JP7647638B2 - Method for calculating ferrite transformation temperature of steel plate, cooling control method, and manufacturing method - Google Patents
Method for calculating ferrite transformation temperature of steel plate, cooling control method, and manufacturing method Download PDFInfo
- Publication number
- JP7647638B2 JP7647638B2 JP2022039938A JP2022039938A JP7647638B2 JP 7647638 B2 JP7647638 B2 JP 7647638B2 JP 2022039938 A JP2022039938 A JP 2022039938A JP 2022039938 A JP2022039938 A JP 2022039938A JP 7647638 B2 JP7647638 B2 JP 7647638B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- cooling
- steel plate
- ferrite transformation
- transformation temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Control Of Heat Treatment Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
本発明は、鋼板のフェライト変態温度の算出方法、冷却制御方法、及び製造方法に関する。 The present invention relates to a method for calculating the ferrite transformation temperature of a steel plate, a cooling control method, and a manufacturing method.
熱延鋼板の製造工程では、まず、加熱炉によってスラブを所定温度まで加熱し、加熱したスラブを粗圧延機で圧延することにより、粗バーを製造する。次に、複数基の圧延スタンドからなる仕上圧延機によって粗バーを所定の厚みまで圧延することにより、熱延鋼板(以下、単に「鋼板」という)を製造する。そして最後に、ランアウトテーブルに設置された冷却装置によって鋼板の上面及び下面に冷却水を噴射して鋼板を冷却した後、鋼板を巻取機によって巻き取る。巻取機で巻き取る前の鋼板の温度は巻取温度と呼ばれる。この巻取温度は、鋼板の材料特性に大きな影響を与えるため、鋼板の品質管理の重要な指標となる。巻取温度は、鋼板の搬送速度に応じて冷却水の噴射量を制御することによって制御できるが、鋼板の表面温度の変化に伴う冷却能力の変化や鋼板の変態に伴う熱量の変化等によって特定の材料においては巻取温度の制御が非常に困難になる。 In the manufacturing process of hot-rolled steel sheets, first, a slab is heated to a predetermined temperature in a heating furnace, and the heated slab is rolled in a rough rolling mill to produce a rough bar. Next, the rough bar is rolled to a predetermined thickness in a finishing rolling mill consisting of multiple rolling stands to produce a hot-rolled steel sheet (hereinafter simply referred to as "steel sheet"). Finally, the steel sheet is cooled by spraying cooling water on the upper and lower surfaces of the steel sheet using a cooling device installed on the run-out table, and then the steel sheet is wound up by a winder. The temperature of the steel sheet before being wound up by the winder is called the winding temperature. This winding temperature has a significant effect on the material properties of the steel sheet, and is therefore an important index for quality control of the steel sheet. The winding temperature can be controlled by controlling the amount of cooling water sprayed according to the conveying speed of the steel sheet, but it becomes very difficult to control the winding temperature for certain materials due to changes in cooling capacity caused by changes in the surface temperature of the steel sheet and changes in heat quantity caused by transformation of the steel sheet.
近年の鋼板の冷却制御工程では、冷却目標温度範囲がより厳格化され、高張力鋼板といった変態発熱によって冷却制御が難しい鋼板が増えている。このため、冷却制御に用いられる鋼板の温度予測モデル式の高精度化が益々求められており、鋼板の冷却条件に応じて巻取温度が目標温度範囲内になるように、冷却能力を何らかの関数によって与えたり、補正係数を与えたりして、巻取温度の制御を実施している。例えば特許文献1には、冷却水の温度、鋼板の温度、及び冷却水の水量密度を関数とした冷却能力を表す式を作成し、さらに学習制御という補正係数を乗じることにより、巻取温度の制御を行う技術が記載されている。
In recent steel sheet cooling control processes, the cooling target temperature range has become stricter, and there is an increase in steel sheets, such as high-tensile steel sheets, for which cooling control is difficult due to transformation heat generation. For this reason, there is an increasing demand for more accurate steel sheet temperature prediction model equations used in cooling control, and the coiling temperature is controlled by giving the cooling capacity using some kind of function or a correction coefficient so that the coiling temperature falls within the target temperature range depending on the cooling conditions of the steel sheet. For example,
しかしながら、特許文献1に記載の技術は、変態発熱による鋼板の比熱変化を温度予測モデル式に反映させていない。そこで、本発明の発明者らは、フェライト変態温度からパーライト変態及び磁気変態による比熱変化量を算出し、算出された比熱変化量をオーステナイト比熱に加算することにより、変態発熱による鋼板の比熱変化を温度予測モデル式に反映させる方法(特願2021-144784号)を提案している。ところが、本方法では、設備の経年劣化等といった外的要因が考慮されていない。また、ランアウトテーブルには冷却途中の鋼板の温度を測定する温度計が設置されていることが多いが、冷却途中の鋼板の温度を考慮した比熱算出がなされていない。このため、鋼板の変態発熱量の支配的なパラメータであるフェライト変態温度を、外的要因や冷却途中の鋼板の温度を考慮して精度よく算出可能な技術の提供が求められていた。
However, the technology described in
本発明は、上記課題を解決すべくなされたものであり、その目的は、外的要因や冷却途中の鋼板の温度を考慮して精度よくフェライト変態温度を算出可能な鋼板のフェライト変態温度の算出方法を提供することにある。また、本発明の他の目的は、冷却完了時の鋼板の温度を冷却目標温度に精度よく制御可能な鋼板の冷却制御方法を提供することにある。また、本発明の他の目的は、所望の特性を有する鋼板を歩留まりよく製造可能な鋼板の製造方法を提供することにある。 The present invention has been made to solve the above problems, and its object is to provide a method for calculating the ferrite transformation temperature of a steel plate, which can accurately calculate the ferrite transformation temperature by taking into account external factors and the temperature of the steel plate during cooling. Another object of the present invention is to provide a method for controlling the cooling of a steel plate, which can accurately control the temperature of the steel plate at the completion of cooling to a target cooling temperature. Another object of the present invention is to provide a method for manufacturing a steel plate, which can produce a steel plate having desired properties with a high yield.
