[go: up one dir, main page]

JP7516960B2 - Chlorinated polymer and its manufacturing method - Google Patents

Chlorinated polymer and its manufacturing method Download PDF

Info

Publication number
JP7516960B2
JP7516960B2 JP2020130114A JP2020130114A JP7516960B2 JP 7516960 B2 JP7516960 B2 JP 7516960B2 JP 2020130114 A JP2020130114 A JP 2020130114A JP 2020130114 A JP2020130114 A JP 2020130114A JP 7516960 B2 JP7516960 B2 JP 7516960B2
Authority
JP
Japan
Prior art keywords
weight
chlorinated polymer
polymer
chlorinated
trichloroethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020130114A
Other languages
Japanese (ja)
Other versions
JP2022026574A (en
Inventor
貴志 鶴田
俊裕 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2020130114A priority Critical patent/JP7516960B2/en
Publication of JP2022026574A publication Critical patent/JP2022026574A/en
Application granted granted Critical
Publication of JP7516960B2 publication Critical patent/JP7516960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は塗料やコーティング等に用いられる塩素化ポリマー及びその製造法に関する。 The present invention relates to chlorinated polymers used in paints, coatings, etc., and to a method for producing the same.

塩素化ポリマーは、耐候性、耐油性、耐薬品性、耐熱性、難燃性、などに優れるポリマーであり、塗料やコーティング、接着剤用途などに幅広く用いられている(例えば、非特許文献1参照。)。これらの用途で用いる際の多くは、トルエンやキシレン、クロロホルム等の溶剤に溶解して溶液として使用されることが多い(例えば、特許文献1参照。)。この際、不溶解成分の有無或いは量によって加工性や作業性、或いは品質のバラつき等に影響することが懸念されている。一方で、塩素化ポリマーは溶液中で作製される溶剤法と水中で作製される水性懸濁法があるが、塩素化の均一性や物性、品質の面で溶液法が優れる。しかしながら、溶液法で製造される塩素化ポリマーにおいても不溶解成分が溶液作製において課題となっていた。 Chlorinated polymers are polymers that are excellent in weather resistance, oil resistance, chemical resistance, heat resistance, and flame retardancy, and are widely used in paints, coatings, adhesives, and other applications (see, for example, Non-Patent Document 1). In many cases, they are used in these applications as solutions dissolved in solvents such as toluene, xylene, and chloroform (see, for example, Patent Document 1). In this case, there are concerns that the presence or absence or amount of insoluble components may affect processability, workability, or quality variation. On the other hand, chlorinated polymers can be produced in solution using the solvent method or in water using the aqueous suspension method, and the solution method is superior in terms of chlorination uniformity, physical properties, and quality. However, insoluble components have been an issue in producing solutions of chlorinated polymers produced by the solution method.

特開2001-354912号公報JP 2001-354912 A

塩化ゴム塗料使用技術、物理的性質及び化学的抵抗性に関するNACET-6A 技術委員会報告NACET-6A Technical Committee Report on Chlorinated Rubber Coatings Application Techniques, Physical Properties, and Chemical Resistance

本発明は、上記の課題に鑑みてなされたものであり、その目的は溶解性に優れる塩素化ポリマーであり、作業性や品質安定性に優れる塗料、コーティングや接着剤等を作製可能な塩素化ポリマーを提供することである。 The present invention was made in consideration of the above problems, and its purpose is to provide a chlorinated polymer that has excellent solubility and can be used to make paints, coatings, adhesives, etc. that have excellent workability and quality stability.

