[go: up one dir, main page]

JP7607123B2 - High temperature operating secondary battery cells and module batteries - Google Patents

High temperature operating secondary battery cells and module batteries Download PDF

Info

Publication number
JP7607123B2
JP7607123B2 JP2023525713A JP2023525713A JP7607123B2 JP 7607123 B2 JP7607123 B2 JP 7607123B2 JP 2023525713 A JP2023525713 A JP 2023525713A JP 2023525713 A JP2023525713 A JP 2023525713A JP 7607123 B2 JP7607123 B2 JP 7607123B2
Authority
JP
Japan
Prior art keywords
container
storage container
cells
coil
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023525713A
Other languages
Japanese (ja)
Other versions
JPWO2022255099A1 (en
JPWO2022255099A5 (en
Inventor
基広 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2022255099A1 publication Critical patent/JPWO2022255099A1/ja
Publication of JPWO2022255099A5 publication Critical patent/JPWO2022255099A5/ja
Application granted granted Critical
Publication of JP7607123B2 publication Critical patent/JP7607123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Secondary Cells (AREA)

Description

本発明は、高温動作型の二次電池およびこれを多数接続してなるモジュール電池に関するものであり、特に、それらの温度制御のための構成に向けられてなる。The present invention relates to high-temperature operating secondary batteries and module batteries consisting of a large number of such batteries connected together, and is particularly directed to configurations for controlling their temperature.

電力系統に接続して使用される蓄電池として、ナトリウム-硫黄電池(以下、NaS電池と称する)がすでに公知である。単一のNaS電池(単電池)は概略、活物質である金属ナトリウム(Na)と硫黄(S)とが、Naイオン伝導性を有する固体電解質であるベータアルミナをセパレータとしてセル(電池容器)に隔離収納された構造を有する、高温動作型の二次電池である。運転温度は約300℃であり、単電池においては、係る運転温度において溶融(液体)状態にある両活物質の電気化学反応により、起電力が発生する。Sodium-sulfur batteries (hereinafter referred to as NaS batteries) are already known as storage batteries that are used in connection with power grids. A single NaS battery (single cell) is a high-temperature operating secondary battery that is roughly structured such that the active materials metallic sodium (Na) and sulfur (S) are isolated and stored in a cell (battery container) with beta alumina, a solid electrolyte with Na ion conductivity, as a separator. The operating temperature is about 300°C, and in the single cell, an electromotive force is generated by the electrochemical reaction of both active materials that are in a molten (liquid) state at the operating temperature.

NaS電池は通常、所望の容量および出力を確保するために、複数の単電池(集合電池)を相互に接続し断熱の収容容器に収容したモジュール電池の形で使用される(例えば、特許文献1参照)。モジュール電池においては、それぞれに複数の単電池を直列に接続した複数の回路(ストリング)が並列に接続されることでブロックが構成されており、複数の該ブロックが直列に接続されている。To ensure the desired capacity and output, NaS batteries are usually used in the form of a module battery in which multiple cells (battery clusters) are interconnected and housed in an insulated container (see, for example, Patent Document 1). In a module battery, multiple circuits (strings), each of which has multiple cells connected in series, are connected in parallel to form blocks, and multiple such blocks are connected in series.

複数の単電池から構成されたNaS電池のモジュール電池を従来よりもさらに高出力かつ長時間運転したいという一般的なニーズが存在する。これを例えば、特許文献1に開示されているような、複数のストリングが並列に接続されてなる従来のモジュール電池において実現するのであれば、一見、ストリングを構成する単電池の個数(直接接続数)を増やすことや、ブロックの数を増やすことで、容易になし得るようにも思料される。There is a general need to operate NaS battery modules made up of multiple cells with higher output and longer times than before. For example, if this is to be achieved in a conventional module battery in which multiple strings are connected in parallel, as disclosed in Patent Document 1, it may seem at first glance that this can be easily achieved by increasing the number of cells that make up the string (the number of direct connections) or the number of blocks.

しかしながら、特許文献1に開示されているような従来構成のモジュール電池は、以下のような理由から、高出力化への適応が難しい場合がある。However, conventional module batteries such as those disclosed in Patent Document 1 can be difficult to adapt to higher output for the following reasons:

まず、モジュール電池においては一般に、待機時には単電池内の活物質を溶融状態に保つべく単電池を加熱する必要がある一方で、動作時(充放電時)には活物質の反応により生じる熱を速やかに外部へと逃がす必要がある。特許文献1に開示されてなるモジュール電池の場合、係る要請に対応するべく、単電池の収容容器は断熱構造とされており、底面および内側面にはヒータが配置されてなる一方で、排熱のためのファンおよびダクトも設けられてなる。そして、このような構成の収容容器内に、複数の単電池が縦横に多数個ずつ(3個以上ずつ)配列される態様にて2次元的に収容されてなる。First, in a module battery, it is generally necessary to heat the cells during standby to keep the active material in the cells in a molten state, while during operation (charging and discharging), it is necessary to quickly release heat generated by the reaction of the active material to the outside. In the case of the module battery disclosed in Patent Document 1, in order to meet such requirements, the container for the cells has an insulated structure, and heaters are arranged on the bottom and inner sides, while a fan and duct are also provided for exhausting heat. Then, in the container configured in this way, a plurality of cells are two-dimensionally housed in a manner in which multiple cells (three or more) are arranged vertically and horizontally.

仮に、同様の構成を維持しつつ収容容器を大型化して単電池の収容個数を増やすことによって従来よりも高出力化を図ろうした場合、収容容器内の温度分布の均一性を維持するのが困難となる。具体的には、高出力化に伴い動作時(充放電時)の収容容器内における発熱量が増大するほど、収容容器の中央部からの排熱が困難となって、中央部の温度が端縁部に比して高くなる。係る場合、該中央部に配置された単電池が収容容器の端部に配置された単電池よりも高温化するため放電時の反応熱および通電加熱により許容温度に早く到達する。また、収容容器の端部に配置された単電池は中央部に配置された単電池よりも温度が低いために化学的内部抵抗が高い。そのため、単電池の配列の仕方を従来通りとしつつ収容容器を大型化して単電池の収容個数を増やしたモジュール電池の場合、列ごとの通電電流が不均等となり保有電気量の有効利用が阻害される。一方でヒータの加熱により単電池が高温状態に維持される待機時においても、収容容器内部全体の温度分布を均一にすることが難しくなる。 If an attempt is made to increase the output power by increasing the size of the container and increasing the number of unit cells while maintaining the same configuration, it becomes difficult to maintain the uniformity of the temperature distribution in the container. Specifically, as the amount of heat generated in the container during operation (charging and discharging) increases with increasing output power, it becomes more difficult to exhaust heat from the center of the container, and the temperature of the center becomes higher than that of the edge. In such a case, the unit cells arranged in the center become hotter than the unit cells arranged at the ends of the container, and therefore reach the allowable temperature earlier due to the reaction heat during discharge and the heating caused by the current. In addition, the unit cells arranged at the ends of the container have a higher chemical internal resistance because their temperature is lower than that of the unit cells arranged in the center. Therefore, in the case of a module battery in which the arrangement of the unit cells is the same as in the past, but the container is enlarged to increase the number of unit cells, the current flowing in each row becomes uneven, and the effective use of the stored electricity is hindered . On the other hand, even during standby when the unit cells are maintained at a high temperature by the heating of the heater, it becomes difficult to uniform the temperature distribution throughout the container.

