[go: up one dir, main page]

JP7652416B2 - Vacuum double piping and fluid equipment connection structure - Google Patents

Vacuum double piping and fluid equipment connection structure Download PDF

Info

Publication number
JP7652416B2
JP7652416B2 JP2021080164A JP2021080164A JP7652416B2 JP 7652416 B2 JP7652416 B2 JP 7652416B2 JP 2021080164 A JP2021080164 A JP 2021080164A JP 2021080164 A JP2021080164 A JP 2021080164A JP 7652416 B2 JP7652416 B2 JP 7652416B2
Authority
JP
Japan
Prior art keywords
pipe
vacuum
vacuum double
fluid device
outer pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021080164A
Other languages
Japanese (ja)
Other versions
JP2022174398A (en
Inventor
裕介 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2021080164A priority Critical patent/JP7652416B2/en
Publication of JP2022174398A publication Critical patent/JP2022174398A/en
Priority to JP2025035983A priority patent/JP2025078804A/en
Application granted granted Critical
Publication of JP7652416B2 publication Critical patent/JP7652416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Thermal Insulation (AREA)

Description

本発明は、真空二重配管と流体機器との接続構造に関する。 The present invention relates to a connection structure between a vacuum double pipe and a fluid device.

液化水素などの低温流体を輸送するため、低温流体が通過する内管および内管を覆う外管の間に真空層を形成した真空二重配管が、従来から使用されている。真空二重配管には、バルブ等の流体機器を接続する場合があり、特許文献1には、このような真空二重配管により輸送される低温流体の流路を開閉する真空断熱形バルブが開示されている。 In order to transport low-temperature fluids such as liquefied hydrogen, vacuum double piping has been used in the past, in which a vacuum layer is formed between an inner pipe through which the low-temperature fluid passes and an outer pipe that covers the inner pipe. Fluid equipment such as valves may be connected to the vacuum double piping, and Patent Document 1 discloses a vacuum insulated valve that opens and closes the flow path of the low-temperature fluid transported by such vacuum double piping.

実開平4-62498号公報Japanese Utility Model Application Publication No. 4-62498

上記の特許文献1に開示された真空断熱形バルブは、真空二重配管との接続がねじの螺合によって行われており、メンテナンスの際には真空二重配管から取り外すことができる。 The vacuum insulated valve disclosed in the above-mentioned Patent Document 1 is connected to the vacuum double piping by screwing together screws, and can be removed from the vacuum double piping for maintenance.

ところが、これによって真空二重配管の真空層が大気に開放されるため、メンテンナンスの終了時に真空層をもとの真空状態に戻すのに時間がかかるという問題があった。 However, this caused the vacuum layer of the double vacuum pipe to be exposed to the atmosphere, which meant that it took a long time to return the vacuum layer to its original vacuum state when maintenance was completed.

そこで、本発明は、真空二重配管に接続された流体機器のメンテナンスを迅速容易に行うことができる真空二重配管と流体機器との接続構造の提供を目的とする。 The present invention aims to provide a connection structure between a vacuum double pipe and a fluid device that allows for quick and easy maintenance of the fluid device connected to the vacuum double pipe.

本発明の前記目的は、真空二重配管と流体機器との接続構造であって、前記真空二重配管は、低温流体が通過する内管と、前記内管を覆う外管とを備え、前記内管と前記外管との間に真空層が形成されており、前記真空層は、流路に沿って設けられた上流側隔壁部材および下流側隔壁部材の間に隔離部が形成され、開閉弁を有するバイパス流路によって、前記隔離部が前記真空層の前記隔離部以外の部分と連通可能とされており、前記隔離部において、前記内管に前記流体機器が設けられると共に前記外管の少なくとも一部が取り外し可能に構成されており、前記上流側隔壁部材および下流側隔壁部材は、前記真空二重配管の径方向および長手方向に伸縮可能となるように、それぞれ前記内管および前記外管の双方に支持されており、前記上流側隔壁部材および下流側隔壁部材の少なくとも一方は、前記内管および前記外管のそれぞれから長手方向に間隔をあけてリング状に突出する内管側取付部および外管側取付部と、前記内管側取付部および外管側取付部間に取り付けられたベローズ管とを備えており、前記ベローズ管の少なくとも一方端における開口縁部には、径方向に延びる複数の長孔が形成された取付リングが設けられている真空二重配管と流体機器との接続構造により達成される。
The object of the present invention is to provide a connection structure between a vacuum double pipe and a fluid device, the vacuum double pipe comprising an inner pipe through which a low-temperature fluid passes and an outer pipe covering the inner pipe, a vacuum layer being formed between the inner pipe and the outer pipe, the vacuum layer being formed with an isolation section between an upstream partition member and a downstream partition member provided along a flow path, the isolation section being capable of communicating with a portion of the vacuum layer other than the isolation section by a bypass flow path having an on-off valve, the fluid device being provided in the inner pipe in the isolation section, and at least a portion of the outer pipe being configured to be removable, and the upstream partition member and the downstream partition member being configured to be connected to each other by a bypass flow path having an on-off valve, The members are supported by both the inner tube and the outer tube so that they can expand and contract in the radial and longitudinal directions of the vacuum double piping, and at least one of the upstream partition member and the downstream partition member has an inner tube side mounting portion and an outer tube side mounting portion which protrude in a ring shape at a distance from each other in the longitudinal direction from the inner tube and the outer tube, respectively, and a bellows tube attached between the inner tube side mounting portion and the outer tube side mounting portion, and this is achieved by a connection structure between the vacuum double piping and fluid equipment, in which a mounting ring having a plurality of long holes extending radially is provided at the opening edge at at least one end of the bellows tube.

