習の少なくとも一つにおける学習値が収束したか否かを判定することを特徴とする車両の制御装置。 A control device for a vehicle including an engine, an electric motor connected to a power transmission path between the engine and drive wheels so as to be capable of transmitting power, a clutch whose control state is switched by controlling a hydraulic clutch actuator provided between the engine and the electric motor in the power transmission path, and a hydraulic control circuit that supplies a regulated hydraulic pressure to the clutch actuator,
a start control unit that controls the electric motor so as to increase an output torque of the electric motor by a necessary cranking torque, which is a torque necessary for cranking the engine, when starting the engine, and also controls the engine so as to start operation of the engine;
a clutch control unit that outputs, as a hydraulic pressure command value for supplying the hydraulic pressure during an engagement transition in which a control state of the clutch is switched from a released state to an engaged state, to the hydraulic control circuit, a cranking hydraulic pressure command value that adjusts the hydraulic pressure to the clutch actuator so that the clutch transmits the required cranking torque, and outputs, prior to the output of the cranking hydraulic pressure command value, to the hydraulic control circuit, as the hydraulic pressure command value, a rapid filling hydraulic pressure command value that improves responsiveness of the hydraulic pressure to the clutch actuator so that the clutch is quickly brought to a packing completion state in which a pack clearance of the clutch is closed;
a learning control unit that performs a plurality of types of learning control to correct a relationship that represents a correlation between the hydraulic pressure during the engagement transition of the clutch and the hydraulic pressure command value;
Contains
The learning control unit is
Among the plurality of types of learning controls, a quick fill time learning for correcting a quick fill time at which the quick fill hydraulic pressure command value is output is executed with the highest priority,
A vehicle control device characterized in that, after determining that the rapid fill time, which is a learned value in the rapid fill time learning, has converged, the control device determines whether or not a learned value in at least one of the multiple types of learning controls has converged: packing completion hydraulic pressure learning, which corrects the hydraulic pressure to bring the clutch into the packing completion state; rise time point learning, which corrects the difference between the transmission torque rise time point at which the transmission torque of the clutch rises toward the required cranking torque and the electric motor torque rise time point at which the electric motor begins to increase the required cranking torque; and transmission torque learning, which corrects the difference between the required cranking torque and the transmission torque of the clutch generated by the cranking hydraulic pressure command value.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020209723A JP7505974B2 (en) | 2020-12-17 | 2020-12-17 | Vehicle control device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020209723A JP7505974B2 (en) | 2020-12-17 | 2020-12-17 | Vehicle control device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2022096549A JP2022096549A (en) | 2022-06-29 |
| JP7505974B2 true JP7505974B2 (en) | 2024-06-25 |
Family
ID=82163920
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2020209723A Active JP7505974B2 (en) | 2020-12-17 | 2020-12-17 | Vehicle control device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7505974B2 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100906905B1 (en) | 2008-03-21 | 2009-07-08 | 현대자동차주식회사 | Clutch Learning Control Method for Hybrid Vehicles |
| JP2010143448A (en) | 2008-12-19 | 2010-07-01 | Nissan Motor Co Ltd | Control device for hybrid vehicle |
| US20120083385A1 (en) | 2010-09-30 | 2012-04-05 | GM Global Technology Operations LLC | Control of a powertrain for a hybrid system |
| JP2020131788A (en) | 2019-02-14 | 2020-08-31 | トヨタ自動車株式会社 | In-vehicle control device |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6662273B2 (en) * | 2016-11-18 | 2020-03-11 | トヨタ自動車株式会社 | Vehicle control device |
-
2020
- 2020-12-17 JP JP2020209723A patent/JP7505974B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100906905B1 (en) | 2008-03-21 | 2009-07-08 | 현대자동차주식회사 | Clutch Learning Control Method for Hybrid Vehicles |
| JP2010143448A (en) | 2008-12-19 | 2010-07-01 | Nissan Motor Co Ltd | Control device for hybrid vehicle |
| US20120083385A1 (en) | 2010-09-30 | 2012-04-05 | GM Global Technology Operations LLC | Control of a powertrain for a hybrid system |
| JP2020131788A (en) | 2019-02-14 | 2020-08-31 | トヨタ自動車株式会社 | In-vehicle control device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2022096549A (en) | 2022-06-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7393104B2 (en) | Vehicle control device | |
| JP5505046B2 (en) | Vehicle control system | |
| JP7384775B2 (en) | Vehicle control device | |
| JP7343459B2 (en) | Vehicle control device | |
| CN115503687B (en) | Vehicle control devices | |
| US11807218B2 (en) | Control device for vehicle | |
| JP7578476B2 (en) | Vehicle control device | |
| JP7662450B2 (en) | Vehicle control device | |
| JP7505974B2 (en) | Vehicle control device | |
| JP7744215B2 (en) | Vehicle control device | |
| JP7509670B2 (en) | Vehicle control device | |
| JP7509701B2 (en) | Vehicle control device | |
| JP2011213309A (en) | Vehicle control system | |
| JP2023083124A (en) | Control device of vehicle | |
| JP7563999B2 (en) | Vehicle control device | |
| JP7505973B2 (en) | Vehicle control device | |
| JP7750706B2 (en) | Vehicle control device | |
| JP7732914B2 (en) | Vehicle control device | |
| JP7613926B2 (en) | Vehicle control device | |
| JP7586105B2 (en) | Vehicle control device | |
| JP7715649B2 (en) | Vehicle control device | |
| JP7552627B2 (en) | Vehicle control device | |
| JP2022063154A (en) | Vehicle control device | |
| JP2023083122A (en) | vehicle controller |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20210423 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231004 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240509 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240521 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240613 |