[go: up one dir, main page]

JP7672248B2 - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP7672248B2
JP7672248B2 JP2021038311A JP2021038311A JP7672248B2 JP 7672248 B2 JP7672248 B2 JP 7672248B2 JP 2021038311 A JP2021038311 A JP 2021038311A JP 2021038311 A JP2021038311 A JP 2021038311A JP 7672248 B2 JP7672248 B2 JP 7672248B2
Authority
JP
Japan
Prior art keywords
water
dissolved oxygen
chamber
treated
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021038311A
Other languages
Japanese (ja)
Other versions
JP2022138431A (en
Inventor
慶介 佐々木
眞弓 阿部
史生 須藤
博史 山田
司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2021038311A priority Critical patent/JP7672248B2/en
Priority to KR1020237030934A priority patent/KR20230145404A/en
Priority to US18/280,737 priority patent/US20240239695A1/en
Priority to PCT/JP2022/004236 priority patent/WO2022190727A1/en
Priority to CN202280020285.8A priority patent/CN116964006A/en
Priority to TW111105519A priority patent/TW202246185A/en
Publication of JP2022138431A publication Critical patent/JP2022138431A/en
Application granted granted Critical
Publication of JP7672248B2 publication Critical patent/JP7672248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、水中の溶存酸素を除去できる水処理装置及び水処理方法に関する。 The present invention relates to a water treatment device and a water treatment method that can remove dissolved oxygen from water.

被処理水を処理して純水などを生成するときに被処理水中の溶存酸素を除去する方法として、脱気膜を用いた膜脱気法がよく知られている。しかしながら膜脱気法では、脱気膜を挟んで被処理水とは反対側となる気相側の真空度を保つ必要があり、そのために真空ポンプを設置することなどが必要となる。そこで、被処理水に水素やヒドラジンなどの還元剤を添加した上で、パラジウムなどを担持した脱酸素触媒に接触させ、溶存酸素と水素(あるいはヒドラジン)から水を生成する反応を進行させて溶存酸素を除去する方法が実用化されている。水素の存在下で脱酸素触媒に接触させることによる溶存酸素の除去の例が特許文献1に開示されている。特許文献2は、固体高分子電極膜によって陰極室と陽極室とが区画された電解槽を使用し、陰極室に被処理水を供給しつつ水の電気分解を進行させ、陰極室において陰極反応によって溶存酸素を還元して除去するとともに、除去できなかった溶存酸素を電気分解で生じた水素ともに脱酸素触媒に接触させて溶存酸素を除去することを開示している。 A membrane degassing method using a degassing membrane is well known as a method for removing dissolved oxygen from water to be treated when the water is treated to produce pure water or the like. However, in the membrane degassing method, it is necessary to maintain a vacuum on the gas phase side, which is the opposite side of the water to be treated, across the degassing membrane, and therefore a vacuum pump or the like is required. Therefore, a method has been put into practical use in which a reducing agent such as hydrogen or hydrazine is added to the water to be treated, and the water is brought into contact with a deoxygenation catalyst carrying palladium or the like, and a reaction is caused to proceed to produce water from the dissolved oxygen and hydrogen (or hydrazine) to remove the dissolved oxygen. Patent Document 1 discloses an example of removing dissolved oxygen by contacting the water with a deoxygenation catalyst in the presence of hydrogen. Patent Document 2 discloses a method using an electrolytic cell in which a cathode chamber and an anode chamber are partitioned by a solid polymer electrode membrane, in which the water to be treated is supplied to the cathode chamber while electrolysis is carried out, and the dissolved oxygen is reduced and removed by a cathode reaction in the cathode chamber, and the dissolved oxygen that could not be removed is brought into contact with a deoxygenation catalyst together with the hydrogen produced by electrolysis to remove the dissolved oxygen.

ところで、被処理水から脱塩水を生成する装置の1つとして、電気式脱イオン水製造装置(EDI(Electrodeionization)装置)がある。EDI装置は、電気泳動と電気透析とを組み合わせた装置であって、少なくともその脱塩室にはイオン交換樹脂が充填されている。EDI装置は、薬剤によってイオン交換樹脂を再生する処理を不要とするという利点を有する。特許文献3は、EDI装置の脱塩室にアニオン交換樹脂とカチオン交換樹脂とを混合して充填するとともに、アニオン交換樹脂の一部を銅やパラジウムを担持させた触媒樹脂とし、脱塩室に供給される被処理水に水素を添加することにより、脱塩室において被処理水の脱塩処理を行うとともに被処理水から溶存酸素を除去することを開示している。EDI装置の陰極室から排出される陰極水には水素が含まれるので、特許文献3は、陰極水を水素源として使用して、陰極水を被処理水に加えることも開示している。ただし、陰極水を被処理水に加えることとしても、一般に陰極室の出口の圧力の方が脱塩室の入口での被処理水の圧力よりも低いから、陰極水を被処理水に加えるためには被処理水を加圧するポンプが必要となる。特許文献4は、白金やパラジウムなどを担持させたアニオン交換樹脂と接触させることにより、被処理水中の過酸化水素を分解除去できることを開示している。 One of the devices that produces desalted water from water to be treated is the electrodeionization water production device (EDI (Electrodeionization) device). The EDI device is a device that combines electrophoresis and electrodialysis, and at least the desalting chamber is filled with ion exchange resin. The EDI device has the advantage of eliminating the need for a process to regenerate the ion exchange resin with chemicals. Patent Document 3 discloses that the desalting chamber of the EDI device is filled with a mixture of anion exchange resin and cation exchange resin, and part of the anion exchange resin is made of catalytic resin carrying copper or palladium, and hydrogen is added to the water to be treated that is supplied to the desalting chamber, thereby desalting the water to be treated in the desalting chamber and removing dissolved oxygen from the water to be treated. Since the cathode water discharged from the cathode chamber of the EDI device contains hydrogen, Patent Document 3 also discloses that the cathode water is used as a hydrogen source and added to the water to be treated. However, even if cathode water is added to the water being treated, the pressure at the outlet of the cathode chamber is generally lower than the pressure of the water being treated at the inlet of the desalting chamber, so a pump is required to pressurize the water being treated in order to add the cathode water to the water being treated. Patent Document 4 discloses that hydrogen peroxide in the water being treated can be decomposed and removed by contacting the water with an anion exchange resin carrying platinum, palladium, or the like.

特開平5-96283号公報Japanese Patent Application Publication No. 5-96283 特開平7-241569号公報Japanese Patent Application Publication No. 7-241569 特開平10-272474号公報Japanese Patent Application Publication No. 10-272474 特開2007-185587号公報JP 2007-185587 A

特許文献3に開示されるEDI装置は、真空ポンプなどを必要とせずに脱塩も行いながら被処理水中の溶存酸素を除去することができる装置であるが、本発明者らの検討によれば、被処理水中の溶存酸素の除去率の向上の余地があること分かった。 The EDI device disclosed in Patent Document 3 is a device that can remove dissolved oxygen from the water being treated while also desalination without the need for a vacuum pump or the like, but the inventors' studies have revealed that there is room for improvement in the rate at which dissolved oxygen is removed from the water being treated.

本発明の目的は、被処理水中の溶存酸素を効率よく除去できる水処理方法及び水処理装置を提供することにある。 The object of the present invention is to provide a water treatment method and water treatment device that can efficiently remove dissolved oxygen from the water to be treated.

特許文献3に開示されたEDI装置では、脱塩室に充填されるアニオン交換樹脂の一部を銅やパラジウムを担持させた触媒樹脂とし、触媒樹脂と触媒樹脂ではないカチオン交換樹脂とを混合して、すなわち混床形態で脱塩室に充填している。しかしながら、後述の実施例及び比較例から明らかになるように、触媒樹脂を混床で脱塩室に充填した場合よりも、脱塩室の少なくとも一部において触媒樹脂が単床形態で充填されているときの方が、溶存酸素の除去率が向上し、かつ、消費電力が低下した。したがって本発明の水処理方法は、被処理水に含まれる少なくとも溶存酸素を除去する水処理方法であって、陽極と陰極との間に直流電流を印加する工程と、陽極と陰極との間に配置されてイオン交換体が充填されている溶存酸素除去室に被処理水を通水する工程と、を有し、溶存酸素除去室に充填されているイオン交換体の少なくとも一部は金属触媒が担持されたイオン交換体であり、金属触媒が担持されたイオン交換体は、溶存酸素除去室の少なくとも一部において単床形態で充填されている。この水処理方法において、陽極と陰極との間に直流電流を印加する工程と、溶存酸素除去室に被処理水を通水する工程とは、同時に実行してもよいし、あるいは別々に実行してもよい。 In the EDI device disclosed in Patent Document 3, part of the anion exchange resin filled in the desalting chamber is a catalytic resin carrying copper or palladium, and the catalytic resin is mixed with a cation exchange resin that is not a catalytic resin, i.e., filled in the desalting chamber in a mixed bed form. However, as will be clear from the examples and comparative examples described later, the dissolved oxygen removal rate was improved and power consumption was reduced when the catalytic resin was filled in a single bed form in at least a part of the desalting chamber compared to when the catalytic resin was filled in a mixed bed form in the desalting chamber. Therefore, the water treatment method of the present invention is a water treatment method for removing at least dissolved oxygen contained in the water to be treated, which includes a step of applying a direct current between an anode and a cathode, and a step of passing the water to be treated through a dissolved oxygen removal chamber disposed between the anode and the cathode and filled with an ion exchanger, at least a part of the ion exchanger filled in the dissolved oxygen removal chamber is an ion exchanger carrying a metal catalyst, and the ion exchanger carrying the metal catalyst is filled in a single bed form in at least a part of the dissolved oxygen removal chamber. In this water treatment method, the step of applying a direct current between the anode and the cathode and the step of passing the water to be treated through the dissolved oxygen removal chamber may be performed simultaneously or separately.

また本発明の水処理装置は、被処理水に含まれる少なくとも溶存酸素を除去する水処理装置であって、陽極及び陰極と、陽極と陰極との間に配置されてイオン交換体が充填され、被処理水が通水する溶存酸素除去室と、を有し、溶存酸素除去室に充填されているイオン交換体の少なくとも一部は金属触媒が担持されたイオン交換体であり、金属触媒が担持されたイオン交換体は、溶存酸素除去室の少なくとも一部において単床形態で充填されており、陽極と陰極の間に直流電流が印加される。 The water treatment device of the present invention is a water treatment device that removes at least dissolved oxygen contained in the water to be treated, and has an anode and a cathode, and a dissolved oxygen removal chamber that is arranged between the anode and the cathode and is filled with an ion exchanger, and through which the water to be treated passes, at least a portion of the ion exchanger filled in the dissolved oxygen removal chamber is an ion exchanger carrying a metal catalyst, and the ion exchanger carrying the metal catalyst is filled in a single bed form in at least a portion of the dissolved oxygen removal chamber, and a direct current is applied between the anode and the cathode.