この真空二重配管と流体機器との接続構造において、前記外管は、前記隔離部における少なくとも一部が、半筒状に形成された一対の分割体を円筒状に組み合わせて構成されていることが好ましく、前記分割体を径方向に取り外すことができる。 In this connection structure between the vacuum double pipe and the fluid device, it is preferable that at least a portion of the isolation section of the outer pipe is constructed by combining a pair of semi-cylindrical divided bodies into a cylindrical shape, and the divided bodies can be removed in the radial direction.

前記流体機器はバルブとすることができ、前記流体機器の下流側において前記外管の少なくとも一部が取り外し可能とされていることが好ましい。 The fluid device may be a valve, and it is preferable that at least a portion of the outer tube is removable downstream of the fluid device.

本発明によれば、真空二重配管に接続された流体機器のメンテナンスを迅速容易に行うことができる真空二重配管と流体機器との接続構造を提供することができる。 The present invention provides a connection structure between a vacuum double pipe and a fluid device that allows for quick and easy maintenance of the fluid device connected to the vacuum double pipe.

本発明の一実施形態に係る真空二重配管と流体機器との接続構造を示す断面図である。1 is a cross-sectional view showing a connection structure between a vacuum double pipe and a fluid device according to an embodiment of the present invention. 図1に示す真空二重配管の要部を示す図であり、(a)が正面図、(b)が側面図である。2A and 2B are diagrams showing the main parts of the vacuum double pipe shown in FIG. 1, in which FIG. 図1に示す真空二重配管の一部を取り外した状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state in which a part of the vacuum double pipe shown in FIG. 1 is removed. 図1に示す真空二重配管の他の要部を示す断面図である。2 is a cross-sectional view showing another main part of the vacuum double piping shown in FIG. 1. 図4の要部正面図である。FIG. 5 is a front view of the main part of FIG. 4 . 図1に示す要部の変形例を示す図である。FIG. 2 is a diagram showing a modification of the main part shown in FIG. 1 . 本発明の他の実施形態に係る真空二重配管と流体機器との接続構造を示す断面図である。FIG. 11 is a cross-sectional view showing a connection structure between a vacuum double pipe and a fluid device according to another embodiment of the present invention.

以下、本発明の一実施形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る真空二重配管1と流体機器100との接続構造を示す断面図である。図1に示すように、真空二重配管1は、ステンレス等の金属材料からなる内菅10および外管20を備えており、内管10の内部を、液化水素、液化アンモニア、液化ヘリウム、液化窒素、液化酸素等の低温流体が矢示F方向に通過する。 One embodiment of the present invention will now be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a connection structure between a vacuum double pipe 1 and a fluid device 100 according to one embodiment of the present invention. As shown in FIG. 1, the vacuum double pipe 1 has an inner pipe 10 and an outer pipe 20 made of a metal material such as stainless steel, and a low-temperature fluid such as liquefied hydrogen, liquefied ammonia, liquefied helium, liquefied nitrogen, or liquefied oxygen passes through the inside of the inner pipe 10 in the direction of the arrow F.

外管20は、内管10を覆うように内管10と同心状に配置されており、内管10と外管20との間に真空層30が形成されている。真空層30は、真空ポンプ(図示せず)による真空引きが行われて、内管10を真空断熱する。 The outer pipe 20 is arranged concentrically with the inner pipe 10 so as to cover the inner pipe 10, and a vacuum layer 30 is formed between the inner pipe 10 and the outer pipe 20. The vacuum layer 30 is evacuated by a vacuum pump (not shown) to vacuum insulate the inner pipe 10.

流体機器100は、バルブであり、弁箱102と、弁箱102内に配置された弁体104と、弁体104を回動自在に支持する弁軸106とを備えている。弁箱102の上流側および下流側は、内管10の上流側部分10aおよび下流側部分10bに対して、ボルト・ナット等の締結具で気密にフランジ結合されており、弁体104を弁軸106まわりに回転させることで、内管10の流路を開閉することができる。 The fluid device 100 is a valve, and includes a valve box 102, a valve element 104 disposed within the valve box 102, and a valve shaft 106 that rotatably supports the valve element 104. The upstream and downstream sides of the valve box 102 are hermetically flange-connected to the upstream portion 10a and downstream portion 10b of the inner pipe 10 with fasteners such as bolts and nuts, and the flow path of the inner pipe 10 can be opened and closed by rotating the valve element 104 around the valve shaft 106.