本発明に係る鋼板のフェライト変態温度の算出方法は、冷却水の噴射による鋼板の冷却処理に関する実績データを用いて、鋼板の表面の熱伝達係数に掛かる補正係数及びフェライト変態温度から計算される比熱を変数として含む温度予測モデル式を計算することにより、冷却水の噴射による冷却時における鋼板の温度変化を推定する推定ステップと、前記温度予測モデル式を用いて、前記推定ステップにおいて推定された鋼板の冷却終了温度が該冷却終了温度の実績値と一致する前記補正係数を逆算する逆算ステップと、前記推定ステップにおいて推定された鋼板の一つ以上の冷却途中温度と該冷却途中温度の実績値との差が小さくなるように前記フェライト変態温度を修正する修正ステップと、を含むことを特徴とする。 The method for calculating the ferrite transformation temperature of a steel plate according to the present invention is characterized by including an estimation step of estimating the temperature change of the steel plate during cooling by injecting cooling water by calculating a temperature prediction model equation including, as variables, a correction coefficient multiplied by the heat transfer coefficient of the surface of the steel plate and a specific heat calculated from the ferrite transformation temperature, using actual data on the cooling treatment of the steel plate by injecting cooling water; a back-calculation step of back-calculating, using the temperature prediction model equation, the correction coefficient by which the end-of-cooling temperature of the steel plate estimated in the estimation step coincides with the actual value of the end-of-cooling temperature; and a correction step of correcting the ferrite transformation temperature so that the difference between one or more mid-cooling temperatures of the steel plate estimated in the estimation step and the actual value of the mid-cooling temperature is reduced.
本発明に係る鋼板のフェライト変態温度の算出方法は、上記発明において、同鋼種の複数の鋼板のそれぞれから得られたフェライト変態温度の平均値を基準フェライト変態温度として鋼板の鋼種毎に求めるステップを含むことを特徴とする。 The method for calculating the ferrite transformation temperature of a steel plate according to the present invention is characterized in that it includes a step of determining the average value of the ferrite transformation temperatures obtained from each of a plurality of steel plates of the same steel type as the reference ferrite transformation temperature for each steel type of the steel plate.
本発明に係る鋼板の冷却制御方法は、本発明に係る鋼板のフェライト変態温度の算出方法によって求められた基準フェライト変態温度を用いて前記温度予測モデル式を計算することにより冷却水の噴射による冷却時における鋼板の温度変化を推定し、推定された鋼板の温度変化に基づいて冷却後の鋼板の温度が所定の温度になるように前記冷却水の噴射量を制御するステップを含むことを特徴とする。 The cooling control method for steel plate according to the present invention is characterized by including a step of estimating the temperature change of the steel plate during cooling by spraying cooling water by calculating the temperature prediction model formula using the reference ferrite transformation temperature obtained by the calculation method for the ferrite transformation temperature of steel plate according to the present invention, and controlling the amount of spraying of the cooling water based on the estimated temperature change of the steel plate so that the temperature of the steel plate after cooling becomes a predetermined temperature.
本発明に係る鋼板の製造方法は、本発明に係る鋼板の冷却制御方法を用いて鋼板を冷却して鋼板を製造するステップを含むことを特徴とする。 The method for manufacturing a steel plate according to the present invention is characterized by including a step of manufacturing the steel plate by cooling the steel plate using the cooling control method for the steel plate according to the present invention.
本発明に係る鋼板のフェライト変態温度の算出方法によれば、外的要因や冷却途中の鋼板の温度を考慮して精度よくフェライト変態温度を算出することができる。従って、本発明に係る鋼板の冷却制御方法によれば、冷却完了時の鋼板の温度を冷却目標温度に精度よく制御することができる。また、これにより、本発明に係る鋼板の製造方法によれば、所望の特性を有する鋼板を歩留まりよく製造することができる。 According to the method for calculating the ferrite transformation temperature of a steel plate of the present invention, the ferrite transformation temperature can be calculated with high accuracy by taking into account external factors and the temperature of the steel plate during cooling. Therefore, according to the method for controlling cooling of a steel plate of the present invention, the temperature of the steel plate at the completion of cooling can be controlled with high accuracy to the cooling target temperature. As a result, according to the method for manufacturing a steel plate of the present invention, a steel plate having the desired characteristics can be manufactured with a high yield.