国際公開第2015/056739号International Publication No. 2015/056739

本発明は、上記課題に鑑みてなされたものであり、高温動作型の二次電池のモジュール電池における温度の均一性を安定的に確保するための技術を提供することを、目的とする。The present invention has been made in consideration of the above-mentioned problems, and aims to provide a technology for stably ensuring temperature uniformity in a module battery of a high-temperature operating secondary battery.

上記課題を解決するため、本発明の第1の態様は、高温動作型の二次電池の単電池であって、正極部と負極部とを備える円筒状の本体部と、前記本体部の周囲に環装されてなり、少なくとも円筒状の金属部と前記金属部の外側面に環装された絶縁部とを含む外装部と、導電性の線材が巻回されることによって前記絶縁部の外側面に設けられたコイルと、を備え、前記金属部が、前記本体部の外側面と接触させて設けられ、前記本体部の変形を拘束する内管と、前記内管の外側面と接触させて設けられた外管と、の2層構成を有してなり、前記金属部においては、少なくとも前記外管が、前記コイルの両端部間に高周波交流電流が通電されることにより誘導加熱される、ことを特徴とする。 In order to solve the above problems, a first aspect of the present invention is a single cell of a high-temperature operating secondary battery, comprising: a cylindrical main body portion having a positive electrode portion and a negative electrode portion; an exterior portion that is ring-wrapped around the main body portion and includes at least a cylindrical metal portion and an insulating portion ring-wrapped on an outer surface of the metal portion; and a coil that is provided on the outer surface of the insulating portion by winding a conductive wire , wherein the metal portion has a two-layer structure including an inner tube that is provided in contact with the outer surface of the main body portion and that restrains deformation of the main body portion, and an outer tube that is provided in contact with the outer surface of the inner tube, and in the metal portion, at least the outer tube is inductively heated by passing a high-frequency alternating current between both ends of the coil .

また、本発明の第の態様は、第1の態様に係る高温動作型の二次電池の単電池であって、前記線材が中空の金属製のパイプである、ことを特徴とする。 A second aspect of the present invention is a unit cell of the high-temperature operating secondary battery according to the first aspect, characterized in that the wire is a hollow metal pipe.

また、本発明の第の態様は、高温動作型の二次電池のモジュール電池であって、断熱構造を有する収容容器と、前記収容容器に収容された、それぞれが第1またはの態様に係る単電池である複数の単電池と、前記複数の単電池のそれぞれに備わる前記コイルに高周波交流電流を通電可能な少なくとも一つの高周波交流電流発生装置と、を備え、前記高周波交流電流発生装置が前記コイルに前記高周波交流電流を通電することによって前記金属部が誘導加熱され、前記収容容器においては、前記複数の単電池の全てが前記収容容器と隣接する、ことを特徴とする。 In addition, a third aspect of the present invention is a module battery of a high-temperature operating type secondary battery, comprising: a storage container having a thermally insulated structure; a plurality of single cells, each of which is a single cell according to the first or second aspect , stored in the storage container; and at least one high-frequency AC generator capable of passing a high-frequency AC current to the coil provided in each of the plurality of single cells, wherein the metal part is inductively heated by the high-frequency AC generator passing the high-frequency AC current through the coil, and all of the plurality of single cells are adjacent to the storage container.

また、本発明の第の態様は、高温動作型の二次電池のモジュール電池であって、断熱構造を有する収容容器と、前記収容容器に収容された、それぞれが第2の態様に係る単電池である複数の単電池と、前記複数の単電池のそれぞれに備わる前記コイルに高周波交流電流を通電可能な少なくとも一つの高周波交流電流発生装置と、前記収容容器の側部に付設されたダクトと、前記ダクトに対して冷却気体を供給可能なブロアと、を備え、前記高周波交流電流発生装置が前記コイルに前記高周波交流電流を通電することによって前記金属部が誘導加熱され、前記コイルの一方端部が前記収容容器の側部を貫通して前記ダクト内に延在してなり、前記コイルの他方端部が前記収容容器の側部を貫通して外部に延在してなり、前記ブロアが供給した前記冷却気体が前記コイルの内部を流通することで前記複数の単電池のそれぞれにおいて生じる熱が排出される、ことを特徴とする。 In addition, a fourth aspect of the present invention is a module battery of a high-temperature operating type secondary battery, comprising: a storage container having a thermal insulation structure; a plurality of single cells, each of which is a single cell according to the second aspect, stored in the storage container; at least one high-frequency AC generator capable of passing a high-frequency AC current to the coil provided in each of the plurality of single cells; a duct attached to a side of the storage container; and a blower capable of supplying cooling gas to the duct, wherein the high-frequency AC generator passes the high-frequency AC current through the coil, thereby inductively heating the metal part, one end of the coil penetrating the side of the storage container and extending into the duct and the other end of the coil penetrating the side of the storage container and extending to the outside, and the cooling gas supplied by the blower circulates inside the coil, thereby dissipating heat generated in each of the plurality of single cells.

また、本発明の第の態様は、第の態様に係る高温動作型の二次電池のモジュール電池であって、前記収容容器においては、前記複数の単電池の全てが前記収容容器と隣接する、ことを特徴とする。 A fifth aspect of the present invention is a module battery of a high-temperature operating type secondary battery according to the fourth aspect, characterized in that, in the storage container, all of the plurality of single cells are adjacent to the storage container.

本発明の第1またはの態様によれば、複数の単電池を収容容器に収容してモジュール電池を構成する場合において、コイルの両端部間に高周波交流電流を通電して金属部を誘導加熱することにより、個々の単電池を独立に加熱することが出来る。これにより、単電池を高温に維持する必要があるモジュール電池の待機時において、それぞれの単電池に備わる金属部を誘導加熱することにより、収容容器内の単電池の温度の均一性を安定的に確保することが出来る。 According to the first or second aspect of the present invention, in a case where a plurality of unit cells are housed in a container to form a module battery, each unit cell can be heated independently by passing a high-frequency alternating current between both ends of a coil to inductively heat the metal parts. As a result, during standby of the module battery when the unit cells need to be kept at a high temperature, the metal parts of each unit cell can be inductively heated, thereby stably ensuring uniformity in the temperature of the unit cells in the container.

特に、第の態様によれば、複数の単電池を収容容器に収容してモジュール電池を構成する場合において、それぞれの単電池に備わるコイルにおいてパイプの両端部間に所定の流体を流通させることが可能となるので、係るパイプに冷却気体を流通させることで、個々の単電池を独立に冷却することが出来る。単電池内での活物質の反応により生じた熱を外部へと排出する必要があるモジュール電池の充放電時に、係る流通を行うことにより、収容容器内の単電池の温度の均一性を安定的に確保することが出来る。 In particular, according to the second aspect, in the case where a plurality of unit cells are housed in a container to form a module battery, a predetermined fluid can be circulated between both ends of a pipe in a coil provided in each unit cell, so that each unit cell can be cooled independently by circulating a cooling gas through the pipe. By carrying out such circulation during charging and discharging of the module battery, when it is necessary to discharge heat generated by a reaction of the active material in the unit cells to the outside, it is possible to stably ensure the uniformity of the temperature of the unit cells in the container.