内管10の上流側部分10aおよび下流側部分10bは、流体機器100側から順に、第1部分11a,11b、第2部分12a,12b、および第3部分13a,13bに分割されており、これらは互いに気密にフランジ結合されている。 The upstream portion 10a and downstream portion 10b of the inner pipe 10 are divided into first portions 11a and 11b, second portions 12a and 12b, and third portions 13a and 13b, in that order from the fluid device 100 side, which are hermetically flanged together.

外管20は、流体機器100を覆うカバー部分29と、カバー部分29の上流側および下流側にそれぞれ気密にフランジ結合された上流側部分20aおよび下流側部分20bとを備えている。流体機器100の弁軸106は、カバー部分29を貫通して外方に延びている。 The outer pipe 20 has a cover portion 29 that covers the fluid device 100, and an upstream portion 20a and a downstream portion 20b that are hermetically flanged to the upstream and downstream sides of the cover portion 29, respectively. The valve shaft 106 of the fluid device 100 extends outward through the cover portion 29.

外管20の上流側部分20aおよび下流側部分20bは、カバー部分29側から順に、第1部分21a,21b、第2部分22a,22b、および第3部分23a,23bに分割されている。外管20の第1部分21a,21b、第2部分22a,22b、および第3部分23a,23bは、それぞれ内管10の第1部分11a,11b、第2部分12a,12b、および第3部分13a,13bに対応する位置に配置されている。 The upstream portion 20a and downstream portion 20b of the outer pipe 20 are divided into first portions 21a, 21b, second portions 22a, 22b, and third portions 23a, 23b, in that order from the cover portion 29 side. The first portions 21a, 21b, second portions 22a, 22b, and third portions 23a, 23b of the outer pipe 20 are disposed at positions corresponding to the first portions 11a, 11b, second portions 12a, 12b, and third portions 13a, 13b of the inner pipe 10, respectively.

内管10および外管20の上流側部分10a,20aには、それぞれ内管側取付部14aおよび外管側取付部24aが設けられている。内管側取付部14aおよび外管側取付部24aは、リング状に形成されており、真空二重配管1の断面に沿うように、それぞれ第2部分12aの外周面および第2部分22aの内周面に溶接等で固定されている。 The upstream portions 10a, 20a of the inner pipe 10 and the outer pipe 20 are provided with an inner pipe side mounting portion 14a and an outer pipe side mounting portion 24a, respectively. The inner pipe side mounting portion 14a and the outer pipe side mounting portion 24a are formed in a ring shape and are fixed by welding or the like to the outer peripheral surface of the second portion 12a and the inner peripheral surface of the second portion 22a, respectively, so as to fit along the cross section of the vacuum double pipe 1.

内管側取付部14aおよび外管側取付部24aは、内管10および外管20の長手方向に間隔をあけて配置されており、内管側取付部14aおよび外管側取付部24aの間には、軸方向に伸縮可能なベローズ管31aが取り付けられている。内管側取付部14a、外管側取付部24aおよびベローズ管31aは、真空層30を内管10および外管20の長手方向に遮断する上流側隔壁部材32aを構成している。 The inner pipe side mounting part 14a and the outer pipe side mounting part 24a are arranged at a distance in the longitudinal direction of the inner pipe 10 and the outer pipe 20, and a bellows tube 31a that can expand and contract in the axial direction is attached between the inner pipe side mounting part 14a and the outer pipe side mounting part 24a. The inner pipe side mounting part 14a, the outer pipe side mounting part 24a, and the bellows tube 31a form an upstream partition member 32a that blocks the vacuum layer 30 in the longitudinal direction of the inner pipe 10 and the outer pipe 20.

内管10および外管20の下流側部分10b,20bには、上流側部分10a,20aと同様に、それぞれ内管側取付部14bおよび外管側取付部24bが設けられている。内管側取付部14bおよび外管側取付部24bは、リング状に形成されており、真空二重配管1の断面に沿うように、それぞれ第2部分12bの外周面および第2部分22bの内周面に溶接等で固定されている。 The downstream portions 10b, 20b of the inner pipe 10 and the outer pipe 20 are provided with an inner pipe side mounting portion 14b and an outer pipe side mounting portion 24b, respectively, in the same manner as the upstream portions 10a, 20a. The inner pipe side mounting portion 14b and the outer pipe side mounting portion 24b are formed in a ring shape and are fixed by welding or the like to the outer peripheral surface of the second portion 12b and the inner peripheral surface of the second portion 22b, respectively, so as to fit along the cross section of the vacuum double pipe 1.

内管側取付部14bおよび外管側取付部24bは、内管10および外管20の長手方向に間隔をあけて配置されており、内管側取付部14bおよび外管側取付部24bの間には、軸方向に伸縮可能なベローズ管31bが取り付けられている。内管側取付部14b、外管側取付部24bおよびベローズ管31bは、真空層30を内管10および外管20の長手方向に遮断する下流側隔壁部材32bを構成している。真空層30の上流側隔壁部材32aおよび下流側隔壁部材32bの間には、真空層30の他の部分と分断された隔離部33が形成される。 The inner pipe side mounting part 14b and the outer pipe side mounting part 24b are arranged at a distance in the longitudinal direction of the inner pipe 10 and the outer pipe 20, and a bellows tube 31b that can expand and contract in the axial direction is attached between the inner pipe side mounting part 14b and the outer pipe side mounting part 24b. The inner pipe side mounting part 14b, the outer pipe side mounting part 24b, and the bellows tube 31b constitute a downstream partition member 32b that blocks the vacuum layer 30 in the longitudinal direction of the inner pipe 10 and the outer pipe 20. Between the upstream partition member 32a and the downstream partition member 32b of the vacuum layer 30, an isolation part 33 that is separated from the other parts of the vacuum layer 30 is formed.