以下、図面を参照して、本発明の一実施形態である鋼板のフェライト変態温度の算出方法、冷却制御方法、及び製造方法について説明する。 Below, we will explain the method for calculating the ferrite transformation temperature of a steel plate, the cooling control method, and the manufacturing method, which are one embodiment of the present invention, with reference to the drawings.
〔冷却設備の構成〕
まず、図1を参照して、本発明の一実施形態である熱延ラインにおける冷却設備の構成について説明する。
[Configuration of cooling equipment]
First, with reference to FIG. 1, a configuration of a cooling facility in a hot rolling line according to an embodiment of the present invention will be described.
図1は、本発明の一実施形態である熱延ラインにおける冷却設備の構成を示す模式図である。図1に示すように、本発明の一実施形態である熱延ラインにおける冷却設備1は、ランアウトテーブル2を備えている。本実施形態では、ランアウトテーブル2の機長は130mあり、1個当たり6mの冷却ゾーン2aが13個配置されている。各冷却ゾーンは、仕上圧延機によって圧延された鋼板Sの上下面に冷却水を噴射することにより鋼板Sの温度を冷却目標温度に制御する。冷却設備1の入側位置、入側位置からランアウトテーブル2の機長の約1/3の位置、入側位置からランアウトテーブル2の機長の約2/3の位置、及び出側位置にはそれぞれ、鋼板Sの温度を測定するための温度計3a~3dが配置されている。また、冷却設備1は、鋼板Sの冷却制御を行うための計算機4を備えている。計算機4は、コンピュータ等の情報処理装置によって構成され、制御盤5を介して各冷却ゾーンから吐出される冷媒の流量を制御する。また、計算機4は、鋼板Sの冷却制御に関する実績値(温度計3a~3dの測定値、各冷却ゾーンから吐出された冷却水の流量の実績値、鋼板Sが各冷却ゾーンを通過した時間等)を収集できる。図中の符号6は巻取機を示す。
Figure 1 is a schematic diagram showing the configuration of the cooling equipment in a hot rolling line according to one embodiment of the present invention. As shown in Figure 1, the
このような構成を有する冷却設備1では、計算機4が以下に示すフェライト変態温度算出処理を実行することにより、外的要因や冷却途中の鋼板Sの温度を考慮して鋼板Sのフェライト変態温度を精度よく算出する。以下、図2を参照して、本発明の一実施形態であるフェライト変態温度算出処理を実行する際の計算機4の動作について説明する。なお、以下に示す計算機4の動作は、計算機4がコンピュータプログラムを実行することによって実現される。
In the
〔フェライト変態温度算出処理〕
図2は、本発明の一実施形態であるフェライト変態温度算出処理の流れを示すフローチャートである。図2に示すフローチャートは、計算機4に対して鋼板Sの冷却実績データ及びフェライト変態温度算出処理の実行指令が入力されたタイミングで開始となり、フェライト変態温度算出処理はステップS1の処理に進む。なお、鋼板Sの冷却実績データには、鋼板Sの成分や製造条件で層別された鋼板Sの鋼種毎の冷却開始温度、冷却途中温度、及び冷却終了温度の実績値に関する情報が含まれる。冷却途中温度の実績値は1枚の鋼板Sについて複数(例えば温度計3bの測定値と温度計3cの測定値等)あってもよい。
[Ferrite transformation temperature calculation process]
2 is a flowchart showing the flow of the ferrite transformation temperature calculation process according to an embodiment of the present invention. The flowchart shown in FIG. 2 starts when the cooling performance data of the steel sheet S and an execution command for the ferrite transformation temperature calculation process are input to the
ステップS1の処理では、計算機4が、フェライト変態温度Tfの初期値(例えば400℃)を設定する。これにより、ステップS1の処理は完了し、フェライト変態温度算出処理はステップS2の処理に進む。
In the process of step S1, the
ステップS2の処理では、計算機4が、ステップS1又はステップS7の処理において設定されたフェライト変態温度Tfと鋼板Sの冷却実績データに含まれる、少なくとも鋼板Sの冷却開始温度の実績値と鋼板が各冷却ゾーンを通過する際に各冷却ゾーンから吐出された冷却水の流量の実績値及び鋼板が各冷却ゾーンを通過した時間とを用いて、冷却設備1による鋼板Sの温度変化履歴を計算する。本実施形態では、計算機4は、鋼板Sの厚み方向の温度分布を考慮しない以下の数式(1)に示す温度予測モデル式を数値解法で解くことにより、例えば図3に示すような鋼板Sの温度変化履歴を計算する。一般に、オンライン計算機(プロセスコンピュータ)では数式(1)を鋼板Sの長手方向の複数位置(バンク長ピッチ等)で求解するが、数式(1)を数値積分することにより鋼板Sの温度降下量を導出できる。なお、図3において点P1は冷却開始温度の実績値、点P2は冷却終了温度の実績値、点P3は冷却途中温度の実績値、Lは鋼板Sの温度変化履歴の計算値を示す曲線である。図3に示すように、このステップS2の処理の段階では、鋼板Sの温度変化履歴の計算値を示す曲線Lは冷却開始温度の実績値P1においてのみ一致している。
In the process of step S2, the
ここで、数式(1)において、ρは鋼板Sの密度、cは鋼板Sの比熱、dは鋼板Sの板厚、Tは鋼板Sの温度、tは時間、hは水冷熱伝達係数、Twは冷媒の温度、αは補正係数を示す。 Here, in formula (1), ρ is the density of the steel sheet S, c is the specific heat of the steel sheet S, d is the plate thickness of the steel sheet S, T is the temperature of the steel sheet S, t is time, h is the water-cooling heat transfer coefficient , Tw is the temperature of the coolant, and α is a correction coefficient.