本発明において溶存酸素除去室内で溶存酸素が除去できるのは、金属触媒の存在下で溶存酸素が水素と反応して水となるからである。したがって、もともと被処理水に水素が含まれている場合を除いて、溶存酸素除去室内で水素が発生するか、溶存酸素除去室の上流側で被処理水に水素が添加される必要がある。本発明の水処理装置は、溶存酸素の除去を行うように構成されていることを除けば、基本的には一般的なEDI装置と同様の構成である。EDI装置の陰極室では、陰極表面での陰極反応により水素が発生するから、本発明においても、被処理水をまず陰極室に供給し、陰極室の出口水すなわち陰極室を通過した被処理水を溶存酸素除去室に通水することにより、水素を含んだ被処理水を溶存酸素除去室に供給することができる。あるいは、陰極室自体を溶存酸素除去室として用いることができる。 In the present invention, dissolved oxygen can be removed in the dissolved oxygen removal chamber because dissolved oxygen reacts with hydrogen in the presence of a metal catalyst to form water. Therefore, except when hydrogen is originally contained in the water to be treated, hydrogen must be generated in the dissolved oxygen removal chamber or hydrogen must be added to the water to be treated upstream of the dissolved oxygen removal chamber. The water treatment device of the present invention is basically configured in the same way as a general EDI device, except that it is configured to remove dissolved oxygen. In the cathode chamber of the EDI device, hydrogen is generated by a cathode reaction on the cathode surface, so in the present invention, the water to be treated is first supplied to the cathode chamber, and the outlet water of the cathode chamber, i.e., the water to be treated that has passed through the cathode chamber, is passed through the dissolved oxygen removal chamber, so that the water to be treated containing hydrogen can be supplied to the dissolved oxygen removal chamber. Alternatively, the cathode chamber itself can be used as the dissolved oxygen removal chamber.

特許文献3に開示されたEDI装置では、溶存酸素除去室として機能する脱塩室に供給される被処理水に対し、陰極室の出口水を加えているが、脱塩室の入口での被処理水の圧力に比べて陰極水の出口水の圧力は一般に著しく小さいから、陰極室の出口水を昇圧するポンプが必要となる。ポンプで昇圧するときは、陰極室の出口水に含まれる気泡状の水素によって、ポンプのいわゆるエア噛みが引き起こされる可能性がある。エア噛みなどを防ぐために陰極室の出口水をタンクに受けてからポンプにより送水することも考えられるが、出口水をタンクに受けた時点で、溶解度以上存在する水素が大気中に拡散するので、水素の利用効率が低下する。これに対して本発明では、陰極室の出口水をそのまま溶存酸素除去室への入口水として使用する。すなわち被処理水の流れに関して溶存酸素除去室が陰極室に直列に接続されるようにする。このように構成することにより、本発明では、昇圧用のポンプは必要なく、また、陰極室で生成した水素の散逸も起こらず、水素の利用効率を高めることができる。陰極室の出口水に含まれる水素量だけでは溶存酸素の除去に不足する場合には、例えば、陰極室の出口と溶存酸素除去室の入口を接続するラインに対し、水素を注入することができる。陰極室で生成する水素を溶存酸素の除去に使用しない場合であっても、溶存酸素除去室の上流に被処理水に対して水素を供給する手段を設ければ、水素を含んだ被処理水を溶存酸素除去室に供給することができる。 In the EDI device disclosed in Patent Document 3, the outlet water of the cathode chamber is added to the water to be treated that is supplied to the desalination chamber that functions as the dissolved oxygen removal chamber. However, since the pressure of the outlet water of the cathode chamber is generally significantly smaller than the pressure of the water to be treated at the inlet of the desalination chamber, a pump is required to boost the outlet water of the cathode chamber. When boosting the pressure with a pump, the hydrogen bubbles contained in the outlet water of the cathode chamber may cause so-called air entrapment in the pump. In order to prevent air entrapment, it is possible to receive the outlet water of the cathode chamber in a tank and then pump it, but when the outlet water is received in the tank, hydrogen present in excess of the solubility will diffuse into the atmosphere, reducing the efficiency of hydrogen utilization. In contrast, in the present invention, the outlet water of the cathode chamber is used as it is as the inlet water to the dissolved oxygen removal chamber. In other words, the dissolved oxygen removal chamber is connected in series to the cathode chamber with respect to the flow of the water to be treated. By configuring in this way, in the present invention, a pump for boosting the pressure is not required, and the hydrogen generated in the cathode chamber is not dissipated, thereby increasing the efficiency of hydrogen utilization. If the amount of hydrogen contained in the water at the outlet of the cathode chamber is insufficient to remove the dissolved oxygen, for example, hydrogen can be injected into the line connecting the outlet of the cathode chamber and the inlet of the dissolved oxygen removal chamber. Even if the hydrogen generated in the cathode chamber is not used to remove dissolved oxygen, if a means for supplying hydrogen to the water being treated is provided upstream of the dissolved oxygen removal chamber, the water being treated containing hydrogen can be supplied to the dissolved oxygen removal chamber.

化学量論的に酸素と反応する水素の質量は、酸素の質量の8分の1すなわち0.125倍である。そのことを踏まえると、本発明では、被処理水に水素を添加する手段がどのようなものであれ、被処理水中の処理対象の溶存酸素負荷量に対する、単位時間あたりに溶存酸素除去室に供給される水素の量の質量比が0.1以上0.4以下となるように、溶存酸素除去室に供給される被処理水に含まれる水素の量を調整することが好ましい。 The mass of hydrogen that stoichiometrically reacts with oxygen is 1/8, or 0.125 times, the mass of oxygen. In light of this, in the present invention, regardless of the means used to add hydrogen to the water to be treated, it is preferable to adjust the amount of hydrogen contained in the water to be treated that is supplied to the dissolved oxygen removal chamber so that the mass ratio of the amount of hydrogen supplied to the dissolved oxygen removal chamber per unit time to the dissolved oxygen load to be treated in the water to be treated is 0.1 or more and 0.4 or less.

本発明において溶存酸素除去室に充填されるイオン交換体に担持される金属触媒は、水素と酸素とから水を生成する反応を促進する触媒であれば、任意のものを使用できる。そのような金属触媒の例としては、鉄、銅、マンガン、パラジウム、白金などが挙げられる。中でも、白金族金属触媒は、酸素の還元反応を促進するだけでなく、過酸化水素分解に対する触媒活性が高いため、被処理水中に過酸化水素が含まれる場合に好適に利用することができる。白金族金属触媒とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金の中から選ばれた1以上の金属を含む触媒のことである。白金族金属触媒は、これらの金属元素のいずれかを単独で含むものであっても、これらのうちの2種以上を組み合わせたものであってもよい。これらのなかで、白金、パラジウム、白金/パラジウム合金は、触媒活性が高く、白金族金属触媒として好適に用いられる。 In the present invention, any metal catalyst can be used as long as it promotes the reaction of generating water from hydrogen and oxygen as the metal catalyst supported on the ion exchanger filled in the dissolved oxygen removal chamber. Examples of such metal catalysts include iron, copper, manganese, palladium, platinum, etc. Among them, platinum group metal catalysts not only promote the reduction reaction of oxygen, but also have high catalytic activity for decomposing hydrogen peroxide, so they can be used preferably when hydrogen peroxide is contained in the water to be treated. A platinum group metal catalyst is a catalyst containing one or more metals selected from ruthenium, rhodium, palladium, osmium, iridium, and platinum. The platinum group metal catalyst may contain any of these metal elements alone, or may be a combination of two or more of these. Among these, platinum, palladium, and platinum/palladium alloys have high catalytic activity and are preferably used as platinum group metal catalysts.

本発明の水処理装置は、典型的にはEDI装置の脱塩室において溶存酸素の除去も行えるようにしたものである。したがって、溶存酸素除去室はイオン交換膜で区画されていることが好ましく、イオン交換膜で区画されていることにより、溶存酸素除去室において被処理水の脱塩処理も効率よく行うことができるようになる。あるいはEDI装置における陽極室あるいは陰極室を溶存酸素除去室として用いることができ、その場合は、溶存酸素除去室は、陽極である電極板あるいは陰極である電極板によって区画されることになる。 The water treatment device of the present invention is typically designed to remove dissolved oxygen in the desalination chamber of the EDI device. Therefore, the dissolved oxygen removal chamber is preferably partitioned by an ion exchange membrane, and by partitioning by an ion exchange membrane, the desalination treatment of the water to be treated can also be efficiently performed in the dissolved oxygen removal chamber. Alternatively, the anode chamber or cathode chamber in the EDI device can be used as the dissolved oxygen removal chamber, in which case the dissolved oxygen removal chamber is partitioned by an electrode plate that is an anode or an electrode plate that is a cathode.

本発明によれば、被処理水中の溶存酸素を効率よく除去できるようになる。 The present invention makes it possible to efficiently remove dissolved oxygen from the water being treated.

本発明の実施の一形態の水処理装置を示す図である。1 is a diagram showing a water treatment device according to an embodiment of the present invention; 水処理装置の別の例を示す図である。FIG. 13 is a diagram showing another example of a water treatment device. 水処理装置の別の例を示す図である。FIG. 13 is a diagram showing another example of a water treatment device. 水処理装置の別の例を示す図である。FIG. 13 is a diagram showing another example of a water treatment device. 水処理装置の別の例を示す図である。FIG. 13 is a diagram showing another example of a water treatment device. 水処理装置の別の例を示す図である。FIG. 13 is a diagram showing another example of a water treatment device. 水処理装置の別の例を示す図である。FIG. 13 is a diagram showing another example of a water treatment device. 水処理装置を備える水処理システムの一例を示すフローシートである。1 is a flow chart showing an example of a water treatment system including a water treatment device. 水処理装置を備える水処理システムの別の例を示すフローシートである。1 is a flow chart showing another example of a water treatment system including a water treatment device. 水処理装置を備える水処理システムの別の例を示すフローシートである。1 is a flow chart showing another example of a water treatment system including a water treatment device. 比較例1の水処理装置を示す図である。FIG. 2 is a diagram showing a water treatment device according to a first comparative example. 電流密度と溶存酸素除去率との関係を示すグラフである。1 is a graph showing the relationship between current density and dissolved oxygen removal rate. 消費電力と溶存酸素除去率との関係を示すグラフである。1 is a graph showing the relationship between power consumption and dissolved oxygen removal rate. 溶存酸素負荷量当たりの電流と溶存酸素除去率との関係を示すグラフである。1 is a graph showing the relationship between current per dissolved oxygen load and dissolved oxygen removal rate. Pd担持アニオン交換樹脂での空間速度と溶存酸素除去率との関係を示すグラフである。1 is a graph showing the relationship between space velocity and dissolved oxygen removal rate in a Pd-supported anion exchange resin.