また、本発明の第の態様によれば、モジュール電池において、個々の単電池を独立に加熱することが出来る。これにより、単電池を高温に維持する必要があるモジュール電池の待機時において、それぞれの単電池に備わる金属部を誘導加熱することにより、収容容器内の単電池の温度の均一性を安定的に確保することが出来る。また、それぞれの単電池に熱電対を設けるなどして、各単電池の温度を個別に測定することにより、単電池を個別に制御することも可能となる。 According to the third aspect of the present invention, in a battery module, each of the cells can be heated independently. As a result, when the battery module is on standby and the cells need to be kept at a high temperature, the metal parts of each cell can be inductively heated, thereby stably ensuring uniformity in the temperature of the cells in the container. In addition, by providing a thermocouple in each cell to measure the temperature of each cell individually, it becomes possible to control each cell individually.

また、本発明の第および第の態様によれば、モジュール電池において、それぞれの単電池に備わるコイルのパイプに冷却気体を流通させることで、個々の単電池を独立に冷却することが出来る。単電池内での活物質の反応により生じた熱を外部へと排出する必要があるモジュール電池の充放電時に、係る流通を行うことにより、収容容器内の単電池の温度の均一性を安定的に確保することが出来る。 According to the fourth and fifth aspects of the present invention, in the battery module, by circulating a cooling gas through the coil pipes provided in each of the cells, it is possible to independently cool each of the cells. By circulating the gas in this manner during charging and discharging of the battery module, when it is necessary to discharge heat generated by the reaction of the active material in the cells to the outside, it is possible to stably ensure the uniformity of the temperature of the cells in the container.

また、本発明の第および第の態様によれば、モジュール電池において、周囲を他の単電池のみに囲繞された単電池が存在しないので、収容容器の内部において周縁部に配置された単電池と中央部に配置された単電池との間に温度差が生じるという問題が、構成上生じない。これにより、収容容器内における温度の均一性がさらに安定的に得られる。
According to the third and fifth aspects of the present invention, since there is no cell in the module battery that is surrounded only by other cells, the problem of a temperature difference occurring between the cells arranged on the periphery and the cells arranged in the center inside the container does not occur due to the configuration, and thus the temperature uniformity inside the container can be further stably obtained.

単電池1の概略的な構成を示す側面図である。FIG. 2 is a side view showing a schematic configuration of a cell 1. 単電池1の概略的な構成を示す平面図である。FIG. 2 is a plan view showing a schematic configuration of a cell 1. モジュール電池100の概略的な構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of a module battery 100. モジュール電池100の概略的な構成を示す側面図である。1 is a side view showing a schematic configuration of a module battery 100. FIG. モジュール電池100の温度制御に関するブロック図である。FIG. 2 is a block diagram relating to temperature control of the module battery 100.

<単電池およびモジュール電池の構成>
図1および図2はそれぞれ、本実施の形態に係る単電池1の概略的な構成を示す側面図および平面図である。図3および図4はそれぞれ、本実施の形態に係るモジュール電池100の(より詳細にはその本体部の)概略的な構成を示す平面図および側面図である。図5は、モジュール電池100の温度制御に係るブロック図である。
<Configuration of single cell and module battery>
Fig. 1 and Fig. 2 are a side view and a plan view, respectively, showing a schematic configuration of a cell 1 according to the present embodiment. Fig. 3 and Fig. 4 are a plan view and a side view, respectively, showing a schematic configuration of a module battery 100 (more specifically, of its main body) according to the present embodiment. Fig. 5 is a block diagram relating to temperature control of the module battery 100.

図1に示すように、単電池1は、金属ナトリウム(Na)と硫黄(S)とを活物質とし、両者を離隔するセパレータとしてNaイオン伝導性を有する固体電解質であるベータアルミナが用いられてなる有底円筒形の電池本体1aの側面(側周面)に、これと同軸の円筒形をなす外装部1bを環装した構造を有する、高温動作型の二次電池である。電池本体1aの一方端においては、周縁部から正極端子1pが、中央部から負極端子1nが、それぞれ突出している。As shown in Fig. 1, the cell 1 is a high-temperature operating secondary battery having a structure in which a cylindrical battery body 1a with a bottom is made of metallic sodium (Na) and sulfur (S) as active materials, and beta alumina, a solid electrolyte with Na ion conductivity, is used as a separator separating the two, and a cylindrical exterior part 1b is attached to the side (side peripheral surface) of the battery body 1a. At one end of the battery body 1a, a positive terminal 1p protrudes from the peripheral part, and a negative terminal 1n protrudes from the center.

これに加え、単電池1の外側面には、金属製(例えば銅製、その他アルミニウム製なども可)のパイプ(中空の金属線材あるいは細管)が巻回されることによってコイル10が設けられてなる。In addition, a coil 10 is provided on the outer surface of the single cell 1 by winding a metal pipe (hollow metal wire or thin tube) made of metal (e.g., copper, aluminum, etc.).

外装部1bは、電池本体1aの外側面(アルミナ製)と接触する円筒状の金属部5と、金属部5の外側面と接触する同じく円筒状の絶縁部6とから構成される。金属部5はさらに、内管5aと外管5bとが同心円状に積層された2層構成を有する。The exterior part 1b is composed of a cylindrical metal part 5 that contacts the outer surface (made of alumina) of the battery body 1a, and a cylindrical insulating part 6 that contacts the outer surface of the metal part 5. The metal part 5 further has a two-layer structure in which an inner tube 5a and an outer tube 5b are stacked concentrically.

内管5aは、鞘管とも称され、モジュール電池100の使用時および待機時に高温となる電池本体1aが変形することを防ぐために(電池本体1aの変形を拘束するために)設けられる、金属製(例えばステンレス製)の円筒状の部材である。係る目的を果たすという点からは、内管5aは数百μm~数mm程度の厚みに設けられればよい。The inner tube 5a, also called the sheath tube, is a cylindrical member made of metal (e.g., stainless steel) that is provided to prevent deformation of the battery body 1a, which becomes hot during use and standby of the module battery 100 (to restrict deformation of the battery body 1a). In order to achieve this purpose, the inner tube 5a only needs to be provided with a thickness of several hundred μm to several mm.

外管5bは、モジュール電池100の待機時に単電池1を(より詳細には当該外管5bが環装された電池本体1aを)加熱する際の加熱源として利用するべく設けられる、金属製(例えば鋼製)の円筒状の部材である。The outer tube 5b is a cylindrical member made of metal (e.g., steel) that is provided to be used as a heat source for heating the single battery 1 (more specifically, the battery body 1a around which the outer tube 5b is attached) when the module battery 100 is on standby.

具体的には、単電池1の外側面には上述のようにコイル10が設けられてなり、外管5bは、モジュール電池100に備わる所定の交流電源(交流電流発生装置)である加熱電源20によりコイル10の2つの端部10aおよび端部10b(以下、両端10a、10bとも称する)の間に高周波交流電流が通電されることによって生じる渦電流にて誘導加熱される。そして、この誘導加熱された外管5bが熱源となって、当該単電池1が加熱されるようになっている。なお、外管5bに加えて内管5aも誘導加熱され、単電池1の加熱に寄与する態様であってもよい。Specifically, the coil 10 is provided on the outer surface of the single cell 1 as described above, and the outer tube 5b is induction heated by eddy currents generated by passing high-frequency AC current between the two ends 10a and 10b (hereinafter also referred to as both ends 10a and 10b) of the coil 10 by a heating power source 20, which is a predetermined AC power source (AC generator) provided in the module battery 100. The induction-heated outer tube 5b then becomes a heat source to heat the single cell 1. Note that in addition to the outer tube 5b, the inner tube 5a may also be induction-heated to contribute to heating the single cell 1.