本発明者は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至ったものである。すなわち本発明は、以下の[1]~[4]に係るものである。
[1]塩素含量が60.0~75.0重量%であり、1,1,2-トリクロロエタンを0.01~1.0重量%含有することを特徴とする塩素化ポリマー。
[2]原料ポリマーが天然ゴム、ポリイソプレン及びクロロプレンゴムからなる群より選ばれる少なくとも1種であることを特徴とする[1]記載の塩素化ポリマー。
[3]塩素化ポリマーを5重量%濃度で溶解させたクロロホルム溶液を、10分間、10000rpmの高速遠心分離して得られた沈殿成分が、溶解させた塩素ポリマーの5.0重量%以下であることを特徴とする[1]又は[2]記載の塩素化ポリマー。
[4]ポリマーを溶剤に溶解させた状態で、塩素化剤と反応させることを特徴とする[1]~[3]に記載の塩素化ポリマーの製造方法。
The present inventors have conducted extensive research to solve the above problems and have completed the present invention. That is, the present invention relates to the following items [1] to [4].
[1] A chlorinated polymer having a chlorine content of 60.0 to 75.0% by weight and containing 0.01 to 1.0% by weight of 1,1,2-trichloroethane.
[2] The chlorinated polymer according to [1], wherein the raw polymer is at least one selected from the group consisting of natural rubber, polyisoprene and chloroprene rubber.
[3] The chlorinated polymer according to [1] or [2], characterized in that a precipitate obtained by high-speed centrifugation of a chloroform solution in which the chlorinated polymer is dissolved at a concentration of 5% by weight at 10,000 rpm for 10 minutes accounts for 5.0% by weight or less of the dissolved chlorinated polymer.
[4] The method for producing a chlorinated polymer according to any one of [1] to [3], characterized in that the polymer is dissolved in a solvent and reacted with a chlorinating agent.

本発明の塩素化ポリマーは溶解時の不溶解成分が少ないことにより、加工性、作業性に優れる、塗料及びコーティング、接着剤の製造が可能になる。 The chlorinated polymer of the present invention has a low content of insoluble components when dissolved, making it possible to manufacture paints, coatings, and adhesives that have excellent processability and workability.

以下、本発明を詳細に説明する。 The present invention is described in detail below.

本発明の塩素化ポリマーは様々な原料ポリマーを塩素化して得られるポリマーである。原料ポリマーとしては例えば、天然ゴム、ポリイソプレン、ポリブタジエン、ポリクロロプレン、ポリエチレン、ポリプロピレン、EPDM、SBR、NBR等があげられ、これらを単独或いは複数混合して用いることができる。塗料或いはコーティング用途としての性能や加工性、生産性を考えると、天然ゴム、ポリイソプレン、ポリブタジエン、ポリクロロプレン、ポリエチレンが好ましい。 The chlorinated polymer of the present invention is a polymer obtained by chlorinating various raw polymers. Examples of raw polymers include natural rubber, polyisoprene, polybutadiene, polychloroprene, polyethylene, polypropylene, EPDM, SBR, NBR, etc., and these can be used alone or in combination. Considering performance, processability, and productivity for paint or coating applications, natural rubber, polyisoprene, polybutadiene, polychloroprene, and polyethylene are preferred.

原料ポリマーの塩素化方法としては水性懸濁法と溶液法があるが、得られる塩素化ポリマーの塩素付加の均一性、溶解特性、不溶解成分量、品質安定性の面から溶液法が好ましい。 There are two methods for chlorinating raw polymers: the aqueous suspension method and the solution method. The solution method is preferred in terms of the uniformity of chlorine addition, solubility characteristics, amount of insoluble components, and quality stability of the resulting chlorinated polymer.

溶液法は原料ポリマーを溶剤に溶解させた状態で、適当な温度、圧力条件のもと塩素化剤を加えることで塩素化する方法である。 The solution method involves dissolving the raw polymer in a solvent and adding a chlorinating agent under appropriate temperature and pressure conditions to chlorinate the polymer.

溶液法での塩素化に用いられる溶剤としては特に限定されるものではないが、溶解性や反応性の点から四塩化炭素、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、クロロホルム、クロロベンゼン、1,1,2-トリクロロエチレン等が挙げられるが、不溶解成分の低減の為には1,1,2-トリクロロエタンが好ましい。 The solvent used for chlorination in the solution method is not particularly limited, but from the standpoint of solubility and reactivity, examples include carbon tetrachloride, 1,1,1-trichloroethane, 1,1,2-trichloroethane, chloroform, chlorobenzene, 1,1,2-trichloroethylene, etc., but 1,1,2-trichloroethane is preferred to reduce insoluble components.

溶液法にて塩素化する際の原料ポリマー溶液濃度にいては、特に限定されるものではないが、高粘度化による作業性低下の抑制及び生産性を考慮し、3.5wt%~7.0wt%が好ましい。 The raw polymer solution concentration when chlorinating using the solution method is not particularly limited, but taking into consideration productivity and preventing a decrease in workability due to high viscosity, a concentration of 3.5 wt% to 7.0 wt% is preferable.