次に、本発明の好ましい実施の形態について図面を参照して説明する。図1は、本発明に基づく水処理装置の基本構成を示している。 Next, a preferred embodiment of the present invention will be described with reference to the drawings. Figure 1 shows the basic configuration of a water treatment device based on the present invention.

この水処理装置は、被処理水中の溶存酸素を除去するともに脱塩も行うものであって、一般的なEDI装置と同様に、陽極11が設けられた陽極室21と、陰極12が設けられた陰極室25とを備えるとともに、陽極室21と陰極室25との間に陽極室21の側から順に濃縮室22、溶存酸素除去室23及び濃縮室24が設けられている。陽極室21と濃縮室22の間はカチオン交換膜31で区画され、濃縮室22と溶存酸素除去室23の間はアニオン交換膜32で区画され、溶存酸素除去室23と濃縮室24の間はカチオン交換膜33で区画され、濃縮室24と陰極室25の間はアニオン交換膜34で区画されている。陽極室21にはカチオン交換体であるカチオン交換樹脂(CER)が充填され、濃縮室22,24及び陰極室25にはアニオン交換体であるアニオン交換樹脂(AER)が充填されている。溶存酸素除去室23には、表面に金属触媒を担持したイオン交換体が単床形態で充填されている。本実施形態では、表面にパラジウム(Pd)を担持したアニオン交換樹脂が溶存酸素除去室23に単床形態で充填されている。以下の説明において、表面にパラジウム(Pd)を担持したアニオン交換樹脂のことをPd担持アニオン交換樹脂(Pd AER)と呼ぶ。 This water treatment device removes dissolved oxygen from the water to be treated and also performs desalination. Like a general EDI device, it is equipped with an anode chamber 21 in which an anode 11 is provided, and a cathode chamber 25 in which a cathode 12 is provided. Between the anode chamber 21 and the cathode chamber 25, a concentration chamber 22, a dissolved oxygen removal chamber 23, and a concentration chamber 24 are provided in this order from the anode chamber 21 side. The anode chamber 21 and the concentration chamber 22 are partitioned by a cation exchange membrane 31, the concentration chamber 22 and the dissolved oxygen removal chamber 23 are partitioned by an anion exchange membrane 32, the dissolved oxygen removal chamber 23 and the concentration chamber 24 are partitioned by a cation exchange membrane 33, and the concentration chamber 24 and the cathode chamber 25 are partitioned by an anion exchange membrane 34. The anode chamber 21 is filled with a cation exchange resin (CER) which is a cation exchanger, and the concentration chambers 22, 24, and the cathode chamber 25 are filled with an anion exchange resin (AER) which is an anion exchanger. The dissolved oxygen removal chamber 23 is filled in a single bed with an ion exchanger having a metal catalyst supported on its surface. In this embodiment, the dissolved oxygen removal chamber 23 is filled in a single bed with an anion exchange resin having palladium (Pd) supported on its surface. In the following description, the anion exchange resin having palladium (Pd) supported on its surface is referred to as Pd-supported anion exchange resin (Pd AER).

被処理水は陰極室25に供給されており、陰極室25の出口水がそのまま溶存酸素除去室23の入口に供給される。溶存酸素除去室23からは、溶存酸素が除去され脱塩処理がなされた処理水が排出する。濃縮室22,24には供給水が供給され、濃縮室22,24の出口水は陽極室21に供給され、陽極室21の出口水は水処理装置の外部に排出される。陽極室21を通過した供給水は、排水として、陽極室21から排水される。供給水は、特に限定されるものではなく、例えば、市水、工業用水、地下水などから濁質や酸化性物質を除去した後、逆浸透膜装置によって処理して得られた水であってよい。 The water to be treated is supplied to the cathode chamber 25, and the outlet water of the cathode chamber 25 is supplied directly to the inlet of the dissolved oxygen removal chamber 23. Treated water from which dissolved oxygen has been removed and desalted is discharged from the dissolved oxygen removal chamber 23. Supply water is supplied to the concentration chambers 22 and 24, the outlet water of the concentration chambers 22 and 24 is supplied to the anode chamber 21, and the outlet water of the anode chamber 21 is discharged to the outside of the water treatment device. The supply water that has passed through the anode chamber 21 is discharged from the anode chamber 21 as wastewater. The supply water is not particularly limited, and may be, for example, water obtained by removing turbidity and oxidizing substances from city water, industrial water, groundwater, etc., and then treating it with a reverse osmosis membrane device.

次に、図1に示す水処理装置を用いた溶存酸素の除去を説明する。陽極11と陰極12の間に直流電流を印加し、濃縮室22,24に供給水を供給した状態で、陰極室25に被処理水を供給する。陰極室25では直流電流によって陰極12の表面において陰極反応が進行して水素が発生するから、陰極室25から出口水として排出される被処理水には水素が含まれることになる。この水素は、被処理水に溶解するだけでなく、微小な気泡として被処理水中に分散していてもよい。このように水素を含んだ被処理水は、そのまま溶存酸素除去室23に流入する。溶存酸素除去室23内に充填されたPd担持アニオン交換樹脂(Pd AER)の表面において、被処理水中の溶存酸素と水素とが反応して水が生成する。水素と反応した分だけ被処理水中の溶存酸素は減少する。金属触媒であるパラジウムの存在下での水素と酸素の反応速度は大きいから、十分な量の水素が被処理水中に含まれていれば、陰極室25からは溶存酸素が十分に除去された処理水が排出される。溶存酸素除去室23内に水素が存在すれば溶存酸素が除去されるので、溶存酸素除去室23と陰極室25での被処理水の滞留時間を考慮して陽極11と陰極12との間の直流電流の印加を断続的に行っても、溶存酸素の除去を行うこともできる。さらに言えば、直流電流の印加を連続してあるいは間欠的に行いながら、溶存酸素除去室23への被処理水の通水も間欠的に行ってもよい。 Next, the removal of dissolved oxygen using the water treatment device shown in FIG. 1 will be described. A direct current is applied between the anode 11 and the cathode 12, and the water to be treated is supplied to the cathode chamber 25 while the feed water is supplied to the concentration chambers 22 and 24. In the cathode chamber 25, the direct current causes a cathode reaction to proceed on the surface of the cathode 12, generating hydrogen, so that the water to be treated discharged as outlet water from the cathode chamber 25 contains hydrogen. This hydrogen may not only dissolve in the water to be treated, but may also be dispersed in the water to be treated as tiny bubbles. The water to be treated containing hydrogen thus flows directly into the dissolved oxygen removal chamber 23. On the surface of the Pd-supported anion exchange resin (Pd AER) filled in the dissolved oxygen removal chamber 23, the dissolved oxygen in the water to be treated reacts with hydrogen to generate water. The amount of dissolved oxygen in the water to be treated decreases by the amount of reaction with hydrogen. Since the reaction rate between hydrogen and oxygen is high in the presence of palladium, a metal catalyst, if a sufficient amount of hydrogen is contained in the water to be treated, treated water from which dissolved oxygen has been sufficiently removed will be discharged from the cathode chamber 25. If hydrogen is present in the dissolved oxygen removal chamber 23, dissolved oxygen will be removed. Therefore, dissolved oxygen can also be removed by intermittently applying a direct current between the anode 11 and the cathode 12, taking into account the residence time of the water to be treated in the dissolved oxygen removal chamber 23 and the cathode chamber 25. Furthermore, the water to be treated may be passed intermittently through the dissolved oxygen removal chamber 23 while applying a direct current continuously or intermittently.

Pd担持アニオン交換樹脂はアニオン交換体であるので、Pd担持アニオン交換樹脂が充填されている溶存酸素除去室23は、一般的なEDI装置における脱塩室と同様に機能し、溶存酸素除去室23では被処理水に対する脱塩処理も進行する。例えば、被処理水中の炭酸イオン(CO 2-)や炭酸水素イオン(HCO )などのアニオンは、Pd担持アニオン交換樹脂に捕捉される。カチオン交換膜33の溶存酸素除去室23側の面で水の解離により水酸化物イオン(OH)も発生するので、Pd担持アニオン交換樹脂(Pd AER)に捕捉されたアニオンは水酸化物イオンによりイオン交換されて遊離し、陽極11と陰極12の間の電界によって移動し、アニオン交換膜32を通って濃縮室22に移動する。そして濃縮室22に移動したアニオンは、濃縮室22内での供給水の流れに乗って陽極室21を介して装置の外部に排出される。 Since the Pd-loaded anion exchange resin is an anion exchanger, the dissolved oxygen removal chamber 23 filled with the Pd-loaded anion exchange resin functions in the same way as a desalination chamber in a general EDI device, and the desalination process of the water to be treated also proceeds in the dissolved oxygen removal chamber 23. For example, anions such as carbonate ions (CO 3 2− ) and bicarbonate ions (HCO 3 ) in the water to be treated are captured by the Pd-loaded anion exchange resin. Hydroxide ions (OH ) are also generated by dissociation of water on the surface of the cation exchange membrane 33 facing the dissolved oxygen removal chamber 23, so the anions captured by the Pd-loaded anion exchange resin (Pd AER) are ion-exchanged by the hydroxide ions and liberated, and move due to the electric field between the anode 11 and the cathode 12, and move through the anion exchange membrane 32 to the concentration chamber 22. The anions that have moved to the concentration chamber 22 are carried by the flow of the supply water in the concentration chamber 22 and discharged to the outside of the device via the anode chamber 21.