外管5bの厚みやコイル10におけるパイプの厚み、巻数などは、係る誘導加熱による単電池1の加熱が好適に実現されるように適宜に定められてよい。外管5bは通常、加熱対象である単電池1と該外管5bとの熱容量が同等となる質量が得られる程度の厚みに、設けられる。係る条件をみたす外管5bとしては、外径が100mm程度で、厚さが3mm程度のものが例示される。The thickness of the outer tube 5b, the thickness of the pipe in the coil 10, the number of turns, etc. may be appropriately determined so that the heating of the single battery 1 by the induction heating is suitably realized. The outer tube 5b is usually provided with a thickness that provides a mass such that the heat capacity of the single battery 1 to be heated is equivalent to that of the outer tube 5b. An example of an outer tube 5b that satisfies the above conditions is one with an outer diameter of about 100 mm and a thickness of about 3 mm.

なお、金属部5が内管5aと外管5bとの2層構成を有することは必須の態様ではなく、金属部5が内管5aと外管5bのそれぞれに要求される性能を有した一の金属製の円筒状の部材にて構成される態様であってもよい。すなわち、一の円筒状の部材からなる金属部5が、電池本体1aの変形を拘束する機能と、単電池1の加熱源としての機能とを、ともに有する態様であってもよい。It is not essential that the metal part 5 has a two-layer structure of the inner tube 5a and the outer tube 5b, and the metal part 5 may be configured as a single metallic cylindrical member having the performance required for each of the inner tube 5a and the outer tube 5b. In other words, the metal part 5 made of a single cylindrical member may have both the function of restricting the deformation of the battery body 1a and the function of serving as a heat source for the single cell 1.

絶縁部6は、金属部5とコイル10とを絶縁するために設けられた、主として絶縁体(例えばマイカ)からなる円筒状の部材である。絶縁部6は、係る絶縁が好適に行われる一方で、外管5bの誘導加熱の妨げとならない厚みにて設けられる。The insulating part 6 is a cylindrical member mainly made of an insulator (e.g., mica) that is provided to insulate the metal part 5 from the coil 10. The insulating part 6 is provided with a thickness that provides suitable insulation while not interfering with induction heating of the outer tube 5b.

そして、本実施の形態においては、図3に示すように、それぞれが以上のような構成を有する複数の単電池1(集合電池とも称する)が収容容器30に収容されることによって、モジュール電池100が構成されてなる。In this embodiment, as shown in FIG. 3, a module battery 100 is formed by housing a plurality of single cells 1 (also called a battery assembly) each having the above-described configuration in a housing container 30.

収容容器30は、概略、外面31aおよび内面31bが金属板からなるとともに、その側面および底面においてそれら金属板の間に断熱材32が充填された直方体状の容器である。以降においては、収容容器30の平面視長手方向に沿った一対の外面31aおよび一対の内面31bをそれぞれ外面31a1、内面31b1と称し、平面視短手方向に沿った一対の外面31aおよび一対の内面31bをそれぞれ外面31a2、内面31b2と称する。また、収容容器30は、その底部および側部(側辺部)を支持枠33にて支持されてなる。The storage container 30 is generally a rectangular parallelepiped container in which the outer surface 31a and the inner surface 31b are made of metal plates, and the insulating material 32 is filled between the metal plates on the sides and bottom. Hereinafter, the pair of outer surfaces 31a and the pair of inner surfaces 31b along the longitudinal direction of the storage container 30 in a plan view will be referred to as the outer surfaces 31a1 and the inner surfaces 31b1, respectively, and the pair of outer surfaces 31a and the pair of inner surfaces 31b along the short direction in a plan view will be referred to as the outer surfaces 31a2 and the inner surfaces 31b2, respectively. The bottom and sides (side edges) of the storage container 30 are supported by a support frame 33.

また、図3および図4に示すように、収容容器30の一対の外面31a1のそれぞれには、ブロア41(41a、41b)と、これに連続するダクト42(42a、42b)とが付設されてなる。さらに、収容容器30内の適宜の位置には、図3および図4においては図示を省略する温度センサ35(図5)が設けられており、収容容器30内の温度をモニタできるようになっている。温度センサ35には公知のものを使用可能であり、その個数および配置位置、種類などは、モジュール電池100の動作に支障を来さず、かつ、所望の温度を精度よく測定出来る限りにおいて、適宜に定められてよい。3 and 4, a pair of outer surfaces 31a1 of the storage container 30 are each provided with a blower 41 (41a, 41b) and a duct 42 (42a, 42b) connected thereto. Furthermore, a temperature sensor 35 (FIG. 5), not shown in FIGS. 3 and 4, is provided at an appropriate position within the storage container 30, so that the temperature within the storage container 30 can be monitored. Any known temperature sensor can be used as the temperature sensor 35, and the number, position, type, etc. of the temperature sensor may be determined as appropriate as long as it does not interfere with the operation of the module battery 100 and can accurately measure the desired temperature.

より詳細には、収容容器30の上部には、収容容器30内の断熱を確保する目的で、図示しない蓋体が配置される。蓋体は、収容容器30と同様、外面および内面が金属板からなるとともに、内部に断熱材が充填された構成を有する。また、収容容器30内の配置物以外の隙間には、砂材が充填される。砂材は、単電池1において破損、異常加熱、活物質の漏洩などの不具合が生じた場合に周囲に対する影響を低減する目的で、充填される。砂材としては、膨張ひる石(バーミキュライト)や珪砂などが例示される。 More specifically, a lid (not shown) is placed on top of the storage container 30 to ensure insulation within the storage container 30. The lid, like the storage container 30, has an outer and inner surface made of metal plate and is filled with insulating material inside. In addition, any gaps other than those between the objects placed inside the storage container 30 are filled with sand. The sand is filled in order to reduce the impact on the surroundings in the event of a malfunction such as breakage, abnormal heating, or leakage of active material in the single cell 1. Examples of sand include expanded vermiculite and silica sand.

また、好ましくは、断熱構造の維持の容易さと高断熱性の両立の観点から、収容容器30および蓋体には、真空断熱構造ではなく大気断熱構造が採用される。なお、大気断熱構造にて十分な断熱性能を確保する観点からは、断熱材の熱伝導率は小さいほど好ましく、一般的なグラスウール断熱材の熱伝導率の半分以下である、20mW/m・K以下であることがより好ましい。その場合、真空断熱構造が採用される場合に比して収容容器30や蓋体の厚みを過度に増大させることなく、モジュール電池100の動作に必要な断熱性を確保することが出来る。In addition, from the viewpoint of achieving both ease of maintaining the insulation structure and high insulation, an atmospheric insulation structure is preferably adopted for the storage container 30 and the lid body rather than a vacuum insulation structure. From the viewpoint of ensuring sufficient insulation performance with the atmospheric insulation structure, the smaller the thermal conductivity of the insulation material, the more preferable, and it is more preferable that the thermal conductivity is 20 mW/m·K or less, which is less than half the thermal conductivity of general glass wool insulation material. In this case, the insulation required for the operation of the module battery 100 can be ensured without excessively increasing the thickness of the storage container 30 and the lid body compared to the case where a vacuum insulation structure is adopted.