外管20の上流側部分20aには、真空層30における上流側隔壁部材32aの上流側および下流側を連通する配管により、バイパス流路34aが形成されている。バイパス流路34aには開閉弁35aが設けられており、開閉弁35aの操作によりバイパス流路34aを開閉することができる。 A bypass flow path 34a is formed in the upstream portion 20a of the outer pipe 20 by piping that connects the upstream side and downstream side of the upstream partition member 32a in the vacuum layer 30. An opening/closing valve 35a is provided in the bypass flow path 34a, and the bypass flow path 34a can be opened and closed by operating the opening/closing valve 35a.

外管20の下流側部分20bには、真空層30における下流側隔壁部材32bの上流側および下流側を連通する配管により、バイパス流路34bが形成されている。バイパス流路34bには開閉弁35bが設けられており、開閉弁35bの操作によりバイパス流路34bを開閉することができる。 A bypass flow path 34b is formed in the downstream portion 20b of the outer pipe 20 by piping that connects the upstream side and downstream side of the downstream partition member 32b in the vacuum layer 30. An opening/closing valve 35b is provided in the bypass flow path 34b, and the bypass flow path 34b can be opened and closed by operating the opening/closing valve 35b.

図2は、図1に示す外管20の下流側部分20bにおける第1部分21bを示しており、図2(a)が正面図、図2(b)が側面図である。図2(a)および(b)に示すように、第1部分21bは、半筒状に形成された一対の分割体25,26を備えており、これら分割体25,26を円筒状となるように組み合わせて構成されている。分割体25,26の周方向両側には、軸方向に延びる帯板状のフランジ部251,261を備えており、フランジ部251,261同士がボルト・ナット等の締結具で気密に結合されると共に、締結具を取り外すことにより分割体25,26を矢示の径方向に取り外すことができる。 Figure 2 shows the first part 21b in the downstream part 20b of the outer pipe 20 shown in Figure 1, with Figure 2(a) being a front view and Figure 2(b) being a side view. As shown in Figures 2(a) and (b), the first part 21b has a pair of divided bodies 25, 26 formed in a semi-cylindrical shape, and is configured by combining these divided bodies 25, 26 to form a cylindrical shape. On both circumferential sides of the divided bodies 25, 26, there are provided band-shaped flange portions 251, 261 extending in the axial direction, and the flange portions 251, 261 are airtightly joined to each other with fasteners such as bolts and nuts, and the divided bodies 25, 26 can be removed in the radial direction indicated by the arrows by removing the fasteners.

外管20の上流側部分20aにおける第1部分21a、内管10の上流側部分10aにおける第1部分11a、および、内管10の下流側部分10bにおける第1部分11bについても、上記の第1部分21bと同様に、半筒状に形成された一対の分割体25,26を円筒状に組み合わせて構成されており、分割体25,26を径方向に取り外すことができる。 The first portion 21a in the upstream portion 20a of the outer pipe 20, the first portion 11a in the upstream portion 10a of the inner pipe 10, and the first portion 11b in the downstream portion 10b of the inner pipe 10 are also constructed by combining a pair of semi-cylindrical divided bodies 25, 26 into a cylindrical shape, similar to the first portion 21b described above, and the divided bodies 25, 26 can be removed radially.

上記の構成を備える真空二重配管1と流体機器100との接続構造は、バイパス流路34a,34bの開閉弁35a,35bをいずれも開くことで、真空層30の全体を連通することができ、従来の真空二重配管と同様に、真空層30の全体を真空引きすることができる。 The connection structure between the vacuum double pipe 1 having the above configuration and the fluid device 100 can connect the entire vacuum layer 30 by opening both the on-off valves 35a and 35b of the bypass flow paths 34a and 34b, and the entire vacuum layer 30 can be evacuated in the same way as with conventional vacuum double pipes.

一方、流体機器100のメンテナンス時などにおいては、開閉弁35a,35bをいずれも閉じることで、隔離部33が、真空層30の隔離部33以外の部分から遮断される。この後、外管20の下流側部分20bにおける第1部分21b、および、内管10の下流側部分10bにおける第1部分11bの一対の分割体25,26(図2参照)を、径方向に取り外すことにより、図3に示すように、流体機器100の下流側に、流体機器100のメンテンナンスを行うためのメンテナンススペースMを形成することができる。 On the other hand, during maintenance of the fluid device 100, the on-off valves 35a and 35b are both closed to isolate the isolation section 33 from the rest of the vacuum layer 30. After that, the pair of dividers 25, 26 (see FIG. 2) of the first section 21b in the downstream section 20b of the outer tube 20 and the first section 11b in the downstream section 10b of the inner tube 10 are radially removed to form a maintenance space M downstream of the fluid device 100 for performing maintenance of the fluid device 100, as shown in FIG. 3.