Pd担持アニオン交換樹脂は、過酸化水素を分解することもできるから、本実施形態の水処理装置では、被処理水中の過酸化水素も除去することができる。Pd担持アニオン交換樹脂が過酸化水素を分解したとき、分解生成物は水素と酸素である。生成した酸素は、Pd担持アニオン交換樹脂の存在下で水素と反応して水となるので、過酸化水素を分解除去したからといって溶存酸素濃度が上昇することはない。 Since Pd-loaded anion exchange resin can also decompose hydrogen peroxide, the water treatment device of this embodiment can also remove hydrogen peroxide from the water being treated. When Pd-loaded anion exchange resin decomposes hydrogen peroxide, the decomposition products are hydrogen and oxygen. The oxygen generated reacts with hydrogen in the presence of Pd-loaded anion exchange resin to become water, so the decomposition and removal of hydrogen peroxide does not result in an increase in the dissolved oxygen concentration.

図2は、別の実施形態の水処理装置を示している。図2に示した水処理装置は、図1に示した水処理装置と同様のものであるが、溶存酸素除去室23が複床構成となっており、Pd担持アニオン交換樹脂が溶存酸素除去室23において流れの上流側にのみ設けられている点で、図1に示したものと異なっている。溶存酸素除去室23において流れの下流側には、金属触媒を担持していないアニオン交換樹脂(AER)が充填されている。Pd担持アニオン交換樹脂の存在下における水素と酸素との反応速度は十分に大きいので、溶存酸素除去室23の一部に配置されるように複床形態でPd担持アニオン交換樹脂を充填しても、被処理水中の溶存酸素を十分に除去することができる。複床形態で溶存酸素除去室23内にPd担持アニオン交換樹脂を配置するとき、Pd担持アニオン交換樹脂の配置されている領域ではPd担持アニオン交換樹脂以外のものが存在しない形態(すなわち単床形態)であれば、溶存酸素除去室23内の任意の場所にPd担持アニオン交換樹脂の層を充填してもよい。その場合、当然のことながら、Pd担持アニオン交換樹脂の層を通過しないで溶存酸素除去室23内を流れる被処理水が発生しないようにする必要がある。図2に示す構成では、高価なパラジウム触媒の使用量を削減することができるので、コストを低減することができる。 Figure 2 shows a water treatment device of another embodiment. The water treatment device shown in Figure 2 is similar to the water treatment device shown in Figure 1, but differs from that shown in Figure 1 in that the dissolved oxygen removal chamber 23 has a double-bed structure and the Pd-loaded anion exchange resin is provided only on the upstream side of the dissolved oxygen removal chamber 23. The downstream side of the dissolved oxygen removal chamber 23 is filled with anion exchange resin (AER) that does not support a metal catalyst. Since the reaction rate between hydrogen and oxygen in the presence of Pd-loaded anion exchange resin is sufficiently high, even if the Pd-loaded anion exchange resin is filled in a double-bed form so as to be placed in a part of the dissolved oxygen removal chamber 23, the dissolved oxygen in the water to be treated can be sufficiently removed. When the Pd-loaded anion exchange resin is arranged in the dissolved oxygen removal chamber 23 in a double-bed configuration, if there is nothing other than the Pd-loaded anion exchange resin in the region where the Pd-loaded anion exchange resin is arranged (i.e., a single-bed configuration), the layer of the Pd-loaded anion exchange resin may be packed at any location in the dissolved oxygen removal chamber 23. In that case, it is of course necessary to prevent the generation of water to be treated that flows through the dissolved oxygen removal chamber 23 without passing through the layer of the Pd-loaded anion exchange resin. In the configuration shown in FIG. 2, the amount of expensive palladium catalyst used can be reduced, thereby reducing costs.

図3は、別の実施形態の水処理装置を示している。図3に示した水処理装置は、図2に示した水処理装置と同様のものであるが、複床形態となっている溶存酸素除去室23において下流側の領域に充填されるイオン交換体が、金属触媒を担持していないアニオン交換樹脂ではなく金属触媒を担持していないカチオン交換樹脂(CER)である点で、図2に示すものと異なっている。 Figure 3 shows a water treatment device of another embodiment. The water treatment device shown in Figure 3 is similar to the water treatment device shown in Figure 2, but differs from that shown in Figure 2 in that the ion exchanger filled in the downstream region of the dissolved oxygen removal chamber 23, which has a double-bed configuration, is a cation exchange resin (CER) that does not support a metal catalyst, rather than an anion exchange resin that does not support a metal catalyst.

図4は、別の実施形態の水処理装置を示している。図4に示した水処理装置は、図2に示した水処理装置と同様のものであるが、複床形態となっている溶存酸素除去室23において下流側の領域に、金属触媒を担持していないアニオン交換樹脂と金属触媒を担持していないカチオン交換樹脂とが混床形態(MB)で充填されている点で、図2に示すものと異なっている。 Figure 4 shows a water treatment device of another embodiment. The water treatment device shown in Figure 4 is similar to the water treatment device shown in Figure 2, but differs from that shown in Figure 2 in that the downstream region of the dissolved oxygen removal chamber 23, which has a double-bed configuration, is filled with an anion exchange resin that does not support a metal catalyst and a cation exchange resin that does not support a metal catalyst in a mixed bed configuration (MB).

図1~図4に示す水処理装置では、陽極11と陰極12の間において、溶存酸素除去室23の陰極側もしくは陽極側に中間イオン交換膜を介して溶存酸素除去室23に隣接するように脱塩室を設け、溶存酸素除去室23からの出口水を脱塩室に通水したり、あるいは、陰極室25の出口水を脱塩室に通水してから溶存酸素除去室23に供給したりすることができる。脱塩室にはイオン交換体が充填される。中間イオン交換膜は、アニオン交換膜であってもカチオン交換膜であってもよく、バイポーラ膜などの複合膜であってもよい。このように構成することにより、水処理装置全体としての脱塩性能をさらに高めることができる。 In the water treatment device shown in Figures 1 to 4, a desalination chamber is provided adjacent to the dissolved oxygen removal chamber 23 via an intermediate ion exchange membrane between the anode 11 and the cathode 12 on the cathode side or anode side of the dissolved oxygen removal chamber 23, and outlet water from the dissolved oxygen removal chamber 23 can be passed through the desalination chamber, or outlet water from the cathode chamber 25 can be passed through the desalination chamber and then supplied to the dissolved oxygen removal chamber 23. The desalination chamber is filled with an ion exchanger. The intermediate ion exchange membrane may be an anion exchange membrane or a cation exchange membrane, or may be a composite membrane such as a bipolar membrane. By configuring in this way, the desalination performance of the water treatment device as a whole can be further improved.

図5は、そのように溶存酸素除去室23に隣接して脱塩室を設けた水処理装置の例を示している。図5に示した水処理装置は、図1に示す水処理装置において、溶存酸素除去室23と濃縮室24との間に脱塩室26を配置したものである。溶存酸素除去室23と脱塩室26の間は、中間イオン交換膜であるカチオン交換膜35で仕切られており、脱塩室26と濃縮室24との間はカチオン交換膜33で仕切られている。脱塩室26にはカチオン交換樹脂が充填されている。陰極室25の出口水はまず溶存酸素除去室23に供給され、溶存酸素除去室23の出口水が脱塩室26に供給され、脱塩室26からは、溶存酸素が除去され、脱塩処理がなされた被処理水が流出する。 Figure 5 shows an example of a water treatment device in which a desalination chamber is provided adjacent to the dissolved oxygen removal chamber 23. The water treatment device shown in Figure 5 is the water treatment device shown in Figure 1, in which a desalination chamber 26 is arranged between the dissolved oxygen removal chamber 23 and the concentration chamber 24. The dissolved oxygen removal chamber 23 and the desalination chamber 26 are separated by a cation exchange membrane 35, which is an intermediate ion exchange membrane, and the desalination chamber 26 and the concentration chamber 24 are separated by a cation exchange membrane 33. The desalination chamber 26 is filled with a cation exchange resin. The outlet water of the cathode chamber 25 is first supplied to the dissolved oxygen removal chamber 23, the outlet water of the dissolved oxygen removal chamber 23 is supplied to the desalination chamber 26, and the treated water from which the dissolved oxygen has been removed and desalination treatment has been performed flows out from the desalination chamber 26.

図1~図5に示した水処理装置は、脱塩室を溶存酸素除去室として溶存酸素除去室において脱塩処理だけでなく溶存酸素の除去も行えるようにした点を除けば、一般的なEDI装置と同様の構成を有する。一般的なEDI装置では、陽極と陰極の間に複数の脱塩室を配置することができる。図1~図5に示す水処理装置においても、アニオン交換膜32、溶存酸素除去室23、カチオン交換膜33及び濃縮室24からなる構成を繰り返し単位として、陽極室21に隣接する濃縮室22と陰極室25に区画するアニオン交換膜34の間にこの繰り返し単位を複数配置することにより、陽極11と陰極12の間に複数の溶存酸素除去室23を配置することができる。図6に示す水処理装置は、図1に示す水処理装置において、溶存酸素除去室23を複数配置したものであり、陰極室25の出口水は、複数の溶存酸素除去室23に対して並列に分配されて通水される。各溶存酸素除去室23からは、溶存酸素が除去され、かつ脱塩処理がなされた脱塩水が排出される。 The water treatment device shown in Figures 1 to 5 has the same configuration as a general EDI device, except that the desalination chamber is used as a dissolved oxygen removal chamber so that not only desalination processing but also removal of dissolved oxygen can be performed in the dissolved oxygen removal chamber. In a general EDI device, multiple desalination chambers can be arranged between the anode and the cathode. In the water treatment device shown in Figures 1 to 5, a repeating unit is formed of a configuration consisting of an anion exchange membrane 32, a dissolved oxygen removal chamber 23, a cation exchange membrane 33, and a concentration chamber 24, and multiple repeating units are arranged between the anion exchange membrane 34 that divides the concentration chamber 22 adjacent to the anode chamber 21 and the cathode chamber 25, so that multiple dissolved oxygen removal chambers 23 can be arranged between the anode 11 and the cathode 12. The water treatment device shown in Figure 6 is the water treatment device shown in Figure 1, in which multiple dissolved oxygen removal chambers 23 are arranged, and the outlet water of the cathode chamber 25 is distributed in parallel to the multiple dissolved oxygen removal chambers 23 and passed through them. Each dissolved oxygen removal chamber 23 discharges desalinated water from which dissolved oxygen has been removed and which has been desalted.

本発明に基づく水処理装置では、陰極室自体を溶存酸素除去室として機能させることができる。その場合、陰極室とは別個に溶存酸素除去室を設ける必要はなくなる。図7は、陰極室自体を溶存酸素除去室とした水処理装置を示している。 In the water treatment device based on the present invention, the cathode chamber itself can function as the dissolved oxygen removal chamber. In that case, there is no need to provide a dissolved oxygen removal chamber separate from the cathode chamber. Figure 7 shows a water treatment device in which the cathode chamber itself serves as the dissolved oxygen removal chamber.