本実施の形態に係るモジュール電池100においては、それぞれが円筒状をなす単電池1が、正極端子1pと負極端子1nが備わる側の端部を上方とする姿勢にて、平面視長手方向に沿って2列に並べられて、収容容器30に収容される。図3に示す場合においては、各列8個ずつの単電池1が配列されてなる。換言すれば、係る単電池1の配列形態に合わせて、収容容器30の形状が定められてなる。In the module battery 100 according to this embodiment, the single cells 1, each of which is cylindrical, are arranged in two rows along the longitudinal direction in a plan view with the end on the side where the positive electrode terminal 1p and the negative electrode terminal 1n are provided facing upward, and are housed in the container 30. In the case shown in FIG. 3, eight single cells 1 are arranged in each row. In other words, the shape of the container 30 is determined according to the arrangement of the single cells 1.

係る収容容器30内においては、隣り合って配置された単電池1の一方の正極端子1pと他方の負極端子1nとが接続端子C1にて電気的に接続されることで、複数の単電池1が直列に接続された回路(ストリング)が形成されてなる。ただし、図3においては、一部の接続端子C1のみを図示している。In the container 30, the positive terminal 1p of one of the adjacent cells 1 and the negative terminal 1n of the other are electrically connected by a connection terminal C1 to form a circuit (string) in which a plurality of cells 1 are connected in series. However, in FIG. 3, only some of the connection terminals C1 are shown.

さらに、収容容器30内において端部に配置された4つの単電池1には、収容容器30の外部との間で電気的接続を図るための外部接続端子C2が接続されている。外部接続端子C2は、収容容器30の側部において外部へと貫通させられてなる。より詳細には、係る貫通は、外部接続端子C2と収容容器30の外面31a1および内面31b1との電気的絶縁を確保しつつなされている。Furthermore, the four single cells 1 arranged at the ends in the storage container 30 are connected to external connection terminals C2 for electrical connection with the outside of the storage container 30. The external connection terminals C2 are penetrated to the outside at the side of the storage container 30. More specifically, such penetration is performed while ensuring electrical insulation between the external connection terminals C2 and the outer surface 31a1 and inner surface 31b1 of the storage container 30.

また、それぞれの単電池1の外側面に設けられてなるコイル10の両端10a、10bについてもそれぞれ、収容容器30の側部において外部へと貫通させられてなる。係る貫通も、コイル10と収容容器30の外面31a1および内面31b1との電気的絶縁を確保しつつなされている。In addition, both ends 10a, 10b of the coil 10 provided on the outer surface of each battery cell 1 are also penetrated to the outside at the side of the storage container 30. This penetration is also performed while ensuring electrical insulation between the coil 10 and the outer surface 31a1 and inner surface 31b1 of the storage container 30.

より具体的には、一方の端部10aはダクト42内に突出している。換言すれば、端部10aはダクト42に覆われている。これに対し、もう一方の端部10bは収容容器30の外部に露出してなる。加えて、図3および図4においては図示を省略しているが、それぞれの単電池1にて外側面に巻回されてなるコイル10の両端10a、10bは、収容容器30外に備わる加熱電源20に接続されてなる。More specifically, one end 10a protrudes into the duct 42. In other words, the end 10a is covered by the duct 42. In contrast, the other end 10b is exposed to the outside of the storage container 30. In addition, although not shown in Figures 3 and 4, both ends 10a, 10b of the coil 10 wound around the outer surface of each single cell 1 are connected to a heating power source 20 provided outside the storage container 30.

上述したように、コイル10は中空のパイプを巻回することによって設けられてなる。それゆえ、コイル10においては、加熱電源20により通電が可能であることに加えて、その内部に流体を通すことも可能となっている。換言すれば、本実施の形態に係る単電池1においては、両端10a、10bの間で通電と内部に(パイプに)流体を流通させることの双方が可能なコイル10が、電池本体1aに巻回されてなる。As described above, the coil 10 is formed by winding a hollow pipe. Therefore, in the coil 10, in addition to being able to pass electricity from the heating power source 20, it is also possible to pass a fluid through it. In other words, in the single cell 1 according to this embodiment, the coil 10, which is capable of both passing electricity between both ends 10a, 10b and passing a fluid through the inside (the pipe), is wound around the battery body 1a.

本実施の形態に係るモジュール電池100においては、係る構成を利用し、待機時にはコイル10による誘導加熱にてそれぞれの単電池1を個別に加熱する一方、充放電時には、ブロア41を駆動させてダクト42内に外部から常温あるいは低温の冷却気体(例えば常温の空気)を供給することによって、該ダクト42に突出した一方の端部10aからコイル10内へと強制的に冷却気体を導入し、他方の端部10bから排出させることができるようになっている。前者によれば、待機時にそれぞれの単電池1が同じ条件にて加熱されることで、収容容器30内の温度分布が均一化される。後者によれば、充放電時にコイル10が巻回されてなるそれぞれの単電池1にて生じた熱が、当該コイル10を流れる冷却気体により奪われることで、収容容器内の温度分布が均一化される。In the module battery 100 according to the present embodiment, the above configuration is utilized to individually heat each of the single cells 1 by induction heating using the coil 10 during standby, while during charging and discharging, the blower 41 is driven to supply room temperature or low temperature cooling gas (e.g., room temperature air) from the outside into the duct 42, forcing the cooling gas into the coil 10 from one end 10a protruding into the duct 42 and discharging it from the other end 10b. According to the former, each of the single cells 1 is heated under the same conditions during standby, so that the temperature distribution in the storage container 30 is uniform. According to the latter, the heat generated in each of the single cells 1, which are wound around the coil 10 during charging and discharging, is taken away by the cooling gas flowing through the coil 10, so that the temperature distribution in the storage container is uniform.

すなわち、本実施の形態に係るモジュール電池100においては、収容容器30に収容されてなる全ての単電池1において個別に、待機時の加熱と充放電時の排熱とが行えるようになっており、これにより、待機時と充放電時の双方において、個々の単電池1における温度の均一性を安定的に確保出来るようになっている。In other words, in the module battery 100 according to this embodiment, all of the single cells 1 contained in the storage container 30 can be individually heated during standby and exhausted heat during charging and discharging, thereby making it possible to stably ensure temperature uniformity in each single cell 1 both during standby and during charging and discharging.

また、コイル10に対する通電にて個々の単電池1を直接に加熱するので、従来のモジュール電池よりも単電池1を効率的に加熱することが出来る。それゆえ、本実施の形態に係るモジュール電池100においては、従来のモジュール電池に比して小電力での加熱が可能である。これにより、本実施の形態に係るモジュール電池100においては、大気断熱構造を採用しつつも、十分な断熱性を確保出来るようになっている。 In addition, because the individual cells 1 are directly heated by passing current through the coil 10, the cells 1 can be heated more efficiently than in conventional module batteries. Therefore, the module battery 100 according to this embodiment can heat with less power than conventional module batteries. As a result, the module battery 100 according to this embodiment can ensure sufficient insulation while adopting an atmospheric insulation structure.