本発明の塩素化ポリマーの塩素含有率は良好な耐油性、耐薬品性、難燃性及び加工性のため60.0~75.0wt%が望ましい。更に望ましくは64.0wt%以上70.0wt%以下が好ましい。 The chlorine content of the chlorinated polymer of the present invention is preferably 60.0 to 75.0 wt% in order to provide good oil resistance, chemical resistance, flame retardancy and processability. More preferably, it is 64.0 wt% or more and 70.0 wt% or less.

良好な溶解特性のために、1,1,2-トリクロロエタンを0.01wt%以上1.0wt%以下含むことが望ましく、より好ましくは0.05wt%以上0.5%以下である。 For good solubility properties, it is desirable to contain 1,1,2-trichloroethane at 0.01 wt% or more and 1.0 wt% or less, more preferably 0.05 wt% or more and 0.5 wt% or less.

本発明の塩素化ポリマーを塩素化する際の塩素化剤は特に定めるものではなく、塩素ガス、塩化チオニル、塩化スルフリル等の塩素化剤を用いることができる。これらを単独或いは複数併用或いは組み合わせて用いてもよい。また、必要に応じて塩素化反応を促進する触媒等を用いてもよい。触媒としては例えば、アゾ系化合物、有機化酸化物等が挙げられる。アゾ系化合物としては、例えば、α,α’-アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等が挙げられ、有機化酸化物としては、例えば、過酸化ベンゾイル、過酸化アセチル、過酸化t-ブチル、過安息香酸t-ブチル等が挙げられる。これらのうち、取り扱い上安定性が高いため、好ましくはアゾ化合物であり、適度な塩素化及びクロロスルホン化反応が進行するため、さらに好ましくはα,α’-アゾビスイソブチロニトリルである。 The chlorinating agent used for chlorinating the chlorinated polymer of the present invention is not particularly specified, and chlorinating agents such as chlorine gas, thionyl chloride, and sulfuryl chloride can be used. These may be used alone or in combination. In addition, a catalyst that promotes the chlorination reaction may be used as necessary. Examples of the catalyst include azo compounds and organic peroxides. Examples of azo compounds include α,α'-azobisisobutyronitrile, azobiscyclohexanecarbonitrile, and 2,2'-azobis(2,4-dimethylvaleronitrile), and examples of organic peroxides include benzoyl peroxide, acetyl peroxide, t-butyl peroxide, and t-butyl perbenzoate. Among these, azo compounds are preferred because they are highly stable in handling, and α,α'-azobisisobutyronitrile is even more preferred because they allow moderate chlorination and chlorosulfonation reactions to proceed.

反応温度は塩素化反応が進行するものであれば特に限定するものではなく、例えば、15~110℃が好ましく、適度な塩素化反応速度と反応安定性を両立するためには30~80℃が好ましい。 The reaction temperature is not particularly limited as long as the chlorination reaction proceeds. For example, 15 to 110°C is preferable, and 30 to 80°C is preferable to achieve both a moderate chlorination reaction rate and reaction stability.

反応圧力は塩素化反応が進行すれば特に限定するものではなく、例えば、0~1.0メガパスカルが好ましく、適度な塩素化が進行するために0.1~0.5メガパスカルがさらに好ましい。 The reaction pressure is not particularly limited as long as the chlorination reaction proceeds. For example, 0 to 1.0 megapascals is preferred, and 0.1 to 0.5 megapascals is even more preferred in order to ensure that the chlorination proceeds appropriately.

塩素化剤として酸性ガスを用いる場合、塩素化反応終了後、反応溶液中に残存する酸性ガスは窒素等の不活性ガスを導入することによって除去される。除去する際の温度条件は特に限定するものではないが、安定的に効率よく酸の除去を実施するには50~100℃が好ましい。 When an acidic gas is used as the chlorinating agent, the acidic gas remaining in the reaction solution after the chlorination reaction is completed is removed by introducing an inert gas such as nitrogen. There are no particular limitations on the temperature conditions during removal, but a temperature of 50 to 100°C is preferred for stable and efficient acid removal.