図7に示す水処理装置は、陽極11が設けられた陽極室21と、カチオン交換膜31によって陽極室21から区画されている濃縮室24と、陰極12が設けられてアニオン交換膜34によって濃縮室24から区画されている陰極室25とを備えている。陽極室21にはカチオン交換樹脂が充填され、濃縮室24にはアニオン交換樹脂が充填されている。陰極室25には、Pd担持アニオン交換樹脂が単床で充填されている。溶存酸素を含む被処理水が陰極室25に供給されており、被処理水は陰極室25を通過する。濃縮室24には供給水が供給され、濃縮室24の出口水はそのまま陽極室21に供給される。陽極室21を通過した供給水は、排水として、陽極室21から排水される。供給水は、特に限定されるものではなく、例えば、市水、工業用水、地下水などから濁質や酸化性物質を除去した後、逆浸透膜装置によって処理して得られた水であってもよい。 The water treatment device shown in FIG. 7 includes an anode chamber 21 in which an anode 11 is provided, a concentration chamber 24 separated from the anode chamber 21 by a cation exchange membrane 31, and a cathode chamber 25 in which a cathode 12 is provided and separated from the concentration chamber 24 by an anion exchange membrane 34. The anode chamber 21 is filled with a cation exchange resin, and the concentration chamber 24 is filled with an anion exchange resin. The cathode chamber 25 is filled with a single bed of Pd-loaded anion exchange resin. Water to be treated containing dissolved oxygen is supplied to the cathode chamber 25, and the water to be treated passes through the cathode chamber 25. Supply water is supplied to the concentration chamber 24, and the outlet water of the concentration chamber 24 is supplied directly to the anode chamber 21. The supply water that has passed through the anode chamber 21 is discharged from the anode chamber 21 as wastewater. The supply water is not particularly limited, and may be water obtained by removing turbidity and oxidizing substances from city water, industrial water, groundwater, etc., and then treating it with a reverse osmosis membrane device.

図7に示す水処理装置では、陽極11と陰極12の間に直流電流を印加し、濃縮室24に供給水を供給した状態で、陰極室25に被処理水を供給する。陰極室25では直流電流によって陰極12の表面において陰極反応が進行して水素が発生する。この水素は、Pd担持アニオン交換樹脂の表面において、被処理水中の溶存酸素と反応し、その結果、水を生成する。水素と反応した分だけ被処理水中の溶存酸素は減少する。その結果、陰極室25からは溶存酸素が十分に除去された処理水が排出される。陰極室25内に水素が存在すれば溶存酸素が除去されるので、陰極室25での被処理水の滞留時間を考慮して、陽極11と陰極12との間の直流電流の印加を断続的に行うこともできる。さらに言えば、直流電流の印加を連続してあるいは間欠的に行いながら、溶存酸素除去室23への被処理水の通水も間欠的に行ってもよい。 In the water treatment device shown in FIG. 7, a direct current is applied between the anode 11 and the cathode 12, and the water to be treated is supplied to the cathode chamber 25 while the feed water is supplied to the concentration chamber 24. In the cathode chamber 25, the direct current causes a cathode reaction on the surface of the cathode 12 to generate hydrogen. This hydrogen reacts with the dissolved oxygen in the water to be treated on the surface of the Pd-supported anion exchange resin, thereby generating water. The amount of dissolved oxygen in the water to be treated is reduced by the amount of hydrogen that reacts with the hydrogen. As a result, treated water from which dissolved oxygen has been sufficiently removed is discharged from the cathode chamber 25. If hydrogen is present in the cathode chamber 25, dissolved oxygen is removed, so the application of a direct current between the anode 11 and the cathode 12 can be intermittent, taking into account the residence time of the water to be treated in the cathode chamber 25. Furthermore, the water to be treated may be passed through the dissolved oxygen removal chamber 23 intermittently while the direct current is applied continuously or intermittently.

Pd担持アニオン交換樹脂はアニオン交換体であるので、被処理水中のアニオンは、Pd担持アニオン交換樹脂に捕捉される。陰極12での陰極反応により水酸化物イオン(OH)も発生するので、Pd担持アニオン交換樹脂に捕捉されたアニオンは水酸化物イオンによりイオン交換されて遊離し、陽極11と陰極12の間の電界によって移動し、アニオン交換膜34を通って濃縮室24に移動する。そして濃縮室24に移動したアニオンは、濃縮室24内での供給水の流れに乗って陽極室21を介して装置の外部に排出される。すなわち、図7に示す水処理装置において陰極室25では、アニオンに対する脱塩処理も行われることになる。またPd担持アニオン交換樹脂は、過酸化水素を分解することもできるから、この水処理装置では、図1~図6に示した水処理装置と同様に、被処理水中の過酸化水素も除去することができる。 Since the Pd-loaded anion exchange resin is an anion exchanger, anions in the water to be treated are captured by the Pd-loaded anion exchange resin. Since hydroxide ions (OH ) are also generated by the cathode reaction at the cathode 12, the anions captured by the Pd-loaded anion exchange resin are ion-exchanged by the hydroxide ions and liberated, and move by the electric field between the anode 11 and the cathode 12, and move through the anion exchange membrane 34 to the concentration chamber 24. The anions that have moved to the concentration chamber 24 are carried by the flow of the feed water in the concentration chamber 24 and are discharged to the outside of the device through the anode chamber 21. That is, in the water treatment device shown in FIG. 7, the cathode chamber 25 also performs desalination treatment for anions. In addition, since the Pd-loaded anion exchange resin can also decompose hydrogen peroxide, this water treatment device can also remove hydrogen peroxide from the water to be treated, as in the water treatment devices shown in FIGS. 1 to 6.

以上、本発明に基づく水処理装置を説明したが、この水処理装置は、純水あるいは超純水を製造する水処理システムに組み込むことができる。純水あるいは超純水を製造する水処理システムは、例えば、活性炭装置(AC)、逆浸透膜装置(RO)、紫外線照射装置(UV)、イオン交換樹脂装置(IER)、膜脱気装置(MD)、EDI装置、非再生型イオン交換装置(CP)、各種のフィルタなどを組み合わせて構成される。本発明に基づく水処理装置は、溶存酸素の除去、過酸化水素の除去、脱塩処理などを行うことができるから、膜脱気装置、イオン交換樹脂装置、EDI装置、非再生型イオン交換装置のうちの1以上を置き換えるために使用したり、あるいは、膜脱気装置、イオン交換樹脂装置、EDI装置、非再生型イオン交換装置の前段や後段に設けて不純物成分の除去性能の向上のために使用することができる。図8は、本発明に基づく水処理装置を組み込んだ水処理システムの一例を示している。 The water treatment device according to the present invention has been described above, but this water treatment device can be incorporated into a water treatment system that produces pure water or ultrapure water. The water treatment system that produces pure water or ultrapure water is composed of, for example, an activated carbon device (AC), a reverse osmosis membrane device (RO), an ultraviolet irradiation device (UV), an ion exchange resin device (IER), a membrane degassing device (MD), an EDI device, a non-regenerative ion exchange device (CP), various filters, etc. The water treatment device according to the present invention can remove dissolved oxygen, remove hydrogen peroxide, and perform desalination treatment, so it can be used to replace one or more of the membrane degassing device, ion exchange resin device, EDI device, and non-regenerative ion exchange device, or can be installed in the front or rear of the membrane degassing device, ion exchange resin device, EDI device, and non-regenerative ion exchange device to improve the removal performance of impurity components. Figure 8 shows an example of a water treatment system incorporating a water treatment device according to the present invention.

図8に示す水処理システムは、市水などの原水から超純水を生成するシステムであって、原水から一次純水を生成する一次純水システムと、一次純水から超純水を生成するサブシステムとから構成されている。図において符号100は、図1から図7を用いて説明した水処理装置のいずれかである。一次純水システムでは、原水タンク41、第1の逆浸透膜装置51、第2の逆浸透膜装置52、逆浸透膜処理水タンク42、紫外線照射装置(UV)55、水処理装置100がこの順で配置され、原水はこの順で処理され、その結果、一次純水が製造される。本発明に基づく水処理装置100を用いないのであれば、水処理装置100の代わりに、イオン交換樹脂装置やEDI装置と、膜脱気装置とが設けられることになる。一次純水システムでは、純水の供給先である後段の設備が満水になった場合には、製造された一次純水を逆浸透膜処理水タンク42に循環させている。 The water treatment system shown in FIG. 8 is a system for producing ultrapure water from raw water such as city water, and is composed of a primary pure water system for producing primary pure water from raw water, and a subsystem for producing ultrapure water from primary pure water. In the figure, the reference numeral 100 denotes any of the water treatment devices described with reference to FIG. 1 to FIG. 7. In the primary pure water system, the raw water tank 41, the first reverse osmosis membrane device 51, the second reverse osmosis membrane device 52, the reverse osmosis membrane treated water tank 42, the ultraviolet irradiation device (UV) 55, and the water treatment device 100 are arranged in this order, and the raw water is treated in this order, and as a result, primary pure water is produced. If the water treatment device 100 based on the present invention is not used, an ion exchange resin device, an EDI device, and a membrane degassing device will be provided instead of the water treatment device 100. In the primary pure water system, when the downstream equipment to which the pure water is supplied becomes full, the produced primary pure water is circulated to the reverse osmosis membrane treated water tank 42.

サブシステムでは、一次純水システムからの一次純水を貯える純水タンク45が設けられており、純水タンク45の出口に対し、紫外線照射装置(UV)61、非再生型イオン交換装置(CP)63、膜脱気装置(MD)65、及び限外濾過膜(UF)67がこの順で配置されて一次純水がこの順で処理され、超純水が製造される。製造された超純水の一部は純水タンク45に循環される。限外濾過膜(UF)67の代わりに精密濾過膜を用いてもよい。またサブシステムにおいて、非再生型イオン交換装置63と膜脱気装置65に代えて、本発明に基づく水処理装置を設けてもよく、非再生型イオン交換装置63、膜脱気装置65の前段や後段に設けてもよい。一次純水システムにおいてもサブシステムにおいても膜脱気装置を設ける場合、複数の膜脱気装置を直列に設けることによって全体としての溶存酸素の除去率を高めることがあるが、そのように複数の膜脱気装置を直列に設けるときに一部の膜脱気装置を本発明に基づく水処理装置で置き換えることもできる。 In the subsystem, a pure water tank 45 is provided to store the primary pure water from the primary pure water system, and an ultraviolet ray irradiation device (UV) 61, a non-regenerative ion exchange device (CP) 63, a membrane degassing device (MD) 65, and an ultrafiltration membrane (UF) 67 are arranged in this order at the outlet of the pure water tank 45, and the primary pure water is treated in this order to produce ultrapure water. A part of the produced ultrapure water is circulated to the pure water tank 45. A microfiltration membrane may be used instead of the ultrafiltration membrane (UF) 67. In addition, in the subsystem, instead of the non-regenerative ion exchange device 63 and the membrane degassing device 65, a water treatment device based on the present invention may be provided, or may be provided before or after the non-regenerative ion exchange device 63 and the membrane degassing device 65. When a membrane degasser is installed in both the primary pure water system and the subsystem, the overall dissolved oxygen removal rate may be increased by installing multiple membrane degassers in series. When installing multiple membrane degassers in series in this way, some of the membrane degassers can be replaced with water treatment equipment based on the present invention.