メンテナンススペースMの形成により、真空層30の隔離部33は大気に開放されるが、真空層30の隔離部33以外の部分(ドット模様を付した部分)は、真空状態が維持される。メンテナンスの終了後は、メンテナンススペースMを再び図1に示す状態に戻し、バイパス流路34a,34bの開閉弁35a,35bをいずれも開いて真空引きを行うことにより、真空層30の全体を真空状態にすることができる。 By forming the maintenance space M, the isolated portion 33 of the vacuum layer 30 is opened to the atmosphere, but the portion of the vacuum layer 30 other than the isolated portion 33 (the portion with the dot pattern) is maintained in a vacuum state. After maintenance is completed, the maintenance space M is returned to the state shown in FIG. 1, and the on-off valves 35a and 35b of the bypass flow paths 34a and 34b are both opened to perform a vacuum, thereby putting the entire vacuum layer 30 into a vacuum state.

本実施形態の真空二重配管1と流体機器100との接続構造によれば、流体機器100のメンテナンス時において、真空層30の大気開放を部分的なものに抑制することで、メンテナンスの終了後に、真空層30を短時間でもとの真空状態に戻すことができる。したがって、真空二重配管1に接続された流体機器100のメンテナンスを迅速容易に行うことができる。 According to the connection structure between the vacuum double pipe 1 and the fluid device 100 of this embodiment, by limiting the release of the vacuum layer 30 to only a partial amount of air during maintenance of the fluid device 100, the vacuum layer 30 can be returned to its original vacuum state in a short time after maintenance is completed. Therefore, maintenance of the fluid device 100 connected to the vacuum double pipe 1 can be performed quickly and easily.

本実施形態においては、外管20の上流側部分20aにおける第1部分21a、および、内管10の上流側部分10aにおける第1部分11aも、図2に示す一対の分割体25,26により構成されているため、流体機器100の上流側にもメンテナンススペースを形成することができる。但し、流体機器100の上流側のメンテナンススペースが不要な場合には、第1部分11a,21aが分割不能な構成であってもよい。 In this embodiment, the first portion 21a in the upstream portion 20a of the outer pipe 20 and the first portion 11a in the upstream portion 10a of the inner pipe 10 are also configured with a pair of division bodies 25, 26 as shown in FIG. 2, so that a maintenance space can also be formed upstream of the fluid device 100. However, if a maintenance space is not required upstream of the fluid device 100, the first portions 11a, 21a may be configured indivisible.

流体機器100のメンテナンスを行うためのメンテナンススペースの形成は、外管20の少なくとも一部を取り外し可能な構成により行うことが可能であり、本実施形態の構成以外に、例えば、外管20に形成した開口部を蓋体により開閉可能に構成して行うことができる。 The formation of a maintenance space for performing maintenance on the fluid device 100 can be achieved by configuring at least a portion of the outer tube 20 to be removable, and in addition to the configuration of this embodiment, for example, the formation of a maintenance space can be achieved by configuring an opening formed in the outer tube 20 to be openable and closable with a lid.

外管20に対するバイパス流路34a,34bの接続箇所は、隔離部33を真空層30の他の部分と連通可能な位置であれば特に限定されないが、本実施形態においては、図1に示すように、上流側のバイパス流路34aの両端を、第1部分21aおよび第2部分22aに接続し、下流側のバイパス流路34bの両端を、いずれも第2部分22bに接続している。下流側のバイパス流路34bを設ける代わりに、上流側のバイパス流路34aを分岐させて、隔離部33の下流側に接続してもよい。 The connection points of the bypass flow paths 34a and 34b to the outer pipe 20 are not particularly limited as long as they are positions that allow the isolation section 33 to communicate with other parts of the vacuum layer 30. In this embodiment, as shown in FIG. 1, both ends of the upstream bypass flow path 34a are connected to the first part 21a and the second part 22a, and both ends of the downstream bypass flow path 34b are connected to the second part 22b. Instead of providing the downstream bypass flow path 34b, the upstream bypass flow path 34a may be branched and connected to the downstream side of the isolation section 33.

隔離部33を形成する上流側隔壁部材32aおよび下流側隔壁部材32bは、真空層30を気密に分断可能な構成であればよく、例えば、内管10および外管20をフランジ結合により形成する際に介在させるリング状の隔壁部材であってもよい。但し、内管10は、内部を通過する低温流体の温度変化により伸縮することから、本実施形態の上流側隔壁部材32aおよび下流側隔壁部材32bは、ベローズ管31a,31bを備えることによって真空二重配管1の長手方向に伸縮可能であり、更に、後述するように真空二重配管1の径方向にも伸縮可能となるように、内管10および外管20の双方に支持されている。 The upstream partition member 32a and downstream partition member 32b forming the isolating section 33 may be configured to hermetically separate the vacuum layer 30, and may be, for example, a ring-shaped partition member that is interposed when the inner pipe 10 and the outer pipe 20 are formed by flange connection. However, since the inner pipe 10 expands and contracts due to temperature changes of the low-temperature fluid passing through it, the upstream partition member 32a and downstream partition member 32b of this embodiment are supported by both the inner pipe 10 and the outer pipe 20 so that they can expand and contract in the longitudinal direction of the vacuum double pipe 1 by being provided with bellows pipes 31a and 31b, and furthermore, can expand and contract in the radial direction of the vacuum double pipe 1 as described later.