鋼板Sの比熱cは、変態潜熱を含み、本発明の発明者らが提案した方法(特願2021-144784号)を用いてフェライト変態温度Tfから導出できる。変態発熱に支配的なフェライト変態温度Tfが決定されると、パーライト比熱及び磁気変態比熱も一意に決定できる。すなわち、鋼板の比熱C(T)は以下に示す数式(2)で表される。但し、本発明は本比熱モデルだけに限定されることはなく、フェライト変態温度をパラメータとして含む他の比熱算出モデルにも適用できる。 The specific heat c of the steel sheet S includes transformation latent heat and can be derived from the ferrite transformation temperature T f using the method proposed by the inventors of the present invention (Japanese Patent Application No. 2021-144784). When the ferrite transformation temperature T f that is dominant in the transformation heat generation is determined, the pearlite specific heat and the magnetic transformation specific heat can also be uniquely determined. That is, the specific heat C (T) of the steel sheet is expressed by the following formula (2). However, the present invention is not limited to this specific heat model, and can also be applied to other specific heat calculation models that include the ferrite transformation temperature as a parameter.
ここで、数式(2)において、Co(T)はオーステナイト比熱、Cm(T)は磁気変態による比熱、Cf(T)はフェライト変態による比熱、Cp(T)はパーライト変態による比熱を示す。 In formula (2), C o (T) is the austenite specific heat, C m (T) is the specific heat due to magnetic transformation, C f (T) is the specific heat due to ferrite transformation, and C p (T) is the specific heat due to pearlite transformation.
また、オーステナイト比熱Co(T)は以下に示す数式(3)で表される。 The austenite specific heat C o (T) is expressed by the following formula (3).
また、磁気変態による比熱Cm(T)は以下に示す数式(4),(5)で表される。数式(4),(5)において、Tmは、磁気変態温度を示し、フェライト変態温度Tfが770℃以上である時は770℃、フェライト変態温度Tfが770℃未満である時はフェライト変態温度Tfと同じとする。 The specific heat Cm (T) due to magnetic transformation is expressed by the following formulas (4) and (5): In formulas (4) and (5), Tm indicates the magnetic transformation temperature, and is set to 770°C when the ferrite transformation temperature Tf is 770°C or higher, and is set to the same as the ferrite transformation temperature Tf when the ferrite transformation temperature Tf is less than 770°C.
また、フェライト変態による比熱Cf(T)は以下に示す数式(6)で表される。また、数式(6)において、fは、フェライト分率を示し、鋼板Sの炭素濃度C(%)を用いて以下に示す数式(7)で表される。 The specific heat C f (T) due to ferrite transformation is expressed by the following formula (6): In formula (6), f indicates the ferrite fraction, and is expressed by the following formula (7) using the carbon concentration C (%) of the steel sheet S.
また、パーライト変態による比熱Cp(T)は、パーライト変態温度Tpを用いて以下に示す数式(8)で表される。なお、パーライト変態はフェライト変態温度Tfの高い低炭素鋼においては一定の温度で生じ、炭素量が多いものはフェライト変態温度Tfが下がるにつれてパーライト変態温度Tpも下がることが実験で分かっている。このため、パーライト変態温度Tpは、磁気変態温度と同等の特性を示しているので、以下に示す数式(9)のように定められる。 The specific heat Cp (T) due to pearlite transformation is expressed by the following formula (8) using the pearlite transformation temperature Tp . It has been experimentally found that pearlite transformation occurs at a constant temperature in low carbon steel with a high ferrite transformation temperature Tf , and that in steel with a high carbon content, the pearlite transformation temperature Tp also decreases as the ferrite transformation temperature Tf decreases. For this reason, the pearlite transformation temperature Tp shows the same characteristics as the magnetic transformation temperature, and is determined by the following formula (9).
これにより、ステップS2の処理は完了し、フェライト変態温度算出処理はステップS3の処理に進む。 This completes step S2, and the ferrite transformation temperature calculation process proceeds to step S3.