図9は、本発明に基づく水処理装置を組み込んだ水処理システムの別の例を示している。図9に示す水処理システムは、図8に示す水処理システムにおいて、水処理装置100の位置を一次純水システムの紫外線照射装置55の前段とし、紫外線照射装置55の後段に、イオン交換樹脂装置またはEDI装置である処理装置(IER/EDI)56を配置したものである。逆浸透膜処理水タンク42内の水は、本発明に基づく水処理装置100、紫外線照射装置55及び処理装置56の順で通水し、イオン交換樹脂装置またはEDI装置である処理装置56から一次純水が排出される。紫外線照射装置55において被処理水に紫外線を照射して全有機炭素(TOC)成分の分解除去を行う場合、被処理水中の溶存酸素濃度が高いとTOCの除去率が低下することが知られている。したがって、図9に示す水処理システムでは、紫外線照射装置55の入口水での溶存酸素濃度を低くすることができ、原水中の溶存酸素濃度が高い場合に紫外線照射装置でのTOC除去率を高めることができる。 9 shows another example of a water treatment system incorporating a water treatment device according to the present invention. In the water treatment system shown in FIG. 9, the water treatment device 100 is positioned in front of the ultraviolet irradiation device 55 of the primary pure water system in the water treatment system shown in FIG. 8, and a treatment device (IER/EDI) 56, which is an ion exchange resin device or an EDI device, is arranged behind the ultraviolet irradiation device 55. The water in the reverse osmosis membrane treated water tank 42 passes through the water treatment device 100 based on the present invention, the ultraviolet irradiation device 55, and the treatment device 56 in that order, and primary pure water is discharged from the treatment device 56, which is an ion exchange resin device or an EDI device. When the ultraviolet irradiation device 55 irradiates ultraviolet rays to the water to be treated to decompose and remove total organic carbon (TOC) components, it is known that the removal rate of TOC decreases when the dissolved oxygen concentration in the water to be treated is high. Therefore, in the water treatment system shown in FIG. 9, the dissolved oxygen concentration in the inlet water of the ultraviolet irradiation device 55 can be lowered, and the TOC removal rate in the ultraviolet irradiation device can be increased when the dissolved oxygen concentration in the raw water is high.

図10は、本発明に基づく水処理装置を組み込んだ水処理システムのさらに別の例を示している。図10に示す水処理システムは、図8に示す水処理システムにおいて、サブシステムの紫外線照射装置61の出口と非再生型イオン交換装置63の入口との間にも、本発明に基づく水処理装置100を配置したものである。紫外線照射によって水中の有機物を分解除去するときには炭酸イオンや炭酸水素イオンなどが生成するが、水処理装置100は、炭酸イオンや炭酸水素イオンを除去することもできるので、サブシステム内に図8に示すように水処理装置100を配置することにより、後段の非再生型イオン交換装置63での処理負荷を低減して不純物の除去性能を高めることができる。 Figure 10 shows yet another example of a water treatment system incorporating a water treatment device according to the present invention. The water treatment system shown in Figure 10 is the water treatment system shown in Figure 8, in which a water treatment device 100 based on the present invention is also placed between the outlet of the ultraviolet irradiation device 61 and the inlet of the non-regenerative ion exchange device 63 of the subsystem. When organic matter in water is decomposed and removed by ultraviolet irradiation, carbonate ions and bicarbonate ions are generated, but the water treatment device 100 can also remove carbonate ions and bicarbonate ions. Therefore, by placing the water treatment device 100 in the subsystem as shown in Figure 8, the processing load on the subsequent non-regenerative ion exchange device 63 can be reduced and the impurity removal performance can be improved.

次に、実施例及び比較例により本発明をさらに詳しく説明する。 Next, the present invention will be explained in more detail with reference to examples and comparative examples.

[実施例1]
実施例1として、図1に示した水処理装置を組み立てた。陽極室21、濃縮室22,24及び陰極室25の寸法は、いずれも105mm×105mm×9.5mmであり、溶存酸素除去室23の寸法は105mm×105mm×19.5mmであった。実施例1では、溶存酸素除去室23にPd担持アニオン交換樹脂(Pd AER)を単床で充填した。陽極11及び陰極12の大きさは105mm×105mmであり、印加電流をこれらの電極の面積で除することによって電流密度を算出できる。
[Example 1]
As Example 1, the water treatment device shown in Fig. 1 was assembled. The dimensions of the anode chamber 21, the concentration chambers 22, 24, and the cathode chamber 25 were all 105 mm x 105 mm x 9.5 mm, and the dimensions of the dissolved oxygen removal chamber 23 were 105 mm x 105 mm x 19.5 mm. In Example 1, the dissolved oxygen removal chamber 23 was filled with a single bed of Pd-supported anion exchange resin (Pd AER). The size of the anode 11 and the cathode 12 was 105 mm x 105 mm, and the current density can be calculated by dividing the applied current by the area of these electrodes.

[実施例2]
実施例2として、図3に示した水処理装置を組み立てた。この水処理装置は、構成や寸法では実施例1のものと同じであるが、溶存酸素除去室23において複床でPd担持アニオン交換樹脂(Pd AER)が充填されている点で実施例1のものと異なっている。具体的には、実施例2の溶存酸素除去室23では、被処理水の入口側にPd担持アニオン交換樹脂(Pd AER)の層が配置し、被処理水の出口側に、金属触媒を担持していないカチオン交換樹脂(CER)の層が配置している。Pd担持アニオン交換樹脂の層での流路長と金属触媒を担持していないカチオン交換樹脂の層での流路長の比は1:1であった。
[Example 2]
As Example 2, the water treatment device shown in Fig. 3 was assembled. This water treatment device has the same configuration and dimensions as those of Example 1, but differs from Example 1 in that the dissolved oxygen removal chamber 23 is filled with Pd-supported anion exchange resin (Pd AER) in a multiple bed. Specifically, in the dissolved oxygen removal chamber 23 of Example 2, a layer of Pd-supported anion exchange resin (Pd AER) is arranged on the inlet side of the water to be treated, and a layer of cation exchange resin (CER) not supporting a metal catalyst is arranged on the outlet side of the water to be treated. The ratio of the flow path length in the layer of Pd-supported anion exchange resin to the flow path length in the layer of cation exchange resin not supporting a metal catalyst was 1:1.

[比較例1]
比較例1として、図11に示した水処理装置を組み立てた。この水処理装置は、構成や寸法では実施例1のものと同じであるが、溶存酸素除去室23において混床形態でPd担持アニオン交換樹脂と金属触媒を担持していないカチオン交換樹脂とが充填されている点で実施例1のものと異なっている。具体的には比較例1では、Pd担持アニオン交換樹脂と金属触媒を担持していないカチオン交換樹脂とを嵩体積で1:1で混合し、これらが混じり合った状態(Pd AER MB)で溶存酸素除去室23に充填した。
[Comparative Example 1]
As Comparative Example 1, the water treatment device shown in Fig. 11 was assembled. This water treatment device was the same as that of Example 1 in terms of configuration and dimensions, but differed from that of Example 1 in that the dissolved oxygen removal chamber 23 was filled with a Pd-supported anion exchange resin and a cation exchange resin not supporting a metal catalyst in a mixed bed form. Specifically, in Comparative Example 1, the Pd-supported anion exchange resin and the cation exchange resin not supporting a metal catalyst were mixed in a bulk volume ratio of 1:1, and the mixed state (Pd AER MB) was filled in the dissolved oxygen removal chamber 23.

実施例1,2、比較例1の各水処理装置に対し、印加電流を0.5A~2.5Aの範囲で変化させながら、50L/hの流量で被処理水を通水し、5L/hの流量で供給水を通水し、これらの水処理装置を運転した。陰極室25の入口での被処理水の溶存酸素濃度と溶存酸素除去室23から排出される処理水の溶存酸素濃度から、電流密度に応じた溶存酸素濃度の変化を調べた。結果を図12に示す。図12より、Pd担持アニオン交換樹脂の充填形態が混床形態である比較例1では、電流密度が大きくなっても溶存酸素除去率は70%程度で頭打ちとなったが、単床形態である実施例1及び複床形態である実施例2では、電流密度を大きくすることによって、溶存酸素除去率を80%以上とすることができた。また図12より、少なくとも20%の溶存酸素除去率を達成するために電流密度を0.45A/dm以上2.3A/dm以下とすることが好ましい。よりよい溶存酸素除去率を得るために、電流密度を1.0A/dm以上2.0A/dm以下にすることがより好ましい。 For each of the water treatment devices of Examples 1 and 2 and Comparative Example 1, the water to be treated was passed through at a flow rate of 50 L/h and the feed water was passed through at a flow rate of 5 L/h while changing the applied current in the range of 0.5 A to 2.5 A. The change in the dissolved oxygen concentration according to the current density was examined from the dissolved oxygen concentration of the water to be treated at the inlet of the cathode chamber 25 and the dissolved oxygen concentration of the treated water discharged from the dissolved oxygen removal chamber 23. The results are shown in FIG. 12. As shown in FIG. 12, in Comparative Example 1 in which the filling form of the Pd-supported anion exchange resin is a mixed bed form, the dissolved oxygen removal rate plateaued at about 70% even when the current density increased, but in Example 1 in which the filling form of the Pd-supported anion exchange resin is a single bed form and Example 2 in which the filling form of the Pd-supported anion exchange resin is a multiple bed form, the dissolved oxygen removal rate could be increased to 80% or more by increasing the current density. Also, as shown in FIG. 12, in order to achieve a dissolved oxygen removal rate of at least 20%, it is preferable to set the current density to 0.45 A/dm 2 or more and 2.3 A/dm 2 or less. In order to obtain a better dissolved oxygen removal rate, it is more preferable to set the current density to 1.0 A/dm 2 or more and 2.0 A/dm 2 or less.