図1に示す上流側隔壁部材32aのベローズ管31aは、下流側の一方端における開口縁部に取付リング36aを備えており、ベローズ管31aの上流側が内管側取付部14aに直接取り付けられる一方、ベローズ管31aの下流側が取付リング36aを介して外管側取付部24aに取り付けられている。 The bellows tube 31a of the upstream bulkhead member 32a shown in FIG. 1 has an attachment ring 36a at the opening edge of one downstream end, and the upstream side of the bellows tube 31a is attached directly to the inner tube attachment part 14a, while the downstream side of the bellows tube 31a is attached to the outer tube attachment part 24a via the attachment ring 36a.

図4は、図1に示す上流側隔壁部材32aの要部を示す断面図である。図4に示すように、取付リング36aには、径方向に延びる長孔37aが形成されており、ボルト38を長孔37aに挿通して、外管側取付部24aのねじ孔に螺合させることにより、取付リング36aが外管側取付部24aに対して径方向に移動可能に支持される。図5に正面図で示すように、取付リング36aの長孔37aは、複数が中心部を挟んで互いに対向するように、周方向にバランスよく配置されている。 Figure 4 is a cross-sectional view showing a main part of the upstream bulkhead member 32a shown in Figure 1. As shown in Figure 4, the mounting ring 36a has a long hole 37a extending in the radial direction, and the mounting ring 36a is supported so as to be movable in the radial direction relative to the outer pipe side mounting part 24a by inserting a bolt 38 through the long hole 37a and screwing it into a threaded hole in the outer pipe side mounting part 24a. As shown in the front view of Figure 5, the long holes 37a of the mounting ring 36a are arranged in a circumferentially balanced manner so that multiple long holes 37a face each other with the center in between.

下流側隔壁部材32bについても、上流側隔壁部材32aと同様に、ベローズ管31bの上流側の一方端における開口縁部に取付リング36bを備えており、真空二重配管1の径方向および長手方向に伸縮可能に構成されている。 Like the upstream bulkhead member 32a, the downstream bulkhead member 32b is also provided with a mounting ring 36b at the opening edge at one end of the upstream side of the bellows tube 31b, and is configured to be expandable in the radial and longitudinal directions of the vacuum double piping 1.

図6は、図1に示す上流側隔壁部材32aの要部の変形例を示しており、ベローズ管31aの両端における開口縁部に、それぞれ取付リング36a,36aが設けられている。各取付リング36aは、径方向に延びる複数の長孔37aが形成されており、この長孔37aを利用して、内管側取付部14aおよび外管側取付部24aに取り付けられる。 Figure 6 shows a modified version of the main part of the upstream bulkhead member 32a shown in Figure 1, with mounting rings 36a, 36a provided on the opening edges at both ends of the bellows tube 31a. Each mounting ring 36a has multiple elongated holes 37a extending in the radial direction, and is attached to the inner tube mounting part 14a and the outer tube mounting part 24a using these elongated holes 37a.

図7は、本発明の他の実施形態に係る真空二重配管1と流体機器100との接続構造を示す断面図であり、上流側隔壁部材32aおよび下流側隔壁部材32bの他の変形例を示している。図7に示す上流側隔壁部材32aおよび下流側隔壁部材32bは、リング状に形成されて径方向中央部39が真空二重配管1の軸方向に突出するように屈曲形成された屈曲部材からなる。この屈曲部材の内周縁部および外周縁部は、内管10および外管20をフランジ結合する際に挟持されて、内管10および外管20に支持されている。このように構成された上流側隔壁部材32aおよび下流側隔壁部材32bも、真空二重配管1の径方向および長手方向に伸縮することができる。 Figure 7 is a cross-sectional view showing a connection structure between a vacuum double pipe 1 and a fluid device 100 according to another embodiment of the present invention, showing another modified example of the upstream bulkhead member 32a and the downstream bulkhead member 32b. The upstream bulkhead member 32a and the downstream bulkhead member 32b shown in Figure 7 are made of bent members formed in a ring shape and bent so that the radial center portion 39 protrudes in the axial direction of the vacuum double pipe 1. The inner peripheral edge portion and the outer peripheral edge portion of this bent member are clamped when the inner pipe 10 and the outer pipe 20 are flange-connected, and are supported by the inner pipe 10 and the outer pipe 20. The upstream bulkhead member 32a and the downstream bulkhead member 32b configured in this manner can also expand and contract in the radial and longitudinal directions of the vacuum double pipe 1.