残存酸性ガス除去後、得られた溶液についてはそのまま或いは、トルエンやキシレン等の溶剤へ置換し、そのまま溶液として用いることもできるが、水蒸気蒸留、ドラムドライヤー、ベント付き押出機、スプレードライヤ等の設備を用いて溶剤と塩素化ポリマーを分離し、生成物となる塩素化ポリマーのみを得ることもできる。 After removing the remaining acid gases, the resulting solution can be used as is or after replacing it with a solvent such as toluene or xylene, but it is also possible to separate the solvent and chlorinated polymer using equipment such as steam distillation, a drum dryer, a vented extruder, or a spray dryer, and obtain only the product chlorinated polymer.

得られた塩素化ポリマー溶液或いは生成物である塩素化ポリマーを用いて塗料やコーティング、接着剤等を作製することができる。 The resulting chlorinated polymer solution or the product chlorinated polymer can be used to make paints, coatings, adhesives, etc.

本発明を以下の実施例により具体的に説明する。但し、本発明はこれらに限定されるものではない。 The present invention will be specifically described with reference to the following examples. However, the present invention is not limited to these examples.

<不溶解成分測定法>
本発明で得られた塩素化ポリマー0.5gをクロロホルム9.5gに溶解させ、5wt%のクロロホルム溶解液を作製した。10,000rpm、10min遠心分離し、不溶解成分を分離した。得られた不溶解成分を120℃、2.0時間乾燥後重量を測定、不溶成分の割合を算出した。
<1,1,2-トリクロロエタン量の測定>
塩素化ポリマーをクロロホルムに溶解し2.0重量%濃度の溶液を作製した後。内部標準物質としてモノクロロベンゼンを加え、ガスクロマトグラフィーを用いて内標準法により含有量を算出した。
<Insoluble component measurement method>
0.5 g of the chlorinated polymer obtained in the present invention was dissolved in 9.5 g of chloroform to prepare a 5 wt % chloroform solution. The solution was centrifuged at 10,000 rpm for 10 minutes to separate insoluble components. The insoluble components were dried at 120° C. for 2.0 hours, and then the weight was measured to calculate the proportion of the insoluble components.
<Measurement of 1,1,2-trichloroethane amount>
The chlorinated polymer was dissolved in chloroform to prepare a solution having a concentration of 2.0% by weight, and monochlorobenzene was added as an internal standard substance to calculate the content by the internal standard method using gas chromatography.

実施例1
1.0リッターのガラス製オートクレーブに、1,1,2-トリクロロエタンを720gと天然ゴムRSS#3を36g仕込んだ。内温を70℃まで昇温し、内圧0.1MPaの条件を維持しつつ、反応器に200ml/分の流速で塩素ガスを連続的に8時間導入した。
Example 1
720 g of 1,1,2-trichloroethane and 36 g of natural rubber RSS#3 were charged into a 1.0 liter glass autoclave. The internal temperature was raised to 70° C., and chlorine gas was continuously introduced into the reactor at a flow rate of 200 ml/min for 8 hours while maintaining the internal pressure at 0.1 MPa.

塩素化反応終了後、圧力を常圧に戻し、内温を90℃にしてから、窒素ガスを導入し反応液に残存する酸性ガスを取り除く作業を1.5時間かけて実施した。 After the chlorination reaction was completed, the pressure was returned to normal pressure, the internal temperature was raised to 90°C, and nitrogen gas was then introduced to remove any acidic gas remaining in the reaction liquid over a period of 1.5 hours.

得られた塩化ゴム溶液をベント付き押出機にて、160℃の条件で溶剤から塩素化ポリマーを分離した。 The resulting chlorinated rubber solution was extruded in a vented extruder at 160°C to separate the chlorinated polymer from the solvent.

分析の結果、塩素化ポリマーの塩素含量は64.6重量%で、1,1,2-トリクロロエタンを0.1重量%含んでいた。不溶解成分は4.5重量%であった。 Analysis revealed that the chlorine content of the chlorinated polymer was 64.6% by weight, and it contained 0.1% by weight of 1,1,2-trichloroethane. The insoluble components were 4.5% by weight.