ステップS3の処理では、計算機4が、図4に示すようにステップS3の処理において計算された冷却終了温度が冷却終了温度の実績値P2と一致するように、温度予測モデル式内の補正係数αを逆算する。ここで、補正係数αは、水冷熱伝達係数hに掛かる係数であり、物理現象をモデル化する際の誤差や装置の経年劣化やバルブが詰まっている等の外的要因を補正するためのパラメータである。補正係数αを変更することにより、図5(a),(b)に示すように、冷却開始温度を起点とした鋼板Sの温度変化履歴を変化させることができる。これは、冷却水による鋼板Sの表面からの抜熱を任意の値に変えることができることを意味する。
In the process of step S3, the
しかしながら、補正係数αを変更することにより冷却開始温度を起点として冷却終了温度を任意に合わせこむことができるものの、冷却途中温度を合わせこもうとすれば冷却終了温度も変わってしまうため、冷却終了温度を一致させたままで冷却途中温度を合わせこむことができない。冷却途中温度は、図6に示すように、変態温度によって求めた変態発熱による比熱のピークの位置を補正係数αと合わせて変更することにより、冷却終了温度が合った状態で目標値に近づくように変更できる。そこで、本実施形態では、冷却途中温度及び冷却終了温度の実績値と計算値との誤差が最小になるように補正係数αとフェライト変態温度Tfの2変数の最適化問題を解く。これにより、ステップS3の処理は完了し、フェライト変態温度算出処理はステップS4の処理に進む。 However, although the cooling end temperature can be arbitrarily matched with the cooling start temperature as the starting point by changing the correction coefficient α, if the cooling midway temperature is to be matched, the cooling end temperature also changes, so that the cooling midway temperature cannot be matched while keeping the cooling end temperature consistent. As shown in FIG. 6, the cooling midway temperature can be changed so that the cooling end temperature approaches the target value by changing the position of the peak of the specific heat due to the transformation heat calculated by the transformation temperature together with the correction coefficient α so that the cooling end temperature is matched. Therefore, in this embodiment, an optimization problem of two variables, the correction coefficient α and the ferrite transformation temperature Tf, is solved so that the error between the actual value and the calculated value of the cooling midway temperature and the cooling end temperature is minimized. This completes the process of step S3, and the ferrite transformation temperature calculation process proceeds to the process of step S4.
ステップS4の処理では、計算機4が、ステップS3の処理において計算された冷却途中温度と冷却途中温度の実績値P3の誤差(温度誤差)を算出する。なお、冷却途中温度の実績値P3が複数ある場合には、計算機4が、各実績値から算出された温度誤差の総和を算出する。これにより、ステップS4の処理は完了し、フェライト変態温度算出処理はステップS5の処理に進む。
In step S4, the
ステップS5の処理では、計算機4が、ステップS4の処理において算出された温度誤差に関する情報をフェライト変態温度Tfの情報と関連付けして実績データベースに格納する。これにより、ステップS5の処理は完了し、フェライト変態温度算出処理はステップS6の処理に進む。
In the process of step S5, the
ステップS6の処理では、計算機4が、ステップS2の処理において用いたフェライト変態温度Tfが最大値Tfmax(例えば1000℃)あるか否かを判別する。判別の結果、フェライト変態温度Tfが最大値Tfmaxである場合(ステップS6:Yes)、計算機4はフェライト変態温度算出処理をステップS8の処理に進める。一方、フェライト変態温度Tfが最大値Tfmaxでない場合には(ステップS6:No)、計算機4はフェライト変態温度算出処理をステップS7の処理に進める。
In the process of step S6,
ステップS7の処理では、計算機4が、ステップS2の処理において用いるフェライト変態温度Tfを1℃増加させる。フェライト変態が起こる温度範囲は400℃から1000℃の範囲に限定されており、圧延後の鋼板Sを冷却する温度帯域もこの範囲内に収まっている。また、フェライト変態温度Tfの計算精度は1℃刻みでも十分である。このため、本実施形態では、フェライト変態温度Tfを400℃から1000℃まで1℃刻みで総当たりで変化させて温度誤差の最小値を探索する。なお、本実施形態では総当たり法を用いたが、最小値ではない極小値にはまらないように注意すれば、計算量削減やフェライト変態温度の刻み幅向上(計算精度向上)のために初期値を乱択して最急降下法によって求める方法等の他の方法によって温度誤差の最小値を探索してもよい。これにより、ステップS7の処理は完了し、フェライト変態温度算出処理はステップS2の処理に戻る。
In the process of step S7, the
ステップS8の処理では、計算機4が、実績データベースからステップS4の処理において算出された温度誤差が最小であるフェライト変態温度Tfの情報を読み出し、読み出されたフェライト変態温度Tfを記憶する。これにより、ステップS8の処理は完了し、フェライト変態温度算出処理はステップS9の処理に進む。
In the process of step S8, the
ステップS9の処理では、計算機4が、同じ鋼種の鋼板Sに関する全ての冷却実績データを用いて処理が終了したか否かを判別する。判別の結果、全ての冷却実績データを用いて処理が終了した場合(ステップS9:Yes)、計算機4はフェライト変態温度算出処理をステップS10の処理に進める。一方、全ての冷却実績データを用いて処理が終了してない場合には(ステップS9:No)、計算機4はフェライト変態温度算出処理をステップS1の処理に戻す。
In the process of step S9, the
ステップS10の処理では、計算機4が、ステップS8の処理において記憶されたフェライト変態温度Tfの平均値を算出し、算出されたフェライト変態温度Tfの平均値を処理対象の鋼種の鋼板Sのフェライト変態温度Tfの代表値(基準フェライト変態温度)とする。これにより、ステップS10の処理は完了し、一連のフェライト変態温度算出処理は終了する。
In the process of step S10, the
以上の説明から明らかなように、本発明の一実施形態であるフェライト変態温度算出処理では、計算機4が、冷却水の噴射による冷却時における鋼板の冷却開始温度の実績値を用いて、補正係数α及びフェライト変態温度Tfから計算される変態発熱量を変数として含む温度予測モデル式を計算することにより、冷却水の噴射による冷却時における鋼板の温度変化を推定し、温度予測モデル式を用いて、推定された鋼板の冷却終了温度が冷却終了温度の実績値と一致する補正係数αを逆算し、推定された鋼板の冷却途中温度と冷却途中温度の実績値との差が小さくなるようにフェライト変態温度Tfを修正するので、外的要因や冷却途中の鋼板の温度を考慮して精度よくフェライト変態温度を算出できる。