水処理装置において、陽極11と陰極12の間の印加電流を変化させると、その時の印加電圧も変化し、電流と電圧との積である消費電力は、印加電流の変化以上に変化する。図12で示したそれぞれの結果における消費電力を計算し、被処理水の単位流量あたりの消費電力に換算した結果を図13に示している。図13では横軸が単位流量の被処理水あたりの消費電力であるが、比較例1は、実施例1,2に比べて、消費電力が大きくなっている。印加電流は実施例1,2と比較例1とで同じであるから、混床形態の比較例1では、実施例1,2に比べて印加電圧が高くなっており、同じ溶存酸素除去率を得るために必要な消費電力が大きくなっている。言い換えれば、実施例1で表される単床形態の場合と実施例2で表される複床形態の場合では、省エネルギーで溶存酸素を除去できることになる。電流密度の好ましい範囲と同様の考察を行うと、被処理水の単位流量当たりの消費電力は、0.06W・h/L以上0.70W・h/L以下であることが好ましく、0,17W・h/L以上0.50W・h/L以下であることがより好ましい。 In the water treatment device, when the applied current between the anode 11 and the cathode 12 is changed, the applied voltage at that time also changes, and the power consumption, which is the product of the current and the voltage, changes more than the change in the applied current. The power consumption for each result shown in FIG. 12 was calculated and converted into the power consumption per unit flow rate of the water to be treated, and the results are shown in FIG. 13. In FIG. 13, the horizontal axis is the power consumption per unit flow rate of the water to be treated, and the power consumption in Comparative Example 1 is larger than that in Examples 1 and 2. Since the applied current is the same in Examples 1 and 2 and Comparative Example 1, the applied voltage in Comparative Example 1, which is a mixed bed form, is higher than that in Examples 1 and 2, and the power consumption required to obtain the same dissolved oxygen removal rate is larger. In other words, in the case of the single bed form shown in Example 1 and the case of the multiple bed form shown in Example 2, dissolved oxygen can be removed with less energy. Considering the same as the preferred range of current density, the power consumption per unit flow rate of the water being treated is preferably 0.06 W·h/L or more and 0.70 W·h/L or less, and more preferably 0.17 W·h/L or more and 0.50 W·h/L or less.

図12に示す結果を得たときの陰極室25の入口での被処理水の溶存酸素濃度とそのときの電流値とに基づいて、溶存酸素負荷量(単位時間中に流れ込む被処理水に含まれる溶存酸素の質量)当たりの電流値と溶存酸素除去率との関係を調べた。結果を図14に示す。図14より、溶存酸素負荷量当たりの電流値は、50%以上の溶存酸素除去率を達成するためには2mA・h/mgであることが必要であり、80%以上の溶存酸素除去率を達成するためには4mA・h/mgであることが必要である。したがって溶存酸素負荷量当たりの電流値は、2mA・h/mg以上8mA・h/mg以下とすることが好ましく、4mA・h/mg以上8mA・h/mg以下とすることがより好ましい。 Based on the dissolved oxygen concentration of the water to be treated at the inlet of the cathode chamber 25 when the results shown in FIG. 12 were obtained and the current value at that time, the relationship between the current value per dissolved oxygen load (the mass of dissolved oxygen contained in the water to be treated flowing in per unit time) and the dissolved oxygen removal rate was investigated. The results are shown in FIG. 14. From FIG. 14, the current value per dissolved oxygen load needs to be 2 mA·h/mg to achieve a dissolved oxygen removal rate of 50% or more, and needs to be 4 mA·h/mg to achieve a dissolved oxygen removal rate of 80% or more. Therefore, the current value per dissolved oxygen load is preferably 2 mA·h/mg or more and 8 mA·h/mg or less, and more preferably 4 mA·h/mg or more and 8 mA·h/mg or less.

印加電流を2Aに固定して実施例1,2及び比較例1の水処理装置を運転し、被処理水の流量を変えたときの溶存酸素除去率の変化を調べた。その結果を、溶存酸素除去室23内のPd担持アニオン交換樹脂の体積を基準とする空間速度に対する溶存酸素除去率の変化として図15に示す。図15に示すように、被処理水の流量が大きくなるにつれて溶存酸素除去率が低下し、単床形態の場合、Pd担持アニオン交換樹脂の体積を基準とする被処理水の空間速度、すなわち、被処理水の流量をPd担持アニオン交換樹脂の体積で除算した商が500h-1のときに溶存酸素除去率が50%まで低下した。さらに被処理水の流量を大きくすると溶存酸素除去率が低下するもの考えられ、実用的には溶存酸素除去室23に充填されたPd担持アニオン交換樹脂の体積を基準とする被処理水の空間速度が1000h-1以下であることが好ましく、500h-1以下であることがより好ましいことが分かった。 The water treatment devices of Examples 1 and 2 and Comparative Example 1 were operated with the applied current fixed at 2A, and the change in the dissolved oxygen removal rate when the flow rate of the water to be treated was changed was examined. The results are shown in FIG. 15 as the change in the dissolved oxygen removal rate with respect to the space velocity based on the volume of the Pd-supported anion exchange resin in the dissolved oxygen removal chamber 23. As shown in FIG. 15, the dissolved oxygen removal rate decreases as the flow rate of the water to be treated increases, and in the case of a single bed form, the space velocity of the water to be treated based on the volume of the Pd-supported anion exchange resin, that is, the quotient obtained by dividing the flow rate of the water to be treated by the volume of the Pd-supported anion exchange resin, was 500 h -1 , and the dissolved oxygen removal rate decreased to 50%. It is considered that the dissolved oxygen removal rate decreases when the flow rate of the water to be treated is further increased, and it was found that in practice, the space velocity of the water to be treated based on the volume of the Pd-supported anion exchange resin filled in the dissolved oxygen removal chamber 23 is preferably 1000 h -1 or less, and more preferably 500 h -1 or less.

[実施例3]
被処理水として溶存酸素濃度が7.9mg/L、炭酸濃度が3.2mg/Lであるものを使用してこの被処理水を流量50L/hで単床形態である実施例1の水処理装置に供給し、印加電流を1.0Aとして水処理装置を運転した。そして、溶存酸素除去室23から排出される処理水における溶存酸素濃度と炭酸濃度とを測定してそれぞれの除去率を求めた。結果を表1に示す。表1より、本発明に基づく水処理装置によれば、被処理水中の溶存酸素だけでなく炭酸も除去できることが分かった。
[Example 3]
The water to be treated had a dissolved oxygen concentration of 7.9 mg/L and a carbon dioxide concentration of 3.2 mg/L, and this water was supplied to the water treatment device of Example 1 having a single bed configuration at a flow rate of 50 L/h, and the water treatment device was operated with an applied current of 1.0 A. The dissolved oxygen concentration and carbon dioxide concentration in the treated water discharged from the dissolved oxygen removal chamber 23 were then measured to determine the respective removal rates. The results are shown in Table 1. From Table 1, it was found that the water treatment device based on the present invention can remove not only dissolved oxygen but also carbon dioxide from the water to be treated.

Figure 0007672248000001
Figure 0007672248000001

[実施例4]
被処理水として溶存酸素濃度が7.8mg/L~8.2mg/Lであるものを使用してこの被処理水を流量50L/hで、実施例1,2及び比較例1の水処理装置に供給し、印加電流を1.5Aとしてそれぞれの水処理装置を運転した。陰極室25の出口水における水素濃度と、溶存酸素除去室23から排出される処理水ので溶存酸素濃度を測定した。処理水の溶存酸素濃度から、溶存酸素除去室23で除去された酸素量を算出し、これと陰極室出口水での水素濃度から、陰極室25で生成した水素の利用効率を算出した。算出に際しては、水素(H)の1モルが酸素(O)の0.5モルと反応するものとした。結果を表2に示す。
[Example 4]
The water to be treated had a dissolved oxygen concentration of 7.8 mg/L to 8.2 mg/L, and was supplied to the water treatment devices of Examples 1 and 2 and Comparative Example 1 at a flow rate of 50 L/h, and each water treatment device was operated with an applied current of 1.5 A. The hydrogen concentration in the outlet water of the cathode chamber 25 and the dissolved oxygen concentration in the treated water discharged from the dissolved oxygen removal chamber 23 were measured. From the dissolved oxygen concentration of the treated water, the amount of oxygen removed in the dissolved oxygen removal chamber 23 was calculated, and from this and the hydrogen concentration in the outlet water of the cathode chamber, the utilization efficiency of the hydrogen generated in the cathode chamber 25 was calculated. In the calculation, it was assumed that 1 mole of hydrogen (H 2 ) reacts with 0.5 moles of oxygen (O 2 ). The results are shown in Table 2.

Figure 0007672248000002
Figure 0007672248000002

複床形態の実施例2と混床形態の比較例1とを比較すると、溶存酸素除去室23内のPd担持アニオン交換樹脂の充填量は同じであるにも関わらず、混床形態の比較例1の方が水素利用効率が低くなった。一方、複床形態の実施例2と単床形態の実施例1とを比較すると、溶存酸素除去室23内のPd担持アニオン交換樹脂の充填量については実施例1が実施例2の2倍であるにも関わらず、水素の利用効率には大きな差は見られなかった。実施例1,2では、陰極室25で発生した水素のほぼ全量が溶存酸素の除去に使われている。 When comparing Example 2 with the double-bed configuration and Comparative Example 1 with the mixed-bed configuration, the hydrogen utilization efficiency was lower in Comparative Example 1 with the mixed-bed configuration, even though the amount of Pd-loaded anion exchange resin packed in the dissolved oxygen removal chamber 23 was the same. On the other hand, when comparing Example 2 with the single-bed configuration, no significant difference was observed in the hydrogen utilization efficiency, even though the amount of Pd-loaded anion exchange resin packed in the dissolved oxygen removal chamber 23 was twice that of Example 2. In Examples 1 and 2, almost the entire amount of hydrogen generated in the cathode chamber 25 was used to remove dissolved oxygen.