真空二重配管1が接続される流体機器100の構成は特に限定されるものではなく、例えば、図7に示すように、弁箱102の下流側に、弁箱102内のメンテナンスを行うためのメンテナンスホール108を備える場合には、外管20における少なくともメンテナンスホール108の直上部分Uを取り外し可能に構成することで、メンテナンスホール108のメンテナンスカバー109を開閉することができる。また、流体機器100は、低温流体が通過、供給または排出される各種流体機器であれば必ずしもバルブに限定されるものではなく、例えば、流量計、ポンプ、アキュムレータ、タンク、熱交換器などであってもよい。 The configuration of the fluid device 100 to which the vacuum double pipe 1 is connected is not particularly limited. For example, as shown in FIG. 7, if a maintenance hole 108 for performing maintenance inside the valve box 102 is provided downstream of the valve box 102, at least the portion U directly above the maintenance hole 108 in the outer pipe 20 can be configured to be removable, so that the maintenance cover 109 of the maintenance hole 108 can be opened and closed. In addition, the fluid device 100 is not necessarily limited to a valve, as long as it is any type of fluid device through which a low-temperature fluid passes, is supplied, or discharged, and may be, for example, a flow meter, a pump, an accumulator, a tank, a heat exchanger, etc.

1 真空二重配管
10 内管
14a,14b 内管側取付部
20 外管
24a,24b 外管側取付部
25,26 分割体
30 真空層
31a,31b ベローズ管
32a 上流側隔壁部材
32b 下流側隔壁部材
33 隔離部
34a,34b バイパス流路
35a,35b 開閉弁
36a,36b 取付リング
37a,37b 長孔
100 流体機器
Reference Signs List 1 Vacuum double pipe 10 Inner pipe 14a, 14b Inner pipe side mounting portion 20 Outer pipe 24a, 24b Outer pipe side mounting portion 25, 26 Divider 30 Vacuum layer 31a, 31b Bellows pipe 32a Upstream side partition member 32b Downstream side partition member 33 Isolation portion 34a, 34b Bypass flow path 35a, 35b Opening/closing valve 36a, 36b Mounting ring 37a, 37b Long hole 100 Fluid equipment

Claims (3)

真空二重配管と流体機器との接続構造であって、
前記真空二重配管は、低温流体が通過する内管と、前記内管を覆う外管とを備え、前記内管と前記外管との間に真空層が形成されており、
前記真空層は、流路に沿って設けられた上流側隔壁部材および下流側隔壁部材の間に隔離部が形成され、開閉弁を有するバイパス流路によって、前記隔離部が前記真空層の前記隔離部以外の部分と連通可能とされており、
前記隔離部において、前記内管に前記流体機器が設けられると共に前記外管の少なくとも一部が取り外し可能に構成されており、
前記上流側隔壁部材および下流側隔壁部材は、前記真空二重配管の径方向および長手方向に伸縮可能となるように、それぞれ前記内管および前記外管の双方に支持されており、
前記上流側隔壁部材および下流側隔壁部材の少なくとも一方は、前記内管および前記外管のそれぞれから長手方向に間隔をあけてリング状に突出する内管側取付部および外管側取付部と、前記内管側取付部および外管側取付部間に取り付けられたベローズ管とを備えており、
前記ベローズ管の少なくとも一方端における開口縁部には、径方向に延びる複数の長孔が形成された取付リングが設けられている真空二重配管と流体機器との接続構造。
A connection structure between a vacuum double pipe and a fluid device,
The vacuum double pipe includes an inner pipe through which a low-temperature fluid passes and an outer pipe covering the inner pipe, and a vacuum layer is formed between the inner pipe and the outer pipe,
an isolation section is formed between an upstream partition member and a downstream partition member provided along the flow path in the vacuum layer, and the isolation section is capable of communicating with a portion of the vacuum layer other than the isolation section through a bypass flow path having an on-off valve;
In the isolation section, the fluid device is provided in the inner tube, and at least a portion of the outer tube is configured to be removable,
the upstream partition member and the downstream partition member are supported by both the inner pipe and the outer pipe, respectively, so as to be expandable and contractable in a radial direction and a longitudinal direction of the vacuum double pipe;
at least one of the upstream partition member and the downstream partition member includes an inner pipe side mounting portion and an outer pipe side mounting portion protruding in a ring shape at a distance from each other in the longitudinal direction from the inner pipe and the outer pipe, respectively, and a bellows tube mounted between the inner pipe side mounting portion and the outer pipe side mounting portion,
A connection structure between a vacuum double pipe and a fluid device , in which a mounting ring having a plurality of radially extending long holes is provided on the opening edge portion at at least one end of the bellows pipe .
前記外管は、前記隔離部における少なくとも一部が、半筒状に形成された一対の分割体を円筒状に組み合わせて構成され、前記分割体を径方向に取り外すことができる請求項1に記載の真空二重配管と流体機器との接続構造。 The connection structure between vacuum double piping and fluid equipment according to claim 1, in which at least a portion of the isolation section of the outer pipe is formed by combining a pair of semi-cylindrical divided bodies into a cylindrical shape, and the divided bodies can be removed in the radial direction. 前記流体機器はバルブであり、前記流体機器の下流側において前記外管の少なくとも一部が取り外し可能とされている請求項1または2に記載の真空二重配管と流体機器との接続構造。 3. The connection structure between a vacuum double pipe and a fluid device according to claim 1 , wherein the fluid device is a valve, and at least a portion of the outer pipe is removable on the downstream side of the fluid device.
JP2021080164A 2021-05-11 2021-05-11 Vacuum double piping and fluid equipment connection structure Active JP7652416B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021080164A JP7652416B2 (en) 2021-05-11 2021-05-11 Vacuum double piping and fluid equipment connection structure
JP2025035983A JP2025078804A (en) 2021-05-11 2025-03-07 Vacuum double piping and fluid equipment connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021080164A JP7652416B2 (en) 2021-05-11 2021-05-11 Vacuum double piping and fluid equipment connection structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2025035983A Division JP2025078804A (en) 2021-05-11 2025-03-07 Vacuum double piping and fluid equipment connection structure