As is clear from the above description, in the ferrite transformation temperature calculation process according to one embodiment of the present invention, the
また、本発明の一実施形態であるフェライト変態温度算出処理により求められた基準フェライト変態温度を用いて温度予測モデル式を計算することにより冷却水の噴射による冷却時における鋼板の温度変化を推定し、推定された鋼板の温度変化に基づいて冷却後の鋼板の温度が所定の温度になるように冷却水の噴射量を制御することにより、冷却完了時の鋼板の温度を冷却目標温度に精度よく制御することができる。さらに、この鋼板の冷却制御方法を用いて鋼板を冷却して鋼板を製造することにより、所望の特性を有する鋼板を歩留まりよく製造することができる。 In addition, by calculating a temperature prediction model equation using the reference ferrite transformation temperature obtained by the ferrite transformation temperature calculation process, which is one embodiment of the present invention, the temperature change of the steel plate during cooling by spraying cooling water is estimated, and the amount of sprayed cooling water is controlled so that the temperature of the steel plate after cooling becomes a predetermined temperature based on the estimated temperature change of the steel plate, thereby enabling the temperature of the steel plate at the completion of cooling to be precisely controlled to the cooling target temperature. Furthermore, by manufacturing steel plate by cooling the steel plate using this steel plate cooling control method, steel plate having the desired characteristics can be manufactured with a good yield.
〔変形例〕
上記実施形態では、過去にある程度の数の圧延をした鋼種の鋼板Sに関するフェライト変態温度Tfしか求められないため、オンライン時に圧延実績のない鋼種の鋼板Sが圧延された場合、適切な比熱を用いた冷却制御ができない。ここで、本発明の発明者らは、冷却実績データを採取できた全ての鋼種に対して上記実施形態の手法を適用してフェライト変態温度Tfを算出したところ、鋼種の炭素当量とフェライト変態温度Tfとの間に相関関係があることを知見した。なお、炭素当量Ceqは以下に示す数式(10)を用いて算出した。数式(10)中の各元素記号の変数は、鋼種に含まれている該当元素の配合比率(%)を示す。
[Modifications]
In the above embodiment, only the ferrite transformation temperature Tf for the steel sheet S of a steel type that has been rolled a certain number of times in the past can be obtained, so when a steel sheet S of a steel type that has not been rolled in the past is rolled online, cooling control using an appropriate specific heat cannot be performed. Here, the inventors of the present invention calculated the ferrite transformation temperature Tf by applying the method of the above embodiment to all steel types for which cooling performance data could be collected, and found that there is a correlation between the carbon equivalent of the steel type and the ferrite transformation temperature Tf . The carbon equivalent Ceq was calculated using the following formula (10). The variables of the element symbols in formula (10) indicate the blending ratio (%) of the corresponding element contained in the steel type.
これにより、鋼種毎の平均炭素当量を横軸、鋼種毎の平均フェライト変態温度を縦軸に取ったグラフから平均炭素当量と平均フェライト変態温度との関係を示す近似曲線Tf=f(Ceq)が求められる。従って、その近似曲線の計算式を制御装置にプログラムしておき、フェライト変態温度データベースにない鋼種が来た時には、鋼種の成分から炭素当量を計算し、近似曲線の計算式からフェライト変態温度を算出して冷却制御に使用するとよい。そして、鋼種毎のフェライト変態温度を導出するのに十分な冷却実績データを収集できれば、上記実施形態に基づいて鋼種毎のフェライト変態温度をデータベースに格納して制御する方法に移行する。 In this way, an approximation curve Tf = f(Ceq) showing the relationship between the average carbon equivalent and the average ferrite transformation temperature can be obtained from a graph with the average carbon equivalent for each steel type on the horizontal axis and the average ferrite transformation temperature for each steel type on the vertical axis . Therefore, the calculation formula for the approximation curve is programmed into the control device, and when a steel type not in the ferrite transformation temperature database is encountered, the carbon equivalent is calculated from the components of the steel type, and the ferrite transformation temperature is calculated from the calculation formula for the approximation curve and used for cooling control. Then, if sufficient cooling performance data can be collected to derive the ferrite transformation temperature for each steel type, the method proceeds to storing the ferrite transformation temperature for each steel type in a database and controlling it based on the above embodiment.