11 陽極
12 陰極
21 陽極室
22,24 濃縮室
23 溶存酸素除去室
25 陰極室
26 脱塩室
31,33,35 カチオン交換膜
32,34 アニオン交換膜
100 水処理装置
REFERENCE SIGNS LIST 11 anode 12 cathode 21 anode chamber 22, 24 concentration chamber 23 dissolved oxygen removal chamber 25 cathode chamber 26 deionization chamber 31, 33, 35 cation exchange membrane 32, 34 anion exchange membrane 100 water treatment device

Claims (11)

被処理水に含まれる少なくとも溶存酸素を除去する水処理方法であって、
陽極室に設けられている陽極と陰極室に設けられている陰極との間に直流電流を印加する工程と、
前記陽極と前記陰極との間に配置されてイオン交換体が充填されている、前記陰極室とは別個に設けられている溶存酸素除去室に前記被処理水を通水する工程と、
を有し、
前記溶存酸素除去室に充填されている前記イオン交換体の少なくとも一部は金属触媒が担持されたイオン交換体であり、
前記金属触媒が担持されたイオン交換体は、前記溶存酸素除去室の少なくとも一部において単床形態で充填されている、水処理方法。
A water treatment method for removing at least dissolved oxygen contained in water to be treated, comprising the steps of:
applying a direct current between an anode provided in the anode chamber and a cathode provided in the cathode chamber ;
A step of passing the water to be treated through a dissolved oxygen removal chamber disposed between the anode chamber and the cathode chamber and filled with an ion exchanger , the dissolved oxygen removal chamber being provided separately from the cathode chamber ;
having
At least a part of the ion exchanger packed in the dissolved oxygen removal chamber is an ion exchanger carrying a metal catalyst,
The water treatment method, wherein the ion exchanger carrying the metal catalyst is packed in a single bed form in at least a part of the dissolved oxygen removing chamber.
前記被処理水を前記陰極室に供給し、前記陰極室を通過した後の前記被処理水を溶存酸素除去室に通水させる、請求項1に記載の水処理方法。 2. The water treatment method according to claim 1, further comprising the steps of supplying the water to be treated to the cathode chamber, and causing the water to be treated after passing through the cathode chamber to pass through a dissolved oxygen removing chamber. 被処理水に含まれる少なくとも溶存酸素を除去する水処理装置であって、
陽極及び陰極と、
前記陽極が設けられている陽極室と前記陰極が設けられている陰極室との間において前記陰極室とは別個に配置されてイオン交換体が充填され、前記被処理水が通水する溶存酸素除去室と、
を有し、
前記溶存酸素除去室に充填されている前記イオン交換体の少なくとも一部は金属触媒が担持されたイオン交換体であり、
前記金属触媒が担持されたイオン交換体は、前記溶存酸素除去室の少なくとも一部において単床形態で充填されており、
前記陽極と前記陰極の間に直流電流が印加される水処理装置。
A water treatment device that removes at least dissolved oxygen contained in water to be treated,
an anode and a cathode;
a dissolved oxygen removal chamber, which is disposed between an anode chamber in which the anode is provided and a cathode chamber in which the cathode is provided, and which is filled with an ion exchanger and through which the water to be treated passes;
having
At least a part of the ion exchanger packed in the dissolved oxygen removal chamber is an ion exchanger carrying a metal catalyst,
The ion exchanger carrying the metal catalyst is filled in at least a portion of the dissolved oxygen removing chamber in a single bed form,
A water treatment device in which a direct current is applied between the anode and the cathode.
前記溶存酸素除去室は、前記陽極である電極板、及びイオン交換膜のいずれか1つ以上で区画されている、請求項3に記載の水処理装置。 The water treatment device according to claim 3 , wherein the dissolved oxygen removal chamber is defined by at least one of an electrode plate serving as the anode and an ion exchange membrane. 前記溶存酸素除去室は、前記被処理水の流れに関して前記陰極室に直列に接続されている、請求項3または4に記載の水処理装置。 The water treatment device according to claim 3 or 4, wherein the dissolved oxygen removal chamber is connected in series with the cathode chamber with respect to the flow of the water to be treated. 前記溶存酸素除去室の上流に、前記被処理水に対して水素を供給する手段が設けられている、請求項3乃至5のいずれか1項に記載の水処理装置。 The water treatment device according to any one of claims 3 to 5, further comprising a means for supplying hydrogen to the water to be treated, provided upstream of the dissolved oxygen removal chamber. 前記被処理水での処理対象の溶存酸素負荷量に対する前記直流電流の電流値が2mA・h/mg以上8mA・h/mgに設定される、請求項3乃至6のいずれか1項に記載の水処理装置。 The water treatment device according to claim 3 , wherein a current value of the direct current with respect to a dissolved oxygen load to be treated in the water to be treated is set to 2 mA·h/mg or more and 8 mA·h/mg or less. 前記溶存酸素除去室に充填された前記金属触媒が担持されたイオン交換体の体積を基準とする前記被処理水の空間速度が1000h-1以下に設定される、請求項3乃至7のいずれか1項に記載の水処理装置。 The water treatment device according to any one of claims 3 to 7, wherein the space velocity of the water to be treated based on the volume of the ion exchanger carrying the metal catalyst filled in the dissolved oxygen removal chamber is set to 1000 h -1 or less. 前記被処理水での処理対象の溶存酸素負荷量に対する単位時間あたりに前記溶存酸素除去室に供給される水素の量の質量比が0.1以上0.4以下となるように、前記溶存酸素除去室に供給される前記被処理水に含まれる水素の量が調整される、請求項3乃至8のいずれか1項に記載の水処理装置。 9. The water treatment device according to claim 3, wherein the amount of hydrogen contained in the water to be treated and supplied to the dissolved oxygen removal chamber is adjusted so that the mass ratio of the amount of hydrogen supplied to the dissolved oxygen removal chamber per unit time to the dissolved oxygen load to be treated in the water to be treated is 0.1 or more and 0.4 or less. 前記溶存酸素除去室における電流密度が0.45A/dm以上2.3A/dm以下である、請求項3乃至9のいずれか1項に記載の水処理装置。 The water treatment device according to claim 3 , wherein a current density in the dissolved oxygen removal chamber is 0.45 A/dm 2 or more and 2.3 A/dm 2 or less. 前記溶存酸素除去室での前記被処理水の流量あたりの消費電力が0.06W・h/L以上0.70W・h/L以下である、請求項3乃至10のいずれか1項に記載の水処理装置。 The water treatment device according to any one of claims 3 to 10, wherein the power consumption per flow rate of the water to be treated in the dissolved oxygen removal chamber is 0.06 W·h/L or more and 0.70 W·h/L or less.
JP2021038311A 2021-03-10 2021-03-10 Water treatment method and water treatment device Active JP7672248B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021038311A JP7672248B2 (en) 2021-03-10 2021-03-10 Water treatment method and water treatment device
KR1020237030934A KR20230145404A (en) 2021-03-10 2022-02-03 Water treatment methods and water treatment devices
US18/280,737 US20240239695A1 (en) 2021-03-10 2022-02-03 Water treatment method and water treatment apparatus
PCT/JP2022/004236 WO2022190727A1 (en) 2021-03-10 2022-02-03 Water treatment method and water treatment apparatus
CN202280020285.8A CN116964006A (en) 2021-03-10 2022-02-03 Water treatment method and water treatment device
TW111105519A TW202246185A (en) 2021-03-10 2022-02-16 Water treatment method and water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021038311A JP7672248B2 (en) 2021-03-10 2021-03-10 Water treatment method and water treatment device

Publications (2)

Publication Number Publication Date
JP2022138431A JP2022138431A (en) 2022-09-26
JP7672248B2 true JP7672248B2 (en) 2025-05-07

Family

ID=83399582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021038311A Active JP7672248B2 (en) 2021-03-10 2021-03-10 Water treatment method and water treatment device

Country Status (2)

Country Link
JP (1) JP7672248B2 (en)
CN (1) CN116964006A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4582460A1 (en) 2022-08-31 2025-07-09 Kureha Corporation Hydrophobically modified cellulose fibers and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094064A (en) 2001-09-27 2003-04-02 Kurita Water Ind Ltd Electrodeionization equipment
JP2007185587A (en) 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and apparatus for removing hydrogen peroxide
WO2018117035A1 (en) 2016-12-22 2018-06-28 オルガノ株式会社 Deionized water manufacturing system, deionized water manufacturing device, and deionized water manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320165A (en) * 1993-05-19 1994-11-22 Tookemi:Kk Water treatment
JPH10272474A (en) * 1997-03-28 1998-10-13 Kurita Water Ind Ltd Electric deionizer
CN104341029B (en) * 2014-11-28 2016-08-17 陕西科技大学 Electrodeionization electro-catalysis one reactor according and the method removing nitrate
SG11201801842PA (en) * 2015-09-30 2018-04-27 Organo Corp Water treatment apparatus and water treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094064A (en) 2001-09-27 2003-04-02 Kurita Water Ind Ltd Electrodeionization equipment
JP2007185587A (en) 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and apparatus for removing hydrogen peroxide
WO2018117035A1 (en) 2016-12-22 2018-06-28 オルガノ株式会社 Deionized water manufacturing system, deionized water manufacturing device, and deionized water manufacturing method

Also Published As

Publication number Publication date
CN116964006A (en) 2023-10-27
JP2022138431A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
JP7724067B2 (en) Water treatment method and apparatus
JP7129965B2 (en) Pure water production method, pure water production system, ultrapure water production method, and ultrapure water production system
US20240239695A1 (en) Water treatment method and water treatment apparatus
US12338152B2 (en) Boron removal device and boron removal method, and pure water production device and pure water production method
KR20230029831A (en) Hydrogen peroxide removal method and removal device and pure water production device
JP7672248B2 (en) Water treatment method and water treatment device
WO2024053305A1 (en) Ultrapure water production device and ultrapure water production method
CN112424128B (en) Pure water production system and pure water production method
JP7672247B2 (en) Water treatment method and water treatment device
JP7040008B2 (en) TOC removal device
JP7460729B1 (en) Pure water production method, pure water production equipment, and ultrapure water production system
JP7634369B2 (en) Hydrogen peroxide removal method, hydrogen peroxide removal device, and pure water production device
JP7634370B2 (en) Hydrogen peroxide removal method and device, and pure water production device
TWI895576B (en) Water teratment method and device
JP7736950B1 (en) Water treatment method and water treatment device
CN116096680B (en) Water treatment system, pure water production method, and water treatment method
WO2025197140A1 (en) Water treatment method and water treatment device
JP2022012724A (en) Method for operating electric deionized water production device and deionized water production system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20250128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250422

R150 Certificate of patent or registration of utility model

Ref document number: 7672248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150