実施例2
原料の天然ゴムをSMR-10に変更し、実施例1と同様に塩素化を行った。 得られた塩素化ポリマーの塩素含量は65.5重量%で、1,1,2-トリクロロエタンを0.23重量%含んでいた。不溶解成分は3.4重量%であった。
Example 2
The raw material natural rubber was changed to SMR-10, and chlorination was carried out in the same manner as in Example 1. The chlorine content of the obtained chlorinated polymer was 65.5% by weight, and it contained 0.23% by weight of 1,1,2-trichloroethane. The insoluble component was 3.4% by weight.

実施例3
原料をポリイソプレンに変更し、実施例1と同様に塩素化を行った。
Example 3
The raw material was changed to polyisoprene, and chlorination was carried out in the same manner as in Example 1.

得られた塩素化ポリマーの塩素含量は66.2重量%で、1,1,2-トリクロロエタンは0.35重量%含んでいた。不溶解成分は2.6重量%であった。 The chlorine content of the resulting chlorinated polymer was 66.2% by weight, and it contained 0.35% by weight of 1,1,2-trichloroethane. The insoluble components were 2.6% by weight.

比較例1
溶剤を1,1,2-トリクロロエタンから四塩化炭素に変更し、実施例1と同様に塩素化を行った。
Comparative Example 1
Chlorination was carried out in the same manner as in Example 1, except that the solvent was changed from 1,1,2-trichloroethane to carbon tetrachloride.

得られた塩素化ポリマーの塩素含量は66.8重量%で、1,1,2-トリクロロエタンを含んでいなかった。不溶解成分は10.6重量%であった。 The chlorine content of the resulting chlorinated polymer was 66.8% by weight and contained no 1,1,2-trichloroethane. The insoluble components were 10.6% by weight.

比較例2
溶剤をクロロホルムに変更し、実施例1と同様に塩素化を行った。
Comparative Example 2
Chlorination was carried out in the same manner as in Example 1, except that the solvent was changed to chloroform.

得られた塩素化ポリマーの塩素含量は64.8重量%で、1,1,2-トリクロロエタンを含んでいなかった。不溶解成分は8.3重量%であった。 The chlorine content of the resulting chlorinated polymer was 64.8% by weight and contained no 1,1,2-trichloroethane. The insoluble components were 8.3% by weight.

本発明の塩素化ポリマーはクロロホルムへの溶解時の不溶解成分が少ないことにより、加工性、作業性に優れ、塗料及びコーティング、接着剤等の製造が可能になる。 The chlorinated polymer of the present invention has a low content of insoluble components when dissolved in chloroform, making it easy to process and work with, and enabling the manufacture of paints, coatings, adhesives, etc.

Claims (2)

天然ゴム、ポリイソプレン及びクロロプレンゴムからなる群より選ばれる少なくとも1種の原料ポリマーを塩素化した塩素化ポリマーであって、塩素含量が60.0~75.0重量%であり、1,1,2-トリクロロエタンを0.01~1.0重量%含有し、塩素化ポリマーを5重量%濃度で溶解させたクロロホルム溶液を、10分間、10000rpmの高速遠心分離して得られた沈殿成分が、溶解させた塩素ポリマーの5.0重量%以下であることを特徴とする塩素化ポリマー。 A chlorinated polymer obtained by chlorinating at least one raw material polymer selected from the group consisting of natural rubber, polyisoprene and chloroprene rubber, the chlorine content being 60.0 to 75.0% by weight, containing 0.01 to 1.0% by weight of 1,1,2-trichloroethane , and the precipitate obtained by centrifuging a chloroform solution in which the chlorinated polymer is dissolved at a concentration of 5% by weight at 10,000 rpm for 10 minutes is 5.0% by weight or less of the dissolved chlorinated polymer . 天然ゴム、ポリイソプレン及びクロロプレンゴムからなる群より選ばれる少なくとも1種の原料ポリマーを1,1,2-トリクロロエタンに溶解させた状態で、塩素化剤と反応させることを特徴とする請求項1に記載の塩素化ポリマーの製造方法。 The method for producing a chlorinated polymer according to claim 1, characterized in that at least one raw material polymer selected from the group consisting of natural rubber, polyisoprene and chloroprene rubber is reacted with a chlorinating agent in a state where the raw material polymer is dissolved in 1,1,2-trichloroethane.
JP2020130114A 2020-07-31 2020-07-31 Chlorinated polymer and its manufacturing method Active JP7516960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020130114A JP7516960B2 (en) 2020-07-31 2020-07-31 Chlorinated polymer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020130114A JP7516960B2 (en) 2020-07-31 2020-07-31 Chlorinated polymer and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022026574A JP2022026574A (en) 2022-02-10
JP7516960B2 true JP7516960B2 (en) 2024-07-17

Family

ID=80263657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020130114A Active JP7516960B2 (en) 2020-07-31 2020-07-31 Chlorinated polymer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7516960B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140504A (en) 2010-12-28 2012-07-26 Tosoh Corp New thermoplastic elastomer
JP2012162663A (en) 2011-02-08 2012-08-30 Tosoh Corp Chlorosulfonated polyolefin composition
JP2013124284A (en) 2011-12-14 2013-06-24 Tosoh Corp Chlorosulfonated polyolefin and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364100B1 (en) * 1988-09-16 1992-11-25 TATE &amp; LYLE PUBLIC LIMITED COMPANY Process for the chlorination of sugars
JP3203710B2 (en) * 1991-10-18 2001-08-27 東ソー株式会社 Method for producing chlorosulfonated polyolefin
JP3235137B2 (en) * 1991-10-18 2001-12-04 東ソー株式会社 Production method of chlorinated polyolefin
JPH05140214A (en) * 1991-11-21 1993-06-08 Tosoh Corp Production of chlorinated polyolefin
EP0667803A4 (en) * 1992-11-04 1997-04-02 Membrane Tech & Res Inc Gas-separation process.
JP3286856B2 (en) * 1992-11-25 2002-05-27 東ソー株式会社 Production method of chlorinated polyolefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140504A (en) 2010-12-28 2012-07-26 Tosoh Corp New thermoplastic elastomer
JP2012162663A (en) 2011-02-08 2012-08-30 Tosoh Corp Chlorosulfonated polyolefin composition
JP2013124284A (en) 2011-12-14 2013-06-24 Tosoh Corp Chlorosulfonated polyolefin and method for producing the same

Also Published As

Publication number Publication date
JP2022026574A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
EP0906345B1 (en) Brominated polystyrene having improved thermal stability and color and process for the preparation thereof
CA2106490C (en) Grafted polymers of an isomonoolefin and an alkylstyrene
US6518368B2 (en) Brominated polystyrene having improved thermal stability and color and process for the preparation thereof
RU2158274C1 (en) Method of preparing elastic copolymer of vinylidene fluoride with 25-30 mole % of hexafluoropropylene
JP7516960B2 (en) Chlorinated polymer and its manufacturing method
US2920064A (en) Process for halogenation of polymers
US2906743A (en) Process for preparing halogencontaining polyolefins
US4544709A (en) Process for producing chlorosulfonated polyethylene using a mixed solvent
CN101100461A (en) Thiadiazole derivative for vulcanizing and crosslinking halogen-containing polymer and synthetic method thereof
JP6572543B2 (en) Modified chlorosulfonated polyethylene
JP2024129807A (en) Chlorinated polymer and its manufacturing method
WO2008123989A2 (en) Process for chlorosulfonating polyolefins
JP2023012028A (en) Chlorosulfonated chlorinated rubber and its production method
JPH08512081A (en) Method for producing chlorinated and chlorosulfonated olefin polymer
JP5948724B2 (en) Thermoplastic elastomer
JP5716435B2 (en) Chlorosulfonated polyolefin composition
JP4349023B2 (en) Production method of chlorosulfonated polyolefin
CN104945542B (en) A kind of method of situ-formed graft chlorination
JP2012067258A (en) Method for producing chlorosulfonated polyolefin
JP3286857B2 (en) Method for producing chlorosulfonated polyolefin
RU2346955C1 (en) Method of obtaining chlorinated polymers and copolymers of olefin hydrocarbons
JP2014009246A (en) Modified chlorosulfonated polyolefin
JP4551722B2 (en) Method for producing pentabromothiophenol
KR100512332B1 (en) A chelating resin containing sulphonic acid groups used in the adsorption of heavy metal ions
JP2017114985A (en) Process for producing modified halogenated polyolefin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240617

R150 Certificate of patent or registration of utility model

Ref document number: 7516960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150