Publications (2)

Publication Number Publication Date
JP2022174398A JP2022174398A (en) 2022-11-24
JP7652416B2 true JP7652416B2 (en) 2025-03-27

Family

ID=84144485

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021080164A Active JP7652416B2 (en) 2021-05-11 2021-05-11 Vacuum double piping and fluid equipment connection structure
JP2025035983A Pending JP2025078804A (en) 2021-05-11 2025-03-07 Vacuum double piping and fluid equipment connection structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2025035983A Pending JP2025078804A (en) 2021-05-11 2025-03-07 Vacuum double piping and fluid equipment connection structure

Country Status (1)

Country Link
JP (2) JP7652416B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024109238A (en) 2023-02-01 2024-08-14 株式会社ササクラ Vacuum double piping valve device and maintenance method thereof
JP2025131105A (en) * 2024-02-28 2025-09-09 川崎重工業株式会社 Liquefied gas piping unit and assembly method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085372A (en) 2002-08-27 2004-03-18 Taisei Corp Double plumbing equipment
JP2005061513A (en) 2003-08-12 2005-03-10 Tlv Co Ltd Heat insulating piping device
WO2012102341A1 (en) 2011-01-27 2012-08-02 古河電気工業株式会社 Connection structure for superconductive cable, method for installing said connection structure, and air purge method for connection structure for superconductive cable
JP3180132U (en) 2012-09-21 2012-12-06 千代田工業株式会社 Vacuum insulated water pipe
JP2016070375A (en) 2014-09-30 2016-05-09 川崎重工業株式会社 Joint structure of vacuum heat-insulating double pipe for low-temperature fluid
US20200132243A1 (en) 2018-10-31 2020-04-30 Aditya Vaze Modular vacuum insulated piping

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085372A (en) 2002-08-27 2004-03-18 Taisei Corp Double plumbing equipment
JP2005061513A (en) 2003-08-12 2005-03-10 Tlv Co Ltd Heat insulating piping device
WO2012102341A1 (en) 2011-01-27 2012-08-02 古河電気工業株式会社 Connection structure for superconductive cable, method for installing said connection structure, and air purge method for connection structure for superconductive cable
JP3180132U (en) 2012-09-21 2012-12-06 千代田工業株式会社 Vacuum insulated water pipe
JP2016070375A (en) 2014-09-30 2016-05-09 川崎重工業株式会社 Joint structure of vacuum heat-insulating double pipe for low-temperature fluid
US20200132243A1 (en) 2018-10-31 2020-04-30 Aditya Vaze Modular vacuum insulated piping

Also Published As

Publication number Publication date
JP2025078804A (en) 2025-05-20
JP2022174398A (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP2025078804A (en) Vacuum double piping and fluid equipment connection structure
RU2368790C2 (en) Gas turbine with combustion chamber fixed to nozzle block
US3068026A (en) Cryogenic fluid transfer line coupling
US2762611A (en) Tubular heat exchangers
US3275345A (en) Conduit system and coupling means therefor, for conveying cryogenic fluids
JP6480693B2 (en) Joint structure of vacuum insulated double pipe for cryogenic fluid
US12319429B2 (en) Double-wall hydrogen pipeline comprising at least one system for detecting a leak at at least one coupling system, and aircraft comprising at least one such pipeline
KR101184392B1 (en) Insulation apparatus for pipe
US20120195752A1 (en) Stiffening system for steam turbine casing
CA3030209C (en) Modular split sleeve
WO2017201565A1 (en) Cryogenic expansion joint
EP3246609A1 (en) Shrouded pipe
US4331352A (en) Heat exchanger support system providing for thermal isolation and growth
US3202171A (en) Welded slide valve casing with sealing face supporting means
US2821414A (en) Pressure balanced bellows type flexible coupling for conduits
US2605081A (en) Cooling means for gas turbine wheels
US2428999A (en) Turbine
US20020117848A1 (en) Swivel having a reduced pressure area
US4511106A (en) Heat exchanger support system providing for thermal isolation and growth
US10197177B2 (en) Compressor thermal valve unit to route lubricant used in a compressor
US20150044039A1 (en) Exhaust diffuser shell with flange and manufacturing method
JPH10220681A (en) Pipe covering means
JP6249927B2 (en) Steam turbine
US3301316A (en) Regenerator matrix
JPS593102A (en) Fluid load distributing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20241209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20250108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250307

R150 Certificate of patent or registration of utility model

Ref document number: 7652416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150