本実施例では、合金成分や圧延条件等で分類した高張力鋼の特定鋼種について本発明の効果を検証した。特定鋼種は変態発熱量が大きく冷却制御が難しいとされている鋼種である。対象鋼種の冷却実績のデータ(データ数N=675)を収集し、鋼板1枚1枚に対して、400℃から1000℃まで総当たりでフェライト変態温度Tfを変化させ、補正係数αを逆算する手法で、2つの冷却途中温度の実績値と計算値の誤差のRMSE(平均平方二乗誤差)が最小となったときのフェライト変態温度Tfを計算した。ある1枚の鋼板についてのフェライト変態温度Tfの計算結果を図7に示す。図7に示す例では、温度計データが異常となっていたもの等、信頼性の低いデータを取り除き、求めたフェライト変態温度Tfの平均値を算出すると615℃となった。これを対象鋼種の基準フェライト変態温度とした。 In this embodiment, the effect of the present invention was verified for a specific steel type of high tensile steel classified by alloy components, rolling conditions, etc. The specific steel type is a steel type that is considered to have a large transformation heat generation amount and difficult to control cooling. The cooling performance data (number of data N=675) of the target steel type was collected, and the ferrite transformation temperature T f was changed from 400°C to 1000°C for each steel plate in a round-robin manner, and the correction coefficient α was calculated by a method of back-calculating the correction coefficient α, and the ferrite transformation temperature T f was calculated when the RMSE (root mean square error) of the error between the actual value and the calculated value of the two cooling intermediate temperatures was minimized. The calculation result of the ferrite transformation temperature T f for a certain steel plate is shown in FIG. 7. In the example shown in FIG. 7, the average value of the obtained ferrite transformation temperatures T f was calculated by removing low-reliability data such as data with abnormal thermometer data, and was 615°C. This was set as the reference ferrite transformation temperature for the target steel type.
フェライト変態温度の計算を行った鋼板位置は先端から180mとした。この位置は、仕上圧延機とコイルによって鋼板に張力がかかり、鋼板の蛇行や鋼板上部の残留水の影響が極力少なく、またフィードバック制御が十分に機能していない領域であり、温度計算の誤差の大きさが冷却制御に効きやすい位置である。そして、フェライト変態温度Tfから求まった比熱を用いて、対象鋼種の実際の冷却工程のシミュレーション計算を行った。シミュレーション計算結果は以下の表1に示すようになり、従来例よりも計算精度が向上することが確認できた。具体的には、冷却途中温度(中間温度1)については、RMSEが25.9℃から20.8℃に向上(19.6%向上)した。また、冷却途中温度(中間温度2)については、RMSEが36.7℃から21.5℃に向上(41.4%向上)した。また、冷却出側温度については、RMSEが26.5℃から17.5℃に向上(33.9%向上)した。 The position of the steel plate where the ferrite transformation temperature was calculated was 180 m from the tip. This position is an area where tension is applied to the steel plate by the finishing rolling mill and the coil, the influence of meandering of the steel plate and residual water at the top of the steel plate is minimal, and feedback control does not function sufficiently, so that the magnitude of the error in the temperature calculation is likely to affect the cooling control. Then, a simulation calculation of the actual cooling process of the target steel type was performed using the specific heat obtained from the ferrite transformation temperature Tf. The simulation calculation results are shown in Table 1 below, and it was confirmed that the calculation accuracy was improved compared to the conventional example. Specifically, for the intermediate cooling temperature (intermediate temperature 1), the RMSE improved from 25.9°C to 20.8°C (19.6% improvement). Also, for the intermediate cooling temperature (intermediate temperature 2), the RMSE improved from 36.7°C to 21.5°C (41.4% improvement). Also, for the cooling outlet temperature, the RMSE improved from 26.5°C to 17.5°C (33.9% improvement).
以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明が限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 The above describes an embodiment of the invention made by the inventors, but the present invention is not limited to the descriptions and drawings that form part of the disclosure of the present invention according to this embodiment. In other words, other embodiments, examples, and operational techniques made by those skilled in the art based on this embodiment are all included in the scope of the present invention.
1 冷却設備
2 ランアウトテーブル
2a 冷却ゾーン
3a~3d 温度計
4 計算機
5 制御盤
6 巻取機
S 鋼板
1
Claims (4)
前記温度予測モデル式を用いて、前記推定ステップにおいて推定された鋼板の冷却終了温度が該冷却終了温度の実績値と一致する前記補正係数を逆算する逆算ステップと、
前記推定ステップにおいて推定された鋼板の一つ以上の冷却途中温度と該冷却途中温度の実績値との差が小さくなるように前記フェライト変態温度を修正する修正ステップと、
を含むことを特徴とする鋼板のフェライト変態温度の算出方法。 an estimation step of estimating a temperature change of the steel plate during cooling by spraying cooling water by calculating a temperature prediction model formula including, as variables, a correction coefficient multiplied by the heat transfer coefficient of the surface of the steel plate and a specific heat calculated from the ferrite transformation temperature, using at least a result value of the cooling start temperature of the steel plate, a result value of the flow rate of cooling water discharged from each cooling zone when the steel plate passes through each cooling zone , and a time taken for the steel plate to pass through each cooling zone, which are included in result data related to the cooling treatment of the steel plate by spraying cooling water;
a back-calculation step of back-calculating the correction coefficient by using the temperature prediction model formula so that the cooling end temperature of the steel plate estimated in the estimation step coincides with an actual value of the cooling end temperature;
a correction step of correcting the ferrite transformation temperature so that a difference between one or more intermediate cooling temperatures of the steel plate estimated in the estimation step and an actual value of the intermediate cooling temperature becomes small;
A method for calculating the ferrite transformation temperature of a steel plate, comprising:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022039938A JP7647638B2 (en) | 2022-03-15 | 2022-03-15 | Method for calculating ferrite transformation temperature of steel plate, cooling control method, and manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022039938A JP7647638B2 (en) | 2022-03-15 | 2022-03-15 | Method for calculating ferrite transformation temperature of steel plate, cooling control method, and manufacturing method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2023134968A JP2023134968A (en) | 2023-09-28 |