しかも、本実施の形態に係るモジュール電池100においては、図3に示すように、複数の単電池1が収容容器30内に2列に収容されることで、全ての単電池1が収容容器30と隣接している。換言すれば、単電池が多数列に配列されて収容容器に収容されていた従来のモジュール電池とは異なり、周囲を他の単電池1のみに囲繞された単電池1が存在しない。それゆえ、本実施の形態に係るモジュール電池100においては、従来のモジュール電池において生じていたような、収容容器の内部において周縁部に配置された単電池と中央部に配置された単電池との間に温度差が生じるという問題が、構成上生じないようになっている。すなわち、本実施の形態に係るモジュール電池100においては、係る単電池1の収容態様が、収容容器30内における温度の均一性をさらに安定化させる効果を有している。Moreover, in the module battery 100 according to the present embodiment, as shown in FIG. 3, a plurality of single cells 1 are accommodated in two rows in the container 30, so that all of the single cells 1 are adjacent to the container 30. In other words, unlike conventional module batteries in which the single cells are arranged in multiple rows and accommodated in a container, there is no single cell 1 surrounded only by other single cells 1. Therefore, in the module battery 100 according to the present embodiment, the problem of a temperature difference occurring between the single cells arranged on the periphery and the single cells arranged in the center inside the container, as occurred in conventional module batteries, is prevented from occurring due to its configuration. That is, in the module battery 100 according to the present embodiment, the accommodation mode of the single cells 1 has the effect of further stabilizing the temperature uniformity in the container 30.

なお、図3に示す場合であれば、収容容器30には、8個ずつ2列に計16個の単電池1が収容されているにすぎない。係る収容容器30における単電池1の収容個数は、一の収容容器に単電池を縦横ともに多数列に収容してなる従来のモジュール電池に比して、かなり少ない。例えば、特許文献1には、12×22=264個の単電池が一の収容容器に収容される場合が例示されている。このことは、本実施の形態に係るモジュール電池100の単独での出力は、従来のモジュール電池よりも相当に小さいということを意味する。もちろん、本実施の形態に係るモジュール電池100においても、1列あたりの個数を増やすことで出力は増大可能であるが、係る対応は収容容器の形状(アスペクト比)の点から限界がある。In the case shown in FIG. 3, the container 30 contains only 16 cells 1 in total, arranged in two rows of 8 cells each. The number of cells 1 contained in the container 30 is much smaller than that of a conventional module battery in which multiple rows of cells are contained in one container. For example, Patent Document 1 illustrates a case in which 12 x 22 = 264 cells are contained in one container. This means that the output of the module battery 100 according to this embodiment is significantly smaller than that of a conventional module battery. Of course, the output of the module battery 100 according to this embodiment can be increased by increasing the number of cells per row, but such a measure is limited by the shape (aspect ratio) of the container.

しかしながら、係る問題は、モジュール電池100を複数個用意し、それぞれの収容容器30に収容され互いに接続されてなる複数の単電池1(つまりは集合電池)を一つの接続単位として、直列接続および並列接続を適宜に行い、従来のモジュール電池と同等の出力が得られるようにすることで、解消することが可能である。However, this problem can be solved by preparing multiple module batteries 100, treating the multiple single cells 1 (i.e., a battery assembly) that are housed in respective storage containers 30 and connected to each other as a single connection unit, and appropriately connecting them in series and in parallel to obtain output equivalent to that of conventional module batteries.

好ましくは、収容容器30が平面的あるいは立体的に連接(連結や積層)可能な構造とされ、当該構造を利用することで、複数のモジュール電池100が、一の収容容器に多数の単電池を収容してなる従来のモジュール電池と同等の占有面積あるいは占有体積にて配置される。その際、個々のモジュール電池100はそれぞれに断熱構造を有する収容容器30を備え、かつ、待機時および充放電時の当該収容容器30内の温度の均一性は独立に確保されるようになっているので、占有面積あるいは占有体積が従来のモジュール電池と同等であったとしても、温度の不均一の問題が生じることはない。Preferably, the storage container 30 has a structure that allows it to be connected (linked or stacked) in two or three dimensions, and by utilizing this structure, multiple module batteries 100 are arranged in an area or volume equivalent to that of a conventional module battery that contains a large number of single cells in one storage container. In this case, each module battery 100 is provided with a storage container 30 having a thermal insulation structure, and the uniformity of the temperature inside the storage container 30 during standby and charging/discharging is independently ensured, so that even if the occupied area or volume is equivalent to that of a conventional module battery, there is no problem with uneven temperature.

むしろ、従来のモジュール電池に比して、収容容器における温度の均一性の安定性という点で優れていることから、本実施の形態に係るモジュール電池100においては、従来のモジュール電池においては不均一が生じるために行い得なかった高い出力での運転も、行うことが可能である。Rather, since the module battery 100 of this embodiment is superior to conventional module batteries in terms of the stability of temperature uniformity in the storage container, it is possible to operate at high output that was not possible with conventional module batteries due to the occurrence of non-uniformity.

<モジュール電池における温度制御>
図5は、モジュール電池100の温度制御に関するブロック図である。モジュール電池100における待機時および充放電時の温度制御は、図3および図4に図示した本体部とは別体に設けられたモジュール電池100のコントローラ50により行われる。
<Temperature control in module battery>
Fig. 5 is a block diagram relating to temperature control of the module battery 100. Temperature control of the module battery 100 during standby and during charging and discharging is performed by a controller 50 of the module battery 100 provided separately from the main body shown in Figs.

コントローラ50は、モジュール電池100の待機時や充放電時の動作を制御する電池動作制御部51と、待機時および充放電時の双方において収容容器30の温度を制御する温度制御部52とを主に備える。コントローラ50は、CPU、メモリ、ストレージなどを備えた専用あるいは汎用のコンピュータ(図示省略)において所定の動作プログラムが実行されることで実現可能とされており、電池動作制御部51と温度制御部52とは、係るコンピュータにおいて仮想的構成要素として実現される。The controller 50 mainly comprises a battery operation control unit 51 that controls the operation of the module battery 100 during standby and charging/discharging, and a temperature control unit 52 that controls the temperature of the storage container 30 during both standby and charging/discharging. The controller 50 can be realized by executing a predetermined operating program in a dedicated or general-purpose computer (not shown) equipped with a CPU, memory, storage, etc., and the battery operation control unit 51 and the temperature control unit 52 are realized as virtual components in the computer.

温度制御部52は、ブロア制御部53と加熱制御部54とを備える。ブロア制御部53と加熱制御部54とはそれぞれ、収容容器30に備わる温度センサ35からの出力信号に応じて、収容容器30の一対の外面31a1のそれぞれに備わるブロア41aおよび41bと、それぞれの単電池1に備わるコイル10を加熱するための加熱電源20の動作を制御する。なお、図5においては、図3に示すモジュール電池100に対応して、8個×2列=16個の単電池1のそれぞれに備わるコイル10をコイル10<1>~10<16>と表し、それらコイル10<1>~10<16>のそれぞれに接続される加熱電源20を加熱電源20<1>~20<16>と表している。ただし、加熱電源20をコイル10に1対1に対応させて設ける必要はなく、一の加熱電源20が複数のコイル10に対し電圧を印加する態様であってもよい。The temperature control unit 52 includes a blower control unit 53 and a heating control unit 54. The blower control unit 53 and the heating control unit 54 each control the operation of the blowers 41a and 41b provided on each of the pair of outer surfaces 31a1 of the storage container 30 and the heating power source 20 for heating the coils 10 provided on each of the single cells 1 in response to an output signal from the temperature sensor 35 provided on the storage container 30. In addition, in FIG. 5, the coils 10 provided on each of the 16 single cells 1 (8 cells x 2 rows) are represented as coils 10<1> to 10<16> corresponding to the module battery 100 shown in FIG. 3, and the heating power sources 20 connected to each of the coils 10<1> to 10<16> are represented as heating power sources 20<1> to 20<16>. However, it is not necessary to provide the heating power sources 20 in one-to-one correspondence with the coils 10, and one heating power source 20 may apply a voltage to multiple coils 10.

概略的にいえば、充放電時には、ブロア制御部53による制御のもと、ブロア41(41a、41b)における送風動作のon/offが制御されることで、活物質の反応により発熱する単電池1の冷却がなされる。一方、待機時には、加熱制御部54による制御のもと、加熱電源20における通電動作のon/offが制御されることで、収容容器30内の単電池1の温度が所定の待機温度(例えば300℃程度)に維持される。In general, during charging and discharging, the blower control unit 53 controls the on/off of the blower 41 (41a, 41b) to cool the single battery 1 that generates heat due to the reaction of the active material. During standby, the heating control unit 54 controls the on/off of the current supply to the heating power source 20 to maintain the temperature of the single battery 1 in the storage container 30 at a predetermined standby temperature (e.g., about 300°C).

これにより、本実施の形態に係るモジュール電池100においては、充放電時および待機時のいずれにおいても、収容容器30の内部が均一に、所望の温度に維持されるようになる。As a result, in the module battery 100 of this embodiment, the inside of the storage container 30 is maintained at a uniform desired temperature both during charging/discharging and during standby.

以上、説明したように、本実施の形態によれば、高温動作型の二次電池のモジュール電池に収容容器に収容される単電池の外側面に、金属製のパイプが巻回することによってコイルを設け、該コイルへの通電によって単電池の外装部に備わる金属部を誘導加熱できるようにするとともに、パイプに冷却気体を流通させることによる単電池からの排熱を可能とすることで、収容容器に収容されるそれぞれの単電池において個別に、待機時の加熱と充放電時の排熱とを行うことができる。As described above, according to this embodiment, a coil is provided by winding a metal pipe around the outer surface of a single cell contained in a storage container of a module battery of a high-temperature operating secondary battery, and the metal part on the exterior part of the single cell can be inductively heated by passing current through the coil, and heat can be dissipated from the single cell by circulating cooling gas through the pipe, so that each single cell contained in the storage container can be individually heated during standby and dissipated heat during charging and discharging.

これにより、充放電時および待機時のいずれにおいても、収容容器内における温度の均一性が高いモジュール電池が実現される。This results in a module battery with high temperature uniformity within the storage container, both during charging/discharging and during standby.

加えて、全ての単電池が収容容器と隣接するように収容容器に収容し、周囲を他の単電池のみに囲繞された単電池が存在しないようにすることで、収容容器内における温度の均一性がさらに高められたモジュール電池が実現される。In addition, by housing all of the cells in the container so that they are adjacent to the container and there are no cells that are surrounded only by other cells, a modular battery is realized with even greater temperature uniformity within the container.

<変形例>
上述の実施の形態においては、コイル10が金属製のパイプにて設けられてなり、該コイル10の両端10a、10bの間において通電と冷却気体の流通とが可能となっているが、コイル10を導電性を有する(金属その他の)中実の線材にて設け、通電による加熱のみが行える構成の場合も、待機時に関しては、上述の実施の形態と同様の効果を得ることが可能である。係る場合、充放電時の冷却に関しては、適宜の代替手段が採用されてよいが、少なくとも、単電池1を2列に収容することにより収容容器30内の温度の均一性を確保するという作用効果については、単電池1のサイズおよび性能、収容容器30の断熱性能などが好適に定められることで、一定程度得ることが出来る。
<Modification>
In the above-mentioned embodiment, the coil 10 is made of a metal pipe, and current and cooling gas can flow between both ends 10a, 10b of the coil 10, but even if the coil 10 is made of a solid wire material (metal or other) having electrical conductivity and only heating by current is possible, it is possible to obtain the same effect as in the above-mentioned embodiment during standby. In such a case, a suitable alternative means may be adopted for cooling during charging and discharging, but at least the effect of ensuring uniformity of temperature inside the storage container 30 by storing the unit cells 1 in two rows can be obtained to a certain extent by appropriately determining the size and performance of the unit cells 1, the insulating performance of the storage container 30, and the like.

Claims (5)

高温動作型の二次電池の単電池であって、
正極部と負極部とを備える円筒状の本体部と、
前記本体部の周囲に環装されてなり、少なくとも円筒状の金属部と前記金属部の外側面に環装された絶縁部とを含む外装部と、
導電性の線材が巻回されることによって前記絶縁部の外側面に設けられたコイルと、
を備え
前記金属部が、
前記本体部の外側面と接触させて設けられ、前記本体部の変形を拘束する内管と、
前記内管の外側面と接触させて設けられた外管と、
の2層構成を有してなり、
前記金属部においては、少なくとも前記外管が、前記コイルの両端部間に高周波交流電流が通電されることにより誘導加熱される、
ことを特徴とする、高温動作型の二次電池の単電池。
A single cell of a high-temperature operating secondary battery,
A cylindrical main body portion having a positive electrode portion and a negative electrode portion;
an exterior part that is annularly attached around the main body part and includes at least a cylindrical metal part and an insulating part annularly attached on an outer surface of the metal part;
a coil provided on an outer surface of the insulating portion by winding a conductive wire;
Equipped with
The metal part is
an inner tube provided in contact with an outer surface of the main body portion and configured to restrict deformation of the main body portion;
an outer tube provided in contact with an outer surface of the inner tube;
It has a two-layer structure of
In the metal portion, at least the outer tube is inductively heated by passing a high-frequency alternating current between both ends of the coil.
A single cell of a high-temperature operating secondary battery.
請求項1に記載の高温動作型の二次電池の単電池であって、
前記線材が中空の金属製のパイプである、
ことを特徴とする、高温動作型の二次電池の単電池。
2. A unit cell of a high-temperature operating secondary battery according to claim 1 ,
The wire is a hollow metal pipe.
A single cell of a high-temperature operating secondary battery.
高温動作型の二次電池のモジュール電池であって、
断熱構造を有する収容容器と、
前記収容容器に収容された、それぞれが請求項1または請求項2に記載の単電池である複数の単電池と、
前記複数の単電池のそれぞれに備わる前記コイルに高周波交流電流を通電可能な少なくとも一つの高周波交流電流発生装置と、
を備え、
前記高周波交流電流発生装置が前記コイルに前記高周波交流電流を通電することによって前記金属部が誘導加熱され、
前記収容容器においては、前記複数の単電池の全てが前記収容容器と隣接する、
ことを特徴とするモジュール電池。
A module battery of a high-temperature operating secondary battery,
A storage container having a thermal insulation structure;
A plurality of unit cells, each of which is the unit cell according to claim 1 or 2, accommodated in the container;
At least one high frequency AC generator capable of passing a high frequency AC current through the coils provided in each of the plurality of single cells;
Equipped with
The high-frequency alternating current generator applies the high-frequency alternating current to the coil, thereby inductively heating the metal part,
In the storage container, all of the plurality of single cells are adjacent to the storage container.
A module battery characterized by:
高温動作型の二次電池のモジュール電池であって、
断熱構造を有する収容容器と、
前記収容容器に収容された、それぞれが請求項に記載の単電池である複数の単電池と、
前記複数の単電池のそれぞれに備わる前記コイルに高周波交流電流を通電可能な少なくとも一つの高周波交流電流発生装置と、
前記収容容器の側部に付設されたダクトと、
前記ダクトに対して冷却気体を供給可能なブロアと、
を備え、
前記高周波交流電流発生装置が前記コイルに前記高周波交流電流を通電することによって前記金属部が誘導加熱され、
前記コイルの一方端部が前記収容容器の側部を貫通して前記ダクト内に延在してなり、
前記コイルの他方端部が前記収容容器の側部を貫通して外部に延在してなり、
前記ブロアが供給した前記冷却気体が前記コイルの内部を流通することで前記複数の単電池のそれぞれにおいて生じる熱が排出される、
ことを特徴とするモジュール電池。
A module battery of a high-temperature operating secondary battery,
A storage container having a thermal insulation structure;
A plurality of unit cells, each of which is the unit cell according to claim 2 , accommodated in the accommodation container;
At least one high frequency AC generator capable of passing a high frequency AC current through the coils provided in each of the plurality of single cells;
A duct provided on a side of the container;
a blower capable of supplying cooling gas to the duct;
Equipped with
The high-frequency alternating current generator applies the high-frequency alternating current to the coil, thereby inductively heating the metal part,
One end of the coil extends through a side of the container and into the duct,
The other end of the coil extends through a side portion of the container to the outside,
The cooling gas supplied by the blower flows through the inside of the coil, thereby dissipating heat generated in each of the plurality of single cells.
A module battery characterized by:
請求項に記載の高温動作型の二次電池のモジュール電池であって、
前記収容容器においては、前記複数の単電池の全てが前記収容容器と隣接する、
ことを特徴とするモジュール電池。
5. A module battery of a high-temperature operating secondary battery according to claim 4 ,
In the storage container, all of the plurality of single cells are adjacent to the storage container.
A module battery characterized by:
JP2023525713A 2021-05-31 2022-05-18 High temperature operating secondary battery cells and module batteries Active JP7607123B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021090970 2021-05-31
JP2021090970 2021-05-31
PCT/JP2022/020618 WO2022255099A1 (en) 2021-05-31 2022-05-18 Unit battery and module battery for high-temperature-operation secondary battery

Publications (3)

Publication Number Publication Date
JPWO2022255099A1 JPWO2022255099A1 (en) 2022-12-08
JPWO2022255099A5 JPWO2022255099A5 (en) 2024-02-26
JP7607123B2 true JP7607123B2 (en) 2024-12-26

Family

ID=84323315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023525713A Active JP7607123B2 (en) 2021-05-31 2022-05-18 High temperature operating secondary battery cells and module batteries

Country Status (4)

Country Link
US (1) US20240088470A1 (en)
EP (1) EP4350843A4 (en)
JP (1) JP7607123B2 (en)
WO (1) WO2022255099A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4564526A1 (en) * 2023-11-29 2025-06-04 Samsung SDI Co., Ltd. Battery system with cooling circuit
CN118472473B (en) * 2024-05-30 2025-07-11 湖南工程学院 High-capacity cylindrical battery grouping structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020025471A1 (en) 2000-08-24 2002-02-28 Velez Thomas A. Electrially heated thermal battery
JP2011060477A (en) 2009-09-08 2011-03-24 Toshihisa Shirakawa SUBCRITICAL AMOUNT RECESSIVE PLUTONIUM HEATING SOURCE NaS MODULE STORAGE BATTERY POWER SOURCE DRIVING ELECTRIC VEHICLE
JP2012528458A (en) 2009-05-26 2012-11-12 シーレイト リミテッド ライアビリティー カンパニー System and method for changing the temperature of an electrical energy storage device or electrochemical energy generation device using a microchannel
WO2015056739A1 (en) 2013-10-17 2015-04-23 日本碍子株式会社 Secondary battery
WO2019221860A1 (en) 2018-05-17 2019-11-21 Vissers Battery Corporation Devices, systems, and methods to mitigate thermal runaway conditions in molten fluid electrode apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679480A (en) * 1969-05-08 1972-07-25 Dow Chemical Co Electrical cell assembly
JPS4912329A (en) * 1972-05-16 1974-02-02
JPH10294127A (en) * 1997-04-21 1998-11-04 Hitachi Ltd Method and apparatus for manufacturing sodium-sulfur battery
JP4313011B2 (en) * 2002-09-17 2009-08-12 日本碍子株式会社 Control method of heater for sodium-sulfur battery module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020025471A1 (en) 2000-08-24 2002-02-28 Velez Thomas A. Electrially heated thermal battery
JP2012528458A (en) 2009-05-26 2012-11-12 シーレイト リミテッド ライアビリティー カンパニー System and method for changing the temperature of an electrical energy storage device or electrochemical energy generation device using a microchannel
JP2011060477A (en) 2009-09-08 2011-03-24 Toshihisa Shirakawa SUBCRITICAL AMOUNT RECESSIVE PLUTONIUM HEATING SOURCE NaS MODULE STORAGE BATTERY POWER SOURCE DRIVING ELECTRIC VEHICLE
WO2015056739A1 (en) 2013-10-17 2015-04-23 日本碍子株式会社 Secondary battery
WO2019221860A1 (en) 2018-05-17 2019-11-21 Vissers Battery Corporation Devices, systems, and methods to mitigate thermal runaway conditions in molten fluid electrode apparatus
JP2021524983A (en) 2018-05-17 2021-09-16 ビサーズ バッテリー コーポレーション Devices, systems and methods for mitigating thermal runaway conditions in molten fluid electrode devices

Also Published As

Publication number Publication date
US20240088470A1 (en) 2024-03-14
EP4350843A4 (en) 2025-07-30
WO2022255099A1 (en) 2022-12-08
EP4350843A1 (en) 2024-04-10
JPWO2022255099A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7607123B2 (en) High temperature operating secondary battery cells and module batteries
EP3176851B1 (en) Electrical energy storage device
US20160111760A1 (en) Power storage module
CN103339789B (en) battery housing structure
CN107925138B (en) Energy storage device with reduced temperature variability between cells
JP2011249225A (en) Storage battery module
US20230307744A1 (en) Electric Battery Assembly
EP2793310B1 (en) Cell module provided with cell block
CN108140910B (en) Heat flux assemblies for energy storage devices
CN110915029B (en) Charging/discharging apparatus for secondary battery formation process with reduced temperature difference
JPWO2022255099A5 (en)
JP2014127403A (en) Battery module
EP3347933B1 (en) Energy storage device having improved thermal performance
CN110911626B (en) Battery modules and battery packs
JP5692132B2 (en) Power storage device
JP3224790U (en) Storage battery and storage battery system
CN116806387A (en) Battery cells for electric energy accumulators with internal heating of the cells and batteries for motor vehicles
JP7527746B2 (en) Battery Cooling System
JP2020198177A (en) Battery module
JPS58155664A (en) Molten-salt type fuel cell
JP2003234132A (en) Heating device for assembled battery comprising sodium-sulfur battery
KR102402185B1 (en) An secondary battery pack having function of pre-heating and heat-radiating
JP6154197B2 (en) Fuel cell module and fuel cell device
JP6100574B2 (en) Fuel cell module and fuel cell device
JP6110181B2 (en) Fuel cell module and fuel cell device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241216

R150 Certificate of patent or registration of utility model

Ref document number: 7607123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150