| JP7647638B2 true JP7647638B2 (en) | 2025-03-18 |
Family
ID=88144475
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2022039938A Active JP7647638B2 (en) | 2022-03-15 | 2022-03-15 | Method for calculating ferrite transformation temperature of steel plate, cooling control method, and manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7647638B2 (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005297015A (en) | 2004-04-13 | 2005-10-27 | Toshiba Mitsubishi-Electric Industrial System Corp | Winding temperature controller |
| JP2011212743A (en) | 2010-04-02 | 2011-10-27 | Kobe Steel Ltd | Temperature prediction method for steel plate taking transformation heat into account |
| JP2012011448A (en) | 2010-07-05 | 2012-01-19 | Kobe Steel Ltd | Cooling control method of rolled material, and continuous rolling mill to which the cooling control method is applied |
| JP2013000766A (en) | 2011-06-15 | 2013-01-07 | Kobe Steel Ltd | Calculation method of transformation rate in cooled or heated steel plate, and control method of transformation rate of steel plate |
| JP2023037940A (en) | 2021-09-06 | 2023-03-16 | Jfeスチール株式会社 | Steel plate control cooling method, control cooling device, and manufacturing device |
-
2022
- 2022-03-15 JP JP2022039938A patent/JP7647638B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005297015A (en) | 2004-04-13 | 2005-10-27 | Toshiba Mitsubishi-Electric Industrial System Corp | Winding temperature controller |
| JP2011212743A (en) | 2010-04-02 | 2011-10-27 | Kobe Steel Ltd | Temperature prediction method for steel plate taking transformation heat into account |
| JP2012011448A (en) | 2010-07-05 | 2012-01-19 | Kobe Steel Ltd | Cooling control method of rolled material, and continuous rolling mill to which the cooling control method is applied |
| JP2013000766A (en) | 2011-06-15 | 2013-01-07 | Kobe Steel Ltd | Calculation method of transformation rate in cooled or heated steel plate, and control method of transformation rate of steel plate |
| JP2023037940A (en) | 2021-09-06 | 2023-03-16 | Jfeスチール株式会社 | Steel plate control cooling method, control cooling device, and manufacturing device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2023134968A (en) | 2023-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101791633B (en) | Device and method for controlling coiling temperature | |
| WO2009011070A1 (en) | Method of cooling control, cooling control unit and cooling water quantity computing unit | |
| JP5679914B2 (en) | Steel temperature prediction method | |
| KR101516476B1 (en) | Apparatus for calculating set value, method of calculating set value, and program recording medium for calculating set value | |
| KR100568358B1 (en) | Cooling control method of hot rolled steel sheet by changing winding target temperature | |
| JP7180796B2 (en) | Physical model identification system | |
| JP2007044715A (en) | Cooling control model learning method, and rolled material cooling method | |
| JP7135962B2 (en) | Steel plate finishing delivery side temperature control method, steel plate finishing delivery side temperature control device, and steel plate manufacturing method | |
| JP2005516297A (en) | How to adjust industrial processes | |
| JP6558060B2 (en) | Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device | |
| JP2012011448A (en) | Cooling control method of rolled material, and continuous rolling mill to which the cooling control method is applied | |
| KR100306147B1 (en) | Cooling Control Method of Hot Rolled Steel Sheet | |
| JP7647638B2 (en) | Method for calculating ferrite transformation temperature of steel plate, cooling control method, and manufacturing method | |
| JP7205517B2 (en) | Rolled material cooling control method and cooling control device | |
| KR101119006B1 (en) | Method for controlling coiling temperature of milling slab | |
| JP7705029B2 (en) | Steel temperature prediction device, cooling control device, method and program | |
| KR102045652B1 (en) | Determination apparatus for heat flux coefficient of run-out table based artificial intelligence | |
| KR100931222B1 (en) | Cooling Control Method of High Carbon Hot Rolled Sheets Considering Phase Transformation and Edge Crack Prevention | |
| JP4696775B2 (en) | Plate width control method and apparatus | |
| JP4931501B2 (en) | Cooling control method for high carbon steel hot-rolled steel sheet | |
| JP4256558B2 (en) | Steel plate shape determination apparatus, method, and computer-readable storage medium | |
| JP6822390B2 (en) | Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets | |
| JP7494867B2 (en) | Method for generating a temperature prediction model for hot-rolled sheet and a transformation enthalpy prediction model for hot-rolled sheet, a coiling temperature prediction method for hot-rolled sheet, a temperature control method, and a manufacturing method | |
| KR101050792B1 (en) | Cooling Control Method Using Dynamic Reset | |
| JP5585033B2 (en) | Plate temperature control system, method and program in continuous heat treatment furnace |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231024 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241022 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241213 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250204 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250217 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7647638 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |