[go: up one dir, main page]

JP7636708B2 - Glass substrate and method for manufacturing glass substrate - Google Patents

Glass substrate and method for manufacturing glass substrate Download PDF

Info

Publication number
JP7636708B2
JP7636708B2 JP2020159602A JP2020159602A JP7636708B2 JP 7636708 B2 JP7636708 B2 JP 7636708B2 JP 2020159602 A JP2020159602 A JP 2020159602A JP 2020159602 A JP2020159602 A JP 2020159602A JP 7636708 B2 JP7636708 B2 JP 7636708B2
Authority
JP
Japan
Prior art keywords
glass substrate
glass
deflection
difference
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020159602A
Other languages
Japanese (ja)
Other versions
JP2022053027A (en
Inventor
周作 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2020159602A priority Critical patent/JP7636708B2/en
Priority to KR1020237012271A priority patent/KR20230072479A/en
Priority to PCT/JP2021/034007 priority patent/WO2022065169A1/en
Priority to CN202180063992.0A priority patent/CN116194412A/en
Priority to TW110135214A priority patent/TWI887488B/en
Publication of JP2022053027A publication Critical patent/JP2022053027A/en
Application granted granted Critical
Publication of JP7636708B2 publication Critical patent/JP7636708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

本発明は、ガラス基板、及びガラス基板の製造方法に関する。 The present invention relates to a glass substrate and a method for manufacturing a glass substrate.

近年、例えば液晶ディスプレイ等を構成するパネルガラスの大型化及び薄肉化に伴って、パネルガラスの製作に用いられるガラス基板についても、必然的に大型化や薄肉化が推進されるに至っている。この種のガラス基板の製造技術は、日進月歩の勢いで進歩しており、例えばガラス基板に要求される形状精度のレベルも極めて高くなっているのが現状である。 In recent years, as the glass panels that make up liquid crystal displays and the like have become larger and thinner, the glass substrates used to manufacture the glass panels have inevitably become larger and thinner as well. The technology for manufacturing this type of glass substrate is advancing at a rapid pace, and the current situation is that the level of shape precision required of glass substrates is becoming extremely high.

ここで、ガラス基板の形状精度を評価するために、従来、種々の評価手法が提案されている。例えば特許文献1には、理想平面(例えば定盤の上面)にガラス基板を載置した場合に、所定の辺に沿う方向における理想平面とガラス基板の裏面との間に生じる最大離反距離を上記所定の辺の全長で除算することで得られる反り率を用いて、ガラス基板の形状精度を評価する手法が提案されている。 Here, various evaluation methods have been proposed to evaluate the shape accuracy of a glass substrate. For example, Patent Document 1 proposes a method of evaluating the shape accuracy of a glass substrate using a warpage rate obtained by dividing the maximum separation distance between an ideal plane and the back surface of the glass substrate in a direction along a specified side when the glass substrate is placed on an ideal plane (e.g., the top surface of a surface plate) by the total length of the specified side.

また、特許文献2には、一枚のガラス基板について、矩形状をなし板引き方向と直交する方向の位置が異なる複数の評価領域を設定すると共に、複数の評価領域における表裏撓み差を測定することで、当該ガラス基板の板引き方向と直交する方向の形状を評価する方法が提案されている。また、上述した表裏撓み差の測定を、複数のガラス基板について行い、複数のガラス基板間での同一評価領域における表裏撓み差の変化量をそれぞれ求めることで、ガラス基板の板引き方向に直交する方向の形状の変化を評価する方法が提案されている。 Patent Document 2 also proposes a method for evaluating the shape of a glass substrate in a direction perpendicular to the drawing direction by setting multiple rectangular evaluation regions at different positions in a direction perpendicular to the drawing direction and measuring the difference in front and back deflection in the multiple evaluation regions. It also proposes a method for evaluating the change in shape of a glass substrate in a direction perpendicular to the drawing direction by measuring the difference in front and back deflection as described above for multiple glass substrates and determining the amount of change in the difference in front and back deflection in the same evaluation region between the multiple glass substrates.

特開2013-199426号公報JP 2013-199426 A 特開2019-137587号公報JP 2019-137587 A

ところで、ガラス基板は、その製造工程やガラス基板上に電子デバイスを形成して電子デバイスを製造する工程において、必要に応じて主表面(裏面)の一部を下方から支持した状態で搬送され、又は位置決めを伴って保持された状態で加工されることがある。このような場合、ガラス基板全体の変形として評価される反りや曲がりが小さい場合であっても、上述のように支持された状態でのガラス基板の自重による撓みが、搬送又は加工に影響を及ぼし得る変形となって現れることがあった。この種の変形は、周辺設備との接触など予期しない事態を招くおそれがあるため、取り扱い性の面でも極力回避すべき事象である。 In the manufacturing process of glass substrates or in the process of manufacturing electronic devices by forming electronic devices on glass substrates, glass substrates may be transported with part of their main surface (rear surface) supported from below, or processed while being held in position. In such cases, even if the warping or bending evaluated as deformation of the entire glass substrate is small, the bending of the glass substrate due to its own weight while supported as described above may appear as deformation that can affect transportation or processing. This type of deformation should be avoided as much as possible from the standpoint of ease of handling, as it may lead to unexpected situations such as contact with surrounding equipment.

特許文献2に記載の評価手法は、ガラス基板の板引き方向に直交する方向の表裏撓み差分布に基づいて当該方向の形状又はその変化(ばらつき)を評価するものであるが、たとえこの手法で上記形状又はその変化が許容範囲内に収まっていると評価されたガラス基板であっても、搬送態様又は加工態様によっては、自重による撓みが、搬送又は加工に影響を及ぼし得る変形となって現れることがあった。 The evaluation method described in Patent Document 2 evaluates the shape or its change (variation) in a direction perpendicular to the drawing direction of the glass substrate based on the distribution of the difference in deflection between the front and back sides of the substrate in the direction. However, even if the shape or its change of a glass substrate is evaluated by this method as being within an acceptable range, depending on the transportation or processing mode, the deflection due to its own weight may appear as a deformation that may affect transportation or processing.

以上の事情に鑑み、ガラス基板の形状に対する新たな評価に基づいて、搬送時又は加工時の取り扱い性に優れたガラス基板を提供することを、解決すべき技術課題とする。 In light of the above, the technical problem to be solved is to provide a glass substrate that is easy to handle during transportation or processing, based on a new evaluation of the shape of the glass substrate.

前記課題の解決は、本発明に係るガラス基板により達成される。すなわち、このガラス基板は、板引き方向に沿った第一の辺と、板引き方向と直交する幅方向に沿った第二の辺とを有する矩形状のガラス基板であって、幅方向に沿った複数の位置で矩形状をなす評価領域を設定し、複数の評価領域のうち少なくとも一つの評価領域で、第二の辺と平行な二つの辺における表裏撓み差の正負が異なっている点をもって特徴付けられる。 The above problem is solved by the glass substrate of the present invention. That is, this glass substrate is a rectangular glass substrate having a first side along the sheet drawing direction and a second side along the width direction perpendicular to the sheet drawing direction, and is characterized in that rectangular evaluation areas are set at multiple positions along the width direction, and in at least one of the multiple evaluation areas, the difference in front-back deflection between the two sides parallel to the second side is different in sign.

本発明者らが、ガラス基板内の撓み分布について鋭意検討した結果、これまで考慮されることのなかった板引き方向の撓み分布を適正に評価することにより、板引き方向の形状を正確に把握し得ることを知見するに至った。また、板引き方向の形状が、搬送時又は加工時の自重による撓みに影響を及ぼすことを知見するに至った。本発明に係るガラス基板は、上述した知見に基づき成されたもので、ガラス基板の板引き方向と直交する幅方向に沿った複数の位置で矩形状をなす評価領域を設定し、少なくとも一つの評価領域で、ガラス基板の幅方向に沿った第二の辺と平行な二つの辺における表裏撓み差の正負が異なるようにしたことを特徴とする。このように評価領域の幅方向に沿った二つの辺における表裏撓み差の正負が異なる形状をなすガラス基板は、板引き方向で撓み方向が逆転した形状をなす。いわば、ガラス基板が板引き方向に波打った形状を有する。そのため、上述した形状のガラス基板であれば、自重による撓みが一方向に顕在化する事態を防いで、搬送時又は加工時の変形を抑えることが可能となる。これにより、搬送時又は加工時におけるガラス基板の形状が安定するので、ガラス基板の取り扱い性を高めることが可能となる。 As a result of the inventors' intensive study of the deflection distribution in the glass substrate, they have found that the shape in the drawing direction can be accurately grasped by properly evaluating the deflection distribution in the drawing direction, which has not been considered until now. They have also found that the shape in the drawing direction affects the deflection due to the weight during transportation or processing. The glass substrate according to the present invention is made based on the above-mentioned findings, and is characterized in that rectangular evaluation areas are set at multiple positions along the width direction perpendicular to the drawing direction of the glass substrate, and in at least one evaluation area, the positive and negative differences in the front and back deflections on two sides parallel to the second side along the width direction of the glass substrate are different. A glass substrate having a shape in which the positive and negative differences in the front and back deflections on two sides along the width direction of the evaluation area are different in this way has a shape in which the deflection direction is reversed in the drawing direction. In other words, the glass substrate has a wavy shape in the drawing direction. Therefore, if the glass substrate has the above-mentioned shape, it is possible to prevent the deflection due to the weight from becoming apparent in one direction and suppress deformation during transportation or processing. This stabilizes the shape of the glass substrate during transportation or processing, making it easier to handle the glass substrate.

また、本発明に係るガラス基板において、複数の評価領域のうち少なくとも一つの評価領域で、第一の辺と平行な二つの辺における表裏撓み差の正負が異なっていてもよい。 In addition, in the glass substrate according to the present invention, in at least one of the multiple evaluation regions, the difference in front-back deflection between two sides parallel to the first side may be positive or negative.

このように評価領域の幅方向だけでなく、評価領域の板引き方向に沿った二つの辺における表裏撓み差の正負が異なる形状をなすガラス基板であれば、板引き方向だけでなく幅方向にも波打った形状を有する。これにより、搬送時又は加工時におけるガラス基板の形状がより安定するので、ガラス基板の取り扱い性をさらに高めることが可能となる。 In this way, if the glass substrate has a shape in which the difference in the front and back deflections is different not only in the width direction of the evaluation area but also on two sides along the sheet drawing direction of the evaluation area, the glass substrate has a wavy shape not only in the sheet drawing direction but also in the width direction. This makes the shape of the glass substrate more stable during transportation or processing, making it possible to further improve the handleability of the glass substrate.

また、本発明に係るガラス基板において、各評価領域の幅方向に沿った辺が370mmで、板引き方向に沿った辺が470mmであってもよい。 Furthermore, in the glass substrate according to the present invention, the side along the width direction of each evaluation area may be 370 mm, and the side along the sheet drawing direction may be 470 mm.

評価領域のサイズを上述した大きさに設定することによって、ガラス基板の板引き方向の形状を正確に評価できる。すなわち、評価領域のサイズが小さ過ぎることにより、本来評価すべき波打ち形状の山部と谷部の一方が評価領域中から欠落する事態を回避することができる。また、評価領域のサイズが大き過ぎることにより、板引き方向の波打ち形状が一つの評価領域中に埋もれてしまう事態を回避することができる。 By setting the size of the evaluation area to the above size, the shape of the glass substrate in the sheet drawing direction can be accurately evaluated. In other words, it is possible to avoid a situation in which the size of the evaluation area is too small, resulting in either the peaks or valleys of the waviness shape that should be evaluated being missing from the evaluation area. It is also possible to avoid a situation in which the size of the evaluation area is too large, resulting in the waviness shape in the sheet drawing direction being buried in one evaluation area.

また、本発明に係るガラス基板において、複数の評価領域全てにおいて、第一の辺と平行な二つの辺における表裏撓み差が何れも-0.5mm以上でかつ+0.5mm以下であり、第二の辺と平行な二つの辺における表裏撓み差が何れも-0.5mm以上でかつ+0.5mm以下であってもよい。 In addition, in the glass substrate according to the present invention, in all of the multiple evaluation regions, the difference in front-back deflection in the two sides parallel to the first side may be -0.5 mm or more and +0.5 mm or less, and the difference in front-back deflection in the two sides parallel to the second side may be -0.5 mm or more and +0.5 mm or less.

このように各評価領域の表裏撓み差が何れも上述の範囲内に収まっているガラス基板であれば、全体としてフラットに近い形状をなす。そのため、搬送時又は加工時に自重による撓みが発生したとしても、当該撓みが小さくて済む。 If the glass substrate has a front-back deflection difference in each evaluation area that falls within the above-mentioned range, the overall shape will be close to flat. Therefore, even if deflection occurs due to its own weight during transportation or processing, the deflection will be small.

また、本発明に係るガラス基板において、第一の辺と第二の辺のうち相対的に短い辺が1100mm以上で相対的に長い辺が1300mm以上であり、厚み寸法が200μm以上でかつ1000μm以下であってもよい。 In addition, in the glass substrate according to the present invention, the relatively shorter of the first and second sides may be 1100 mm or more and the relatively longer side may be 1300 mm or more, and the thickness dimension may be 200 μm or more and 1000 μm or less.

上述した変形の問題は、上記サイズのガラス基板を板引き成形により製造する場合に顕著となる。そのため、本発明は、上記サイズのガラス基板に好適である。 The above-mentioned deformation problem becomes more pronounced when glass substrates of the above sizes are manufactured by sheet drawing. Therefore, the present invention is suitable for glass substrates of the above sizes.

また、前記課題の解決は、本発明に係るガラス基板の製造方法によっても達成される。すなわち、この製造方法は、板引き方向に沿った第一の辺と、板引き方向と直交する幅方向に沿った第二の辺とを有する矩形状のガラス基板の製造方法であって、帯状ガラスを成形する成形工程と、帯状ガラスからガラス基板を切出す切出し工程と、ガラス基板から第一の辺及び第二の辺とそれぞれ平行な二つの辺を有する矩形状の試料ガラスを採取する採取工程と、試料ガラスの第一の辺と平行な辺の表裏撓み差を測定する測定工程とを備える点をもって特徴付けられる。 The above-mentioned problem is also solved by the glass substrate manufacturing method according to the present invention. That is, this manufacturing method is a method for manufacturing a rectangular glass substrate having a first side along the sheet drawing direction and a second side along the width direction perpendicular to the sheet drawing direction, and is characterized in that it includes a forming process for forming a ribbon-shaped glass, a cutting process for cutting a glass substrate from the ribbon-shaped glass, a collection process for collecting a rectangular sample glass from the glass substrate having two sides parallel to the first side and the second side, respectively, and a measurement process for measuring the difference in front and back deflection of the side parallel to the first side of the sample glass.

本発明に係るガラス基板の製造方法は、本発明に係るガラス基板と同様に、上述した知見に基づき成されたもので、成形した帯状ガラスから切り出されたガラス基板から第一の辺及び第二の辺とそれぞれ平行な二つの辺を有する矩形状の試料ガラスを採取し、採取した試料ガラスの板引き方向に沿った辺の表裏撓み差を測定することを特徴とする。この方法によれば、試料ガラスの板引き方向に沿った辺の撓み方向及び撓みの大きさ等からガラス基板の板引き方向の形状を知ることができる。このことから、例えばガラス基板の一部を下方から支持した場合の形状安定性を評価することができ、形状安定性が所定レベル以上のガラス基板を選別することができる。従って、本発明に係るガラス基板の製造方法によれば、搬送時又は加工時における取り扱い性に優れたガラス基板を提供することが可能となる。 The manufacturing method of the glass substrate according to the present invention, like the glass substrate according to the present invention, is based on the above-mentioned findings, and is characterized in that a rectangular sample glass having two sides parallel to the first side and the second side is taken from a glass substrate cut out from a molded ribbon-shaped glass, and the difference in the front and back deflections of the side along the sheet drawing direction of the taken sample glass is measured. According to this method, the shape of the glass substrate in the sheet drawing direction can be known from the deflection direction and the deflection magnitude of the side along the sheet drawing direction of the sample glass. From this, it is possible to evaluate the shape stability when a part of the glass substrate is supported from below, for example, and to select glass substrates with shape stability at a predetermined level or higher. Therefore, according to the manufacturing method of the glass substrate according to the present invention, it is possible to provide a glass substrate with excellent handleability during transportation or processing.

また、本発明に係るガラス基板の製造方法において、測定工程で、第一の辺と平行な試料ガラスの二つの辺でそれぞれ表裏撓み差を測定してもよい。 In addition, in the glass substrate manufacturing method according to the present invention, the measurement step may measure the difference in front and back deflection along two sides of the sample glass parallel to the first side.

このように一つの試料ガラスにつき二つの辺の表裏撓み差を測定することにより、測定に必要な試料ガラスの数を減らすことができる。よって、効率よくガラス基板の板引き方向の形状を把握することが可能となる。 By measuring the difference in the deflection between the front and back of two sides of one glass sample in this way, the number of glass samples required for measurement can be reduced. This makes it possible to efficiently grasp the shape of the glass substrate in the drawing direction.

また、本発明に係るガラス基板の製造方法において、測定工程で測定した試料ガラスの第一の辺と平行な辺の表裏撓み差の正負を評価する評価工程をさらに備えてもよい。 The glass substrate manufacturing method according to the present invention may further include an evaluation step for evaluating the positive or negative difference in the front and back deflections of the side parallel to the first side of the sample glass measured in the measurement step.

このように第一の辺と平行な辺の表裏撓み差の正負を評価することにより、ガラス基板の板引き方向の部分的な撓み方向を把握することができる。また、平行な二つの辺の表裏撓み差の正負を評価することにより、評価対象となるガラス基板が、幅方向で撓み方向が逆転した形状をなすものであるか否か、言い換えると、当該ガラス基板が、幅方向に波打ち形状を有するものであるか否かを評価することができる。よって、搬送時又は加工時に変形しにくいガラス基板を選別することが可能となる。あるいは、製造条件の調整により、幅方向に波打ち形状を有するガラス基板を安定的に製造することが可能となる。 In this way, by evaluating the positive/negative difference in the front/back warping of the side parallel to the first side, it is possible to grasp the partial warping direction of the glass substrate in the sheet drawing direction. In addition, by evaluating the positive/negative difference in the front/back warping of two parallel sides, it is possible to evaluate whether the glass substrate to be evaluated has a shape in which the warping direction is reversed in the width direction, in other words, whether the glass substrate has a wavy shape in the width direction. This makes it possible to select glass substrates that are less likely to deform during transportation or processing. Alternatively, by adjusting the manufacturing conditions, it becomes possible to stably manufacture glass substrates that have a wavy shape in the width direction.

また、本発明に係るガラス基板の製造方法において、測定工程で、第二の辺と平行な試料ガラスの二つの辺でそれぞれ表裏撓み差を測定してもよい。 In addition, in the glass substrate manufacturing method according to the present invention, the measurement step may measure the difference in front and back deflection along two sides of the sample glass parallel to the second side.

この方法によれば、ガラス基板の板引き方向の形状に加えて、試料ガラスの幅方向に沿った辺の撓み方向及び撓みの大きさ等からガラス基板の幅方向の形状を知ることができる。特に、上述のように幅方向に沿った二つの辺でそれぞれ表裏撓み差を測定することにより、測定に必要な試料ガラスの数を減らすことができる。よって、効率よくガラス基板の幅方向の形状を把握することが可能となる。 According to this method, in addition to the shape of the glass substrate in the sheet drawing direction, the shape of the glass substrate in the width direction can be known from the bending direction and the magnitude of bending of the sides along the width direction of the sample glass. In particular, by measuring the difference in bending between the front and back sides of each of the two sides along the width direction as described above, the number of sample glasses required for measurement can be reduced. This makes it possible to efficiently grasp the shape of the glass substrate in the width direction.

また、この場合、本発明に係るガラス基板の製造方法において、測定工程で測定した試料ガラスの第二の辺と平行な辺の表裏撓み差の正負を評価してもよい。 In this case, in the glass substrate manufacturing method according to the present invention, the difference in the front and back deflections of the side parallel to the second side of the sample glass measured in the measurement step may be evaluated as positive or negative.

このように、幅方向に沿った互い平行な二つの辺の表裏撓み差の正負を評価することにより、評価対象となるガラス基板が、板引き方向で撓み方向が逆転した形状をなすものであるか否か、言い換えると、当該ガラス基板が、板引き方向に波打ち形状を有するものであるか否かを評価することができる。よって、搬送時又は加工時に変形しにくいガラス基板を選別することが可能となる。あるいは、製造条件の調整により、板引き方向に波打ち形状を有するガラス基板を安定的に製造することが可能となる。 In this way, by evaluating the positive/negative difference in the front/back warping of two parallel sides along the width direction, it is possible to evaluate whether the glass substrate being evaluated has a shape in which the warping direction is reversed in the sheet drawing direction, in other words, whether the glass substrate has a wavy shape in the sheet drawing direction. This makes it possible to select glass substrates that are less likely to deform during transportation or processing. Alternatively, by adjusting the manufacturing conditions, it becomes possible to stably manufacture glass substrates that have a wavy shape in the sheet drawing direction.

以上より、本発明によれば、ガラス基板の形状に対する新たな評価に基づいて、搬送時又は加工時の取り扱い性に優れたガラス基板を提供することが可能となる。 As described above, according to the present invention, it is possible to provide a glass substrate that is easy to handle during transportation or processing, based on a new evaluation of the shape of the glass substrate.

本発明の一実施形態に係るガラス基板の平面図である。FIG. 1 is a plan view of a glass substrate according to an embodiment of the present invention. ガラス基板から切り出した試料ガラスの幅方向に沿った辺の表裏撓み差の測定方法を説明するための平面図である。FIG. 1 is a plan view for explaining a method for measuring a difference in deflection between the front and back of a side along the width direction of a sample glass cut out from a glass substrate. 図2に示す方法で表裏撓み差が測定される一の試料ガラスを(a)矢印A1の向きから見た側面図と、(b)矢印A2の向きから見た側面図である。3A is a side view of a sample glass for which a difference in front and back deflection is measured by the method shown in FIG. 2, as viewed from the direction of an arrow A1, and FIG. 3B is a side view of a sample glass for which a difference in front and back deflection is measured by the method shown in FIG. 2, as viewed from the direction of an arrow A2. 図2に示す方法で表裏撓み差が測定される他の試料ガラスを(a)矢印A1の向きから見た側面図と、(b)矢印A2の向きから見た側面図である。3A is a side view of another sample glass in which a difference in front and back deflection is measured by the method shown in FIG. 2, as seen from the direction of arrow A1, and FIG. 3B is a side view of another sample glass in which a difference in front and back deflection is measured by the method shown in FIG. 2, as seen from the direction of arrow A2. 図3に示す撓みを生じる場合の図2に示すガラス基板の板引き方向に沿ったB1-B1断面図である。4 is a cross-sectional view taken along the line B1-B1 of FIG. 2 along the drawing direction of the glass substrate when the deflection shown in FIG. 3 occurs. 図4に示す撓みを生じる場合の図2に示すガラス基板の板引き方向に沿ったB1-B1断面図である。5 is a cross-sectional view taken along the line B1-B1 of FIG. 2 along the drawing direction of the glass substrate when the deflection shown in FIG. 4 occurs. ガラス基板から切り出した試料ガラスの板引き方向に沿った辺の表裏撓み差の測定方法を説明するための平面図である。FIG. 1 is a plan view for explaining a method for measuring a difference in deflection between the front and back sides of a sample glass cut out from a glass substrate along the sheet drawing direction. 図7に示す方法で表裏撓み差が測定される一の試料ガラスを(a)矢印C1の向きから見た側面図と、(b)矢印C2の向きから見た側面図である。8A is a side view of a sample glass for which a difference in front and back deflection is measured by the method shown in FIG. 7, as seen from the direction of an arrow C1, and FIG. 8B is a side view of a sample glass for which a difference in front and back deflection is measured by the method shown in FIG. 図7に示す方法で表裏撓み差が測定される他の試料ガラスを(a)矢印C1の向きから見た側面図と、(b)矢印C2の向きから見た側面図である。8A is a side view of another sample glass in which a difference in front and back deflection is measured by the method shown in FIG. 7, as seen from the direction of an arrow C1, and FIG. 8B is a side view of another sample glass in which a difference in front and back deflection is measured by the method shown in FIG. 図6に示すガラス基板を製造するためのガラス基板の製造装置の要部を示す縦断面図である。7 is a vertical cross-sectional view showing a main part of a glass substrate manufacturing apparatus for manufacturing the glass substrate shown in FIG. 6. 図10の徐冷ゾーンにおけるガラスリボンの状態を示す斜視図である。FIG. 11 is a perspective view showing the state of the glass ribbon in the annealing zone of FIG. 図11に示すガラスリボンのD1-D1切断線に沿った横断面図である。FIG. 12 is a cross-sectional view taken along the D1-D1 cutting line of the glass ribbon shown in FIG. 図11に示すガラスリボンのD2-D2切断線に沿った横断面図である。FIG. 12 is a cross-sectional view taken along the D2-D2 cutting line of the glass ribbon shown in FIG. 図11に示すガラスリボンのE1-E1切断線に沿った縦断面図である。12 is a longitudinal cross-sectional view taken along the E1-E1 cutting line of the glass ribbon shown in FIG. 11. 本発明との比較に係るガラス基板の各評価領域における幅方向の表裏撓み差の評価結果を表すグラフである。1 is a graph showing evaluation results of differences in front and back deflections in the width direction in each evaluation region of a glass substrate for comparison with the present invention. 本発明に係るガラス基板の各評価領域における幅方向の表裏撓み差の評価結果を表すグラフである。1 is a graph showing evaluation results of differences in deflection between the front and back sides in the width direction in each evaluation region of a glass substrate according to the present invention. 本発明に係るガラス基板の各評価領域における板引き方向の表裏撓み差の評価結果を表すグラフである。1 is a graph showing evaluation results of differences in deflection between the front and back surfaces in the sheet drawing direction in each evaluation area of a glass substrate according to the present invention.

以下、本発明の一実施形態を図1~図14に基づいて説明する。 One embodiment of the present invention will be described below with reference to Figures 1 to 14.

図1は、本実施形態に係るガラス基板1の平面面である。このガラス基板1は、例えば、オーバーフローダウンドロー法、スロットダウンドロー法などのダウンドロー法や、フロート法などの公知の板引きを伴う成形手段により製造される。本実施形態では、オーバーフローダウンドロー法によって帯状ガラスが成形され(詳細は後述する)、この帯状ガラスからの切り出しにより、所定形状で所定サイズのガラス基板1が得られる。 Figure 1 shows a plan view of a glass substrate 1 according to this embodiment. This glass substrate 1 is manufactured by a known forming method involving sheet drawing, such as a downdraw method, such as an overflow downdraw method or a slot downdraw method, or a float method. In this embodiment, a ribbon-shaped glass is formed by the overflow downdraw method (described in detail below), and a glass substrate 1 of a predetermined shape and size is obtained by cutting out the ribbon-shaped glass.

このガラス基板1は、上記の成形方法に起因する板引き方向Xに沿った第一の辺2と、板引き方向Xと直交する方向(すなわち幅方向)Yに沿った第二の辺3とを有し、全体として矩形状をなす。ここで、第一の辺2と第二の辺3のうち相対的に短い辺の大きさは1100mm以上であり、かつ相対的に長い辺の大きさは1300mm以上であることが好ましい。一方で、第一の辺2と第二の辺3の大きさは何れも4000mm以下であることが好ましい。ガラス基板1の厚み寸法は1000μm以下であることが好ましく、700μm以下であることがより好ましい。一方で、ガラス基板1の厚み寸法は、200μm以上であることが好ましく、300μm以上であることがより好ましい。 The glass substrate 1 has a first side 2 along the drawing direction X resulting from the above-mentioned forming method, and a second side 3 along a direction (i.e., width direction) Y perpendicular to the drawing direction X, and is generally rectangular. Here, it is preferable that the relatively shorter side of the first side 2 and the second side 3 is 1100 mm or more, and the relatively longer side is 1300 mm or more. On the other hand, it is preferable that the sizes of both the first side 2 and the second side 3 are 4000 mm or less. The thickness dimension of the glass substrate 1 is preferably 1000 μm or less, and more preferably 700 μm or less. On the other hand, the thickness dimension of the glass substrate 1 is preferably 200 μm or more, and more preferably 300 μm or more.

なお、ガラス基板1の板引き方向Xは、例えば、暗室でガラス基板1の角度を調整しながら光源(例えばキセノンライト)から光を照射し、その透過光をスクリーンに投影することで、筋状の縞模様として観測できる。従って、成形後のガラス基板1の状態であっても、成形時の板引き方向Xを特定できる。 The drawing direction X of the glass substrate 1 can be observed as a striped pattern, for example, by irradiating light from a light source (e.g., a xenon light) while adjusting the angle of the glass substrate 1 in a darkroom and projecting the transmitted light onto a screen. Therefore, even in the state of the glass substrate 1 after molding, the drawing direction X during molding can be identified.

ガラス基板1の主表面4の形状、具体的にはガラス基板1の幅方向Yに沿った向きにおける主表面4の形状と、板引き方向Xに沿った向きにおける主表面4の形状は、それぞれ表裏撓み差を用いて評価される。 The shape of the main surface 4 of the glass substrate 1, specifically the shape of the main surface 4 in the direction along the width direction Y of the glass substrate 1 and the shape of the main surface 4 in the direction along the sheet drawing direction X, are evaluated using the difference in the deflection between the front and back surfaces.

最初に、ガラス基板1の幅方向Yに沿った向きにおける主表面4の形状を表裏撓み差により評価する方法の一例を説明する。まず図1に示すように、一枚のガラス基板1に対して、第二の辺3に沿った方向の位置が互いに異なる複数の評価領域A~Gを設定する。本実施形態では、第二の辺3に沿った方向で等間隔Lに離れた位置関係となるように7つの評価領域A,B,C,D,E,F,Gを設定する。この際、各評価領域A~Gは、ガラス基板1の一方の主表面4のうち例えば電子デバイスを製造する工程の成膜工程で薄膜パターンが形成される有効ゾーン(図示は省略)内に設定される。 First, an example of a method for evaluating the shape of the main surface 4 in the direction along the width direction Y of the glass substrate 1 based on the difference in front and back deflection will be described. First, as shown in FIG. 1, a single glass substrate 1 is set with multiple evaluation areas A to G at different positions in the direction along the second side 3. In this embodiment, seven evaluation areas A, B, C, D, E, F, and G are set so that they are spaced apart at equal intervals L in the direction along the second side 3. In this case, each evaluation area A to G is set within an effective zone (not shown) on one main surface 4 of the glass substrate 1 where a thin film pattern is formed, for example, in a film formation process in a process for manufacturing an electronic device.

ここで、各評価領域A~Gは矩形状をなしており、例えば幅方向Yに沿った辺の大きさが370mm、板引き方向Xに沿った辺の大きさが470mmとなるように、各評価領域A~Gの形状並びに大きさを設定する。なお、ここで挙げた各評価領域A~Gの形状並びに大きさは一例であり、例えばガラス基板1の第一の辺2に平行な辺(後述する辺12a,12b)の大きさが、第一の辺2の大きさの10%以上でかつ30%以下で、第二の辺3に平行な辺(後述する辺13a,13b)の大きさが、第二の辺3の大きさの10%以上でかつ30%以下となるように、各評価領域A~Gの大きさを設定してもよい。なお、有効ゾーンの幅方向寸法が小さいなど、全ての評価領域A~Gを幅方向に沿って一列で設定できない場合には、図1に示すように、幅方向に沿って二列になるように、7つの評価領域A~Gを各列に対し交互に設定してもよい。 Here, each evaluation area A to G is rectangular, and the shape and size of each evaluation area A to G are set so that, for example, the size of the side along the width direction Y is 370 mm and the size of the side along the sheet drawing direction X is 470 mm. Note that the shape and size of each evaluation area A to G given here are only examples, and the size of each evaluation area A to G may be set so that, for example, the size of the side parallel to the first side 2 of the glass substrate 1 (sides 12a and 12b described later) is 10% or more and 30% or less of the size of the first side 2, and the size of the side parallel to the second side 3 (sides 13a and 13b described later) is 10% or more and 30% or less of the size of the second side 3. Note that, if it is not possible to set all the evaluation areas A to G in a single row along the width direction, for example, because the width dimension of the effective zone is small, seven evaluation areas A to G may be set alternately in each row so as to form two rows along the width direction, as shown in FIG. 1.

そして、各評価領域A~Gに対応する位置、形状、及び大きさの試料ガラス11をガラス基板1から採取し、一枚のガラス基板1につき評価領域A~Gの数の分(ここでは7枚)の試料ガラス11を取得する。この際、試料ガラス11の一方の辺12a,12bがガラス基板1の板引き方向Xと平行で、かつ試料ガラス11の他方の辺13a,13bがガラス基板1の幅方向Yと平行になるように、試料ガラス11をガラス基板1から採取する。 Then, sample glass 11 with a position, shape, and size corresponding to each evaluation area A to G is taken from the glass substrate 1, and the same number of sample glass 11 as the number of evaluation areas A to G (7 in this case) is obtained per glass substrate 1. At this time, the sample glass 11 is taken from the glass substrate 1 so that one side 12a, 12b of the sample glass 11 is parallel to the drawing direction X of the glass substrate 1, and the other side 13a, 13b of the sample glass 11 is parallel to the width direction Y of the glass substrate 1.

このようにして所定枚の試料ガラス11を用意した後、各試料ガラス11の幅方向Yに沿った辺13a,13bの表裏撓み差を測定する。具体的には、図2に示すように、試料ガラス11の一方の主表面11a(例えば保証面となる側の主表面、ここではガラス基板1の一方の主表面4に含まれる側の主表面)を上向きにした状態で試料ガラス11の幅方向Yの両端部を一対の支持部材20,20により支持する。この際、一対の支持部材20,20による試料ガラス11の支持スパンMは、例えば350mmの大きさに設定される。そして、この状態において、試料ガラス11の幅方向Yに沿った二つの辺13a,13bのうち一方の辺13a(例えば板引き方向Xとの関係でいえば下流側の辺13a)に生じた第一の撓みW31a(図3(a)中の実線で示す状態)の大きさを測定する。然る後、試料ガラス11を表裏反転させて、試料ガラス11の他方の主表面11bを上向きにした状態で試料ガラス11の幅方向Yの両端部を一対の支持部材20,20により支持する(図3(a)中の二点鎖線で示す状態)。そして、この状態において、試料ガラス11の幅方向Yに沿った一方の辺13aに生じた第二の撓みW32aの大きさを測定する。 After preparing a predetermined number of sample glasses 11 in this manner, the difference in front-back deflection of the sides 13a, 13b along the width direction Y of each sample glass 11 is measured. Specifically, as shown in FIG. 2, one main surface 11a of the sample glass 11 (for example, the main surface on the guaranteed side, here the main surface on the side included in one main surface 4 of the glass substrate 1) is turned up, and both ends of the sample glass 11 in the width direction Y are supported by a pair of support members 20, 20. At this time, the support span M of the sample glass 11 by the pair of support members 20, 20 is set to, for example, 350 mm. Then, in this state, the magnitude of the first deflection W31a (shown by the solid line in FIG. 3(a)) generated in one side 13a (for example, the downstream side 13a in relation to the sheet drawing direction X) of the two sides 13a, 13b along the width direction Y of the sample glass 11 is measured. Then, the sample glass 11 is turned over, and both ends of the sample glass 11 in the width direction Y are supported by a pair of support members 20, 20 with the other main surface 11b of the sample glass 11 facing upward (as shown by the two-dot chain line in FIG. 3(a)). In this state, the magnitude of the second deflection W32a generated on one side 13a of the sample glass 11 along the width direction Y is measured.

このようにして、第一の撓みW31a及び第二の撓みW32aを測定した後、第一の撓みW31aから第二の撓みW32aを減じた値W31a-W32aを幅方向Yに沿った一方の辺13aの表裏撓み差として取得する。 After measuring the first deflection W31a and the second deflection W32a in this manner, the value W31a-W32a obtained by subtracting the second deflection W32a from the first deflection W31a is obtained as the difference in the front and back deflections of one side 13a along the width direction Y.

本実施形態では、次に、試料ガラス11の一方の主表面11aを上向きにした状態で試料ガラス11の幅方向Yの両端部を一対の支持部材20,20により支持した状態で、試料ガラス11の他方の辺13b(板引き方向Xとの関係でいえば上流側の辺13b)に生じた第一の撓みW31b(図3(b)中の実線で示す状態)の大きさを測定する。然る後、試料ガラス11を表裏反転させて、試料ガラス11の他方の主表面11bを上向きにした状態で試料ガラス11の幅方向Yの両端部を一対の支持部材20,20により支持する。そして、この状態において、試料ガラス11の幅方向Yに沿った他方の辺13bに生じた第二の撓みW32b(図3(b)中の二点鎖線で示す状態)の大きさを測定する。 In this embodiment, next, with one of the main surfaces 11a of the sample glass 11 facing upward, both ends of the sample glass 11 in the width direction Y are supported by a pair of support members 20, 20, and the magnitude of the first deflection W31b (indicated by the solid line in FIG. 3B) occurring on the other side 13b of the sample glass 11 (the upstream side 13b in terms of the sheet drawing direction X) is measured. After that, the sample glass 11 is turned over, and with the other main surface 11b of the sample glass 11 facing upward, both ends of the sample glass 11 in the width direction Y are supported by a pair of support members 20, 20. Then, in this state, the magnitude of the second deflection W32b (indicated by the two-dot chain line in FIG. 3B) occurring on the other side 13b of the sample glass 11 along the width direction Y is measured.

以上の作業を、各評価領域A~Gに対応する全ての試料ガラス11に対して行うことで、ガラス基板1の有効ゾーンの幅方向Y全域にわたる複数の評価領域A~Gにおける撓み方向及びその大きさを知ることができる。例えば図3(a)に示すように、一方の主表面11aを上向きにした状態で一方の辺13aに生じた第一の撓みW31aが、他方の主表面11bを上向きにした状態で一方の辺13aに生じた第二の撓みW32aよりも大きい場合、ガラス基板1のうち試料ガラス11の一方の辺13aに対応する領域における撓み方向は一方の主表面11aが凹となる向きで、その大きさは第一の撓みW31aから第二の撓みW32aを減じた値で評価することができる。よって、上述のように一方の辺13aの撓みを測定することにより、ガラス基板1の幅方向Yの形状が把握可能となる。 By performing the above operations on all the sample glass 11 corresponding to each evaluation area A to G, the direction and magnitude of the deflection in the multiple evaluation areas A to G across the entire width direction Y of the effective zone of the glass substrate 1 can be known. For example, as shown in FIG. 3(a), if the first deflection W31a occurring on one side 13a with one main surface 11a facing upward is larger than the second deflection W32a occurring on one side 13a with the other main surface 11b facing upward, the deflection direction in the area of the glass substrate 1 corresponding to one side 13a of the sample glass 11 is the direction in which one main surface 11a is concave, and the magnitude can be evaluated as the value obtained by subtracting the second deflection W32a from the first deflection W31a. Therefore, by measuring the deflection of one side 13a as described above, the shape of the glass substrate 1 in the width direction Y can be grasped.

また、このようにして、第一の撓みW31b及び第二の撓みW32bを測定した後、第一の撓みW31bから第二の撓みW32bを減じた値W31b-W32bを幅方向Yに沿った他方の辺13bの表裏撓み差として取得する。 Furthermore, after measuring the first deflection W31b and the second deflection W32b in this manner, the value W31b-W32b obtained by subtracting the second deflection W32b from the first deflection W31b is obtained as the difference in the front and back deflections of the other side 13b along the width direction Y.

また、この場合、上述のようにして求めた一方の辺13aの表裏撓み差W31a-W32aと、他方の辺13bの表裏撓み差W31b-W32bの正負を評価する。図3(a)及び図3(b)に示すように、一方の辺13aにおける表裏撓み差W31a-W32aと、他方の辺13bにおける表裏撓み差W31b-W32bとで、正負が等しい場合、ガラス基板1のうち試料ガラス11が採取された部分(評価領域A~Gの何れか一つ)の板引き方向Xに沿った向きの断面は、図5に示すように、表裏一方向に撓んだ形状をなす。 In this case, the positive and negative of the difference in front and back deflection W31a-W32a of one side 13a and the difference in front and back deflection W31b-W32b of the other side 13b obtained as described above are evaluated. As shown in Figures 3(a) and 3(b), when the difference in front and back deflection W31a-W32a of one side 13a and the difference in front and back deflection W31b-W32b of the other side 13b are equal in positive and negative, the cross section along the sheet drawing direction X of the portion of the glass substrate 1 from which the sample glass 11 was taken (one of the evaluation areas A to G) forms a shape that is deflected in one direction from the front to the back, as shown in Figure 5.

その一方で、試料ガラス11の幅方向Yに沿った二つの辺13a,13bでそれぞれ第一の撓みW31a(W31b)と、第二の撓みW32a(W32b)を測定して、一方の辺13aにおける表裏撓み差W31a-W32aと、他方の辺13bにおける表裏撓み差W31b-W32bの正負を評価した場合、図4(a)及び図4(b)に示すように、一方の辺13aと他方の辺13bとで、表裏撓み差W31a-W32a,W31b-W32bの正負が異なる(逆転する)ことがある。この際、ガラス基板1の試料ガラス11が採取された部分(評価領域A~Gの何れか一つ)の板引き方向Xに沿った向きの断面は、図6に示すように、撓み方向が板引き方向Xで逆転した形状、いわば波立ち形状をなす。以上のようにして、ガラス基板1の板引き方向Xの形状が把握可能となる。 On the other hand, when the first deflection W31a (W31b) and the second deflection W32a (W32b) are measured at two sides 13a and 13b along the width direction Y of the sample glass 11, respectively, and the positive and negative of the front-back deflection difference W31a-W32a at one side 13a and the front-back deflection difference W31b-W32b at the other side 13b are evaluated, the positive and negative of the front-back deflection differences W31a-W32a and W31b-W32b may differ (be reversed) between one side 13a and the other side 13b, as shown in Figures 4(a) and 4(b). In this case, the cross section of the portion of the glass substrate 1 from which the sample glass 11 was taken (any one of the evaluation areas A to G) along the sheet drawing direction X has a shape in which the deflection direction is reversed in the sheet drawing direction X, that is, a wavy shape, as shown in Figure 6. In this way, it is possible to grasp the shape of the glass substrate 1 in the drawing direction X.

次に、ガラス基板1の板引き方向Xに沿った向きの形状を表裏撓み差により評価する方法の一例を説明する。 Next, we will explain an example of a method for evaluating the shape of the glass substrate 1 along the drawing direction X based on the difference in the deflection between the front and back sides.

まず、図2に示す評価領域A~Gに対応する所定枚の試料ガラス11を用意した後、各試料ガラス11の板引き方向Xに沿った辺12a,12bの表裏撓み差を測定する。ここで、用意する試料ガラス11は、幅方向Yに沿った向きの形状を評価する際に用いた試料ガラス11でよい。具体的には、図7に示すように、試料ガラス11の一方の主表面11aを上向きにした状態で試料ガラス11の板引き方向Xの両端部を一対の支持部材21,21により支持する。この際、一対の支持部材21,21による試料ガラス11の支持スパンNは、例えば450mmの大きさに設定される。そして、この状態において、試料ガラス11の板引き方向Xに沿った二つの辺12a,12bのうち一方の辺12a(図7でいえば左側の辺12a)に生じた第一の撓みW21a(図8(a)中の実線で示す状態)の大きさを測定する。然る後、試料ガラス11を表裏反転させて、試料ガラス11の他方の主表面11bを上向きにした状態で試料ガラス11の板引き方向Xの両端部を一対の支持部材21,21により支持する(図8(a)中の二点鎖線で示す状態)。そして、この状態において、試料ガラス11の板引き方向Xに沿った一方の辺12aに生じた第二の撓みW22aの大きさを測定する。 First, a predetermined number of sample glasses 11 corresponding to the evaluation areas A to G shown in FIG. 2 are prepared, and then the difference in the front and back deflections of the sides 12a and 12b along the drawing direction X of each sample glass 11 is measured. Here, the sample glass 11 prepared may be the sample glass 11 used when evaluating the shape along the width direction Y. Specifically, as shown in FIG. 7, one of the main surfaces 11a of the sample glass 11 is facing upward, and both ends of the sample glass 11 in the drawing direction X are supported by a pair of support members 21, 21. At this time, the support span N of the sample glass 11 by the pair of support members 21, 21 is set to, for example, 450 mm. Then, in this state, the magnitude of the first deflection W21a (indicated by the solid line in FIG. 8(a)) generated in one side 12a (the left side 12a in FIG. 7) of the two sides 12a and 12b of the sample glass 11 along the drawing direction X is measured. After that, the sample glass 11 is turned over, and both ends of the sample glass 11 in the drawing direction X are supported by a pair of support members 21, 21 with the other main surface 11b of the sample glass 11 facing upward (as shown by the two-dot chain line in FIG. 8(a)). In this state, the magnitude of the second deflection W22a generated in one side 12a of the sample glass 11 along the drawing direction X is measured.

このようにして、第一の撓みW21a及び第二の撓みW22aを測定した後、第一の撓みW21aから第二の撓みW22aを減じた値W21a-W22aを板引き方向Xに沿った一方の辺12aの表裏撓み差として取得する。 After measuring the first deflection W21a and the second deflection W22a in this manner, the value W21a-W22a obtained by subtracting the second deflection W22a from the first deflection W21a is obtained as the difference between the front and back deflections of one edge 12a along the plate drawing direction X.

本実施形態では、次に、試料ガラス11の一方の主表面11aを上向きにした状態で試料ガラス11の板引き方向Xの両端部を一対の支持部材21,21により支持した状態で、試料ガラス11の他方の辺12b(図7でいえば右側の辺12b)に生じた第一の撓みW21b(図8(b)中の実線で示す状態)の大きさを測定する。然る後、試料ガラス11を表裏反転させて、試料ガラス11の他方の主表面11bを上向きにした状態で試料ガラス11の板引き方向Xの両端部を一対の支持部材21,21により支持する。そして、この状態において、試料ガラス11の板引き方向Xに沿った他方の辺12bに生じた第二の撓みW22b(図8(b)中の二点鎖線で示す状態)の大きさを測定する。 In this embodiment, next, with one of the main surfaces 11a of the sample glass 11 facing upward, both ends of the sample glass 11 in the drawing direction X are supported by a pair of support members 21, 21, and the magnitude of the first deflection W21b (state shown by the solid line in FIG. 8(b)) occurring on the other side 12b of the sample glass 11 (the right side 12b in FIG. 7) is measured. After that, the sample glass 11 is turned over, and with the other main surface 11b of the sample glass 11 facing upward, both ends of the sample glass 11 in the drawing direction X are supported by a pair of support members 21, 21. Then, in this state, the magnitude of the second deflection W22b (state shown by the two-dot chain line in FIG. 8(b)) occurring on the other side 12b of the sample glass 11 along the drawing direction X is measured.

以上の作業を、各評価領域A~Gに対応する全ての試料ガラス11に対して行うことで、ガラス基板1の有効ゾーン内の複数の評価領域A~Gにおける板引き方向Xの撓み方向及びその大きさを知ることができる。例えば図8(a)に示すように、一方の主表面11aを上向きにした状態で一方の辺12aに生じた第一の撓みW21aが、他方の主表面11bを上向きにした状態で一方の辺12aに生じた第二の撓みW22aよりも大きい場合、ガラス基板1のうち試料ガラス11の一方の辺12aに対応する領域における撓み方向は一方の主表面11aが凹となる向きで、その大きさは第一の撓みW21aから第二の撓みW22aを減じた値で評価することができる。よって、上述のように一方の辺12aの撓みを測定することにより、ガラス基板1の板引き方向Xにおける形状が把握可能となる。 By performing the above operations on all sample glasses 11 corresponding to each evaluation area A to G, the direction and magnitude of the deflection in the drawing direction X in the multiple evaluation areas A to G in the effective zone of the glass substrate 1 can be known. For example, as shown in FIG. 8(a), if the first deflection W21a occurring on one side 12a with one main surface 11a facing upward is larger than the second deflection W22a occurring on one side 12a with the other main surface 11b facing upward, the deflection direction in the area of the glass substrate 1 corresponding to one side 12a of the sample glass 11 is the direction in which one main surface 11a is concave, and the magnitude can be evaluated as the value obtained by subtracting the second deflection W22a from the first deflection W21a. Therefore, by measuring the deflection of one side 12a as described above, the shape of the glass substrate 1 in the drawing direction X can be grasped.

また、このようにして、第一の撓みW21b及び第二の撓みW22bを測定した後、第一の撓みW21bから第二の撓みW22bを減じた値W21b-W22bを板引き方向Xに沿った他方の辺12bの表裏撓み差として取得する。 Furthermore, after measuring the first deflection W21b and the second deflection W22b in this manner, the value W21b-W22b obtained by subtracting the second deflection W22b from the first deflection W21b is obtained as the difference in the front and back deflections of the other edge 12b along the plate drawing direction X.

この場合、上述のようにして求めた一方の辺12aの表裏撓み差W21a-W22aと、他方の辺12bの表裏撓み差W21b-W22bの正負を評価することができる。図8(a)及び図8(b)に示すように、一方の辺12aにおける表裏撓み差W21a-W22aと、他方の辺12bにおける表裏撓み差W21b-W22bとで、正負が等しい場合、ガラス基板1の試料ガラス11が採取された部分(評価領域A~Gの何れか一つ)の幅方向Yに沿った向きの断面は、図示は省略するが、表裏一方向に撓んだ形状をなす。 In this case, the positive and negative of the difference in front-back bending W21a-W22a of one side 12a and the difference in front-back bending W21b-W22b of the other side 12b obtained as described above can be evaluated. As shown in Figures 8(a) and 8(b), when the difference in front-back bending W21a-W22a of one side 12a and the difference in front-back bending W21b-W22b of the other side 12b are equal in positive and negative, the cross section along the width direction Y of the portion (any one of evaluation areas A to G) from which the sample glass 11 of the glass substrate 1 was taken will have a shape that is bent in one direction, front to back, although this is not shown.

一方で、試料ガラス11の板引き方向Xに沿った二つの辺12a,12bでそれぞれ第一の撓みW21a(W21b)と、第二の撓みW22a(W22b)を測定して、一方の辺12aにおける表裏撓み差W21a-W22aと、他方の辺12bにおける表裏撓み差W21b-W22bの正負を評価した場合、図9(a)及び図9(b)に示すように、一方の辺12aと他方の辺12bとで、表裏撓み差W21a-W22a,W21b-W22bの正負が異なる(逆転する)ことがある。この場合、ガラス基板1の試料ガラス11が採取された部分(評価領域A~Gの何れか一つ)の幅方向Yに沿った向きの断面は、図示は省略するが、撓み方向が幅方向Yで逆転した形状(波立ち形状)をなす。以上のようにして、ガラス基板1の幅方向Yの形状が把握可能となる。 On the other hand, when the first deflection W21a (W21b) and the second deflection W22a (W22b) are measured at two sides 12a and 12b along the sheet drawing direction X of the sample glass 11, respectively, and the positive and negative of the front-back deflection difference W21a-W22a at one side 12a and the front-back deflection difference W21b-W22b at the other side 12b are evaluated, the positive and negative of the front-back deflection differences W21a-W22a and W21b-W22b may differ (be reversed) between one side 12a and the other side 12b, as shown in Figures 9(a) and 9(b). In this case, the cross section along the width direction Y of the part (any one of the evaluation areas A to G) from which the sample glass 11 of the glass substrate 1 was taken has a shape (wavy shape) in which the deflection direction is reversed in the width direction Y, although not shown. In this way, it becomes possible to grasp the shape of the glass substrate 1 in the width direction Y.

また、上述のようにして評価されるガラス基板1は、複数の評価領域A~G全てにおいて、第一の辺2と平行な二つの辺12a,12bにおける表裏撓み差W21a-W22a,W21b-W22bが何れも-0.5mm以上でかつ+0.5mm以下であることが好ましく、-0.3mm以上でかつ0.3mm以下であることがより好ましい。また、第二の辺3と平行な二つの辺13a,13bにおける表裏撓み差W31a-W32a,W31b-W32bが何れも-0.5mm以上でかつ+0.5mm以下であることが好ましく、-0.3mm以上でかつ0.3mm以下であることがより好ましい。すなわち、先に述べた表裏撓み差の正負と合わせてガラス基板1の取り扱い性を考慮した場合、ガラス基板1の各評価領域A~Gのうち少なくとも一つの領域における幅方向Yに沿った一方の辺13aの表裏撓み差W31a-W32aと他方の辺13bの表裏撓み差W31b-W32bの正負が逆転しており、かつ全ての評価領域A~Gにおいて四辺12a,12b,13a,13bの表裏撓み差W21a-W22a,W21b-W22b,W31a-W32a,W31b-W32bの絶対値が何れも0.5mm以内であることが好ましく、0.3mm以内であることがより好ましい。 In addition, in the glass substrate 1 evaluated as described above, in all of the evaluation areas A to G, the front-back deflection differences W21a-W22a and W21b-W22b in the two sides 12a and 12b parallel to the first side 2 are preferably -0.5 mm or more and +0.5 mm or less, and more preferably -0.3 mm or more and 0.3 mm or less. In addition, the front-back deflection differences W31a-W32a and W31b-W32b in the two sides 13a and 13b parallel to the second side 3 are preferably -0.5 mm or more and +0.5 mm or less, and more preferably -0.3 mm or more and 0.3 mm or less. In other words, when the handleability of the glass substrate 1 is taken into consideration in addition to the positive and negative front-back deflection differences described above, the positive and negative of the front-back deflection difference W31a-W32a of one side 13a along the width direction Y in at least one of the evaluation areas A to G of the glass substrate 1 is reversed, and it is preferable that the absolute values of the front-back deflection differences W21a-W22a, W21b-W22b, W31a-W32a, and W31b-W32b of the four sides 12a, 12b, 13a, and 13b in all evaluation areas A to G are all within 0.5 mm, and more preferably within 0.3 mm.

次に、以上の構成を備えたガラス基板1の製造方法の一例を説明する。 Next, an example of a method for manufacturing a glass substrate 1 having the above configuration will be described.

図10は、本実施形態に係るガラス基板1を製造可能とするための製造装置100の要部を示す縦断面図である。この製造装置100は、オーバーフローダウンドロー法によって、炉101内で、ガラス基板1となる帯状ガラスとしてのガラスリボン30を成形するものである。 Figure 10 is a vertical cross-sectional view showing the main parts of a manufacturing apparatus 100 for manufacturing the glass substrate 1 according to this embodiment. This manufacturing apparatus 100 forms a glass ribbon 30 as a band-shaped glass that becomes the glass substrate 1 in a furnace 101 by the overflow downdraw method.

詳細には、炉101内には、上方から順に、成形工程を行う成形ゾーン102、アニール工程を行う徐冷(アニール)ゾーン103、冷却工程を行う冷却ゾーン104が設けられており、冷却ゾーン104の下流側に切断工程を行う切断ゾーン(図示は省略)が設けられている。 In detail, within the furnace 101, from the top, there are provided a forming zone 102 where the forming process is performed, a slow cooling (annealing) zone 103 where the annealing process is performed, and a cooling zone 104 where the cooling process is performed, and downstream of the cooling zone 104, there is provided a cutting zone (not shown) where the cutting process is performed.

成形ゾーン102では、楔状の断面形状を有する成形体121に溶融ガラス31を供給すると共に、この成形体121の頂部から溢れ出た溶融ガラス31をその下端部で合流させて流下させることで、帯状のガラスリボン30を成形する。徐冷ゾーン103では、成形ゾーン102で成形されたガラスリボン30を徐冷することで、その内部に歪が発生するのを抑制する。冷却ゾーン104では、徐冷ゾーン103で徐冷されたガラスリボン30を室温又は室温付近まで冷却する。そして、このように冷却されたガラスリボン30が図示しない切断ゾーンで所定の大きさに切断されて、ガラス基板1が連続的に製造される。 In the forming zone 102, molten glass 31 is supplied to a forming body 121 having a wedge-shaped cross-sectional shape, and the molten glass 31 overflowing from the top of this forming body 121 is joined at the bottom end and allowed to flow down to form a band-shaped glass ribbon 30. In the annealing zone 103, the glass ribbon 30 formed in the forming zone 102 is annealed to prevent distortion from occurring inside. In the cooling zone 104, the glass ribbon 30 annealed in the annealing zone 103 is cooled to room temperature or near room temperature. The glass ribbon 30 thus cooled is then cut to a predetermined size in a cutting zone (not shown), and glass substrates 1 are continuously manufactured.

徐冷ゾーン103と冷却ゾーン104には、ガラスリボン30の搬送経路に沿った複数箇所に、図10中の矢印方向に回転するローラ105を配置してなる複数のローラ群106が設けられている。個々のローラ群106は、図11に示すように、ガラスリボン30の幅方向Yの両端部をそれぞれ挟持する二対のローラ105(すなわち計四個のローラ105)によって構成され、この実施形態では、ガラスリボン30の幅方向Yの一方側に位置する二個のローラ105と、幅方向Yの他方側に位置する二個のローラ105とがそれぞれ、二本のローラ軸107に連結固定されている。もちろん、一方側のローラ105と、他方側のローラ105とを、ローラ軸107で相互に連結固定せず、個々のローラ105をローラ軸107で片持支持してもかまわない。 In the annealing zone 103 and the cooling zone 104, a plurality of roller groups 106 are provided at a plurality of locations along the conveying path of the glass ribbon 30, each of which is composed of two pairs of rollers 105 (i.e., a total of four rollers 105) that respectively hold both ends of the glass ribbon 30 in the width direction Y, as shown in FIG. 11. In this embodiment, the two rollers 105 located on one side of the glass ribbon 30 in the width direction Y and the two rollers 105 located on the other side of the width direction Y are each connected and fixed to two roller shafts 107. Of course, the rollers 105 on one side and the rollers 105 on the other side may not be connected and fixed to each other by the roller shaft 107, and each roller 105 may be cantilevered by the roller shaft 107.

徐冷ゾーン103では、図11に示すように、全体として平坦な形状のガラスリボン30の一部をわずかに湾曲させている。詳細には、ガラスリボン30を幅方向Yの中央側で湾曲させてガラスリボン30に湾曲部32を形成している。また、ガラスリボン30の板引き方向Xの所定位置で湾曲部32の凹凸の向きを表裏方向で反転させている。 In the annealing zone 103, as shown in FIG. 11, a portion of the glass ribbon 30, which is generally flat, is slightly curved. In detail, the glass ribbon 30 is curved at the center side in the width direction Y to form a curved portion 32 in the glass ribbon 30. In addition, the direction of the concaves and convexes of the curved portion 32 is reversed in the front and back directions at a predetermined position in the drawing direction X of the glass ribbon 30.

本実施形態において、湾曲部32のうち相対的に徐冷ゾーン103の上流側に位置する第一湾曲部33は、図12に示すように、ガラスリボン30の幅方向Yの中央部を、一方の主表面30a側が凹で他方の主表面30b側が凸となるように湾曲させた形状をなす。なお、図12中の一点鎖線で示す状態は、第一湾曲部33を形成しない場合のガラスリボン30の状態、すなわち、平坦なガラスリボン30の状態を示している。 In this embodiment, the first curved portion 33, which is located relatively upstream of the annealing zone 103 among the curved portions 32, has a shape in which the center of the width direction Y of the glass ribbon 30 is curved so that one main surface 30a side is concave and the other main surface 30b side is convex, as shown in FIG. 12. The state shown by the dashed line in FIG. 12 shows the state of the glass ribbon 30 when the first curved portion 33 is not formed, that is, the state of the flat glass ribbon 30.

一方、湾曲部32のうち相対的に徐冷ゾーン103の下流側に位置する第二湾曲部34は、図13に示すように、ガラスリボン30の幅方向Yの中央部を、一方の主表面30a側が凸で他方の主表面30b側が凹となるように湾曲させた形状をなす。 On the other hand, the second curved portion 34, which is located relatively downstream of the annealing zone 103 among the curved portions 32, has a curved shape in which the center of the glass ribbon 30 in the width direction Y is convex on one main surface 30a side and concave on the other main surface 30b side, as shown in FIG. 13.

これら板引き方向Xで連続する第一湾曲部33と第二湾曲部34は、図11に示すように、上流側ではガラスリボン30の裏面(他方の主表面30b)側に凸となり、下流側ではガラスリボン30の表面(一方の主表面30a)側に凸となるように、上流側と下流側で凸となる向きが反転した形状をなしている。すなわち、このような形状の湾曲部32(33,34)をガラスリボン30に設けることで、図14に示すように、ガラスリボン30は板引き方向Xに沿って湾曲した形状をなし、上流側と下流側のそれぞれの湾曲部33,34の凸となる側の向きが、反転部35を境に表裏反転している。 The first curved portion 33 and the second curved portion 34, which are continuous in the sheet drawing direction X, have a shape in which the convex direction is reversed on the upstream side and the downstream side, so that the convex direction is convex toward the back surface (the other main surface 30b) of the glass ribbon 30 on the upstream side and the convex direction is convex toward the front surface (one main surface 30a) of the glass ribbon 30 on the downstream side, as shown in FIG. 11. In other words, by providing the curved portion 32 (33, 34) of such a shape to the glass ribbon 30, as shown in FIG. 14, the glass ribbon 30 has a curved shape along the sheet drawing direction X, and the direction of the convex side of each of the curved portions 33, 34 on the upstream side and the downstream side is reversed at the boundary of the reversal portion 35.

本実施形態に係る製造方法では、第一湾曲部33の湾曲形状を繰り返して変化させると共に第二湾曲部34の湾曲形状を繰り返して変化させる。具体的には、まず第一湾曲部33を、一方の主表面30a側が凹となるように湾曲させた形状から一方の主表面30a側が凸となるように湾曲させた形状に変化させる。また、第二湾曲部34を、一方の主表面30a側が凸となるように湾曲させた形状から一方の主表面30a側が凹となるように湾曲させた形状に変化させる。続いて、第一湾曲部33を、一方の主表面30a側が凸となるように湾曲させた形状から一方の主表面30a側が凹となるように湾曲させた形状に変化させる。また、第二湾曲部34を、一方の主表面30a側が凹となるように湾曲させた形状から一方の主表面30a側が凸となるように湾曲させた形状に変化させる。これにより、第一湾曲部33及び第二湾曲部34の湾曲形状は図11~図14に示す形状に戻る。このような第一湾曲部33及び第二湾曲部34の湾曲形状の変化を繰り返す。このような変化の1サイクルは、例えば1~3秒で行えばよい。 In the manufacturing method according to the present embodiment, the curved shape of the first curved portion 33 is repeatedly changed and the curved shape of the second curved portion 34 is repeatedly changed. Specifically, the first curved portion 33 is first changed from a shape curved so that one of the main surfaces 30a is concave to a shape curved so that one of the main surfaces 30a is convex. The second curved portion 34 is also changed from a shape curved so that one of the main surfaces 30a is convex to a shape curved so that one of the main surfaces 30a is concave. Next, the first curved portion 33 is changed from a shape curved so that one of the main surfaces 30a is convex to a shape curved so that one of the main surfaces 30a is concave. The second curved portion 34 is also changed from a shape curved so that one of the main surfaces 30a is concave to a shape curved so that one of the main surfaces 30a is convex. As a result, the curved shapes of the first curved portion 33 and the second curved portion 34 return to the shapes shown in FIGS. 11 to 14. Such changes in the curved shape of the first curved portion 33 and the second curved portion 34 are repeated. One cycle of such changes may take, for example, 1 to 3 seconds.

このようなガラスリボン30から切り出されたガラス基板1であれば、上述の如く、板引き方向Xに沿った向きの形状を表裏撓み差により評価した場合、図4(a)及び図4(b)に示すように、幅方向Yに沿った二辺13a,13bの表裏撓み差W31a-W32a,W31b-W32bの正負が逆転する。すなわち、図6に示すように、板引き方向Xに波打った形状をなす。よって、この波打った形状をなすガラス基板1によれば、自重による撓みが一方向に顕在化する事態を防いで、搬送時又は加工時の変形を抑えることが可能となる。これにより、搬送時又は加工時におけるガラス基板1の形状が安定するので、ガラス基板1の取り扱い性を高めることが可能となる。 As described above, when the shape of the glass substrate 1 cut from such a glass ribbon 30 is evaluated based on the difference in front and back warping along the sheet drawing direction X, the positive and negative of the front and back warping differences W31a-W32a and W31b-W32b of the two sides 13a and 13b along the width direction Y are reversed, as shown in Figures 4(a) and 4(b). That is, as shown in Figure 6, the glass substrate 1 has a wavy shape in the sheet drawing direction X. Therefore, with this wavy glass substrate 1, it is possible to prevent the warping due to its own weight from becoming apparent in one direction, and to suppress deformation during transportation or processing. As a result, the shape of the glass substrate 1 during transportation or processing is stable, making it possible to improve the handleability of the glass substrate 1.

ここで、ガラスリボン30の第一湾曲部33及び第二湾曲部34の湾曲形状を変化させる方法としては、例えば、次のような手段が挙げられる。 Here, examples of methods for changing the curved shape of the first curved portion 33 and the second curved portion 34 of the glass ribbon 30 include the following means.

例えば、第一湾曲部33及び第二湾曲部34の湾曲形状は、機械的な外力により変化させてもよい。具体的には、例えば、ガラスリボン30に図示しない接触子を突き当てて、その接触子によって第一湾曲部33及び第二湾曲部34の湾曲形状を強制的に変化させてもよい。 For example, the curved shapes of the first curved portion 33 and the second curved portion 34 may be changed by a mechanical external force. Specifically, for example, a contactor (not shown) may be abutted against the glass ribbon 30, and the curved shapes of the first curved portion 33 and the second curved portion 34 may be forcibly changed by the contactor.

前述の第一湾曲部33及び第二湾曲部34の湾曲形状の変化を繰り返したガラスリボン30から切り出されたガラス基板1であれば、板引き方向Xに沿った二辺12a,12bの表裏撓み差W21a-W22a,W21b-W22bの正負も逆転する。 If the glass substrate 1 is cut from the glass ribbon 30 in which the curved shapes of the first curved portion 33 and the second curved portion 34 have been repeatedly changed, the positive and negative values of the front and back deflection differences W21a-W22a and W21b-W22b of the two sides 12a and 12b along the sheet drawing direction X will also be reversed.

幅方向Yに沿った二辺13a,13bの表裏撓み差W31a-W32a,W31b-W32b、及び、板引き方向Xに沿った二辺12a,12bの表裏撓み差W21a-W22a,W21b-W22bは、第一湾曲部33及び第二湾曲部34の湾曲量dt(図12及び図13参照)に応じて変化する。つまり、湾曲量dtを小さくすれば、例えば湾曲量dtを1mm~20mmにすれば、幅方向Yに沿った二辺13a,13bの表裏撓み差W31a-W32a,W31b-W32b、及び、板引き方向Xに沿った二辺12a,12bの表裏撓み差W21a-W22a,W21b-W22bを-0.5mm以上でかつ+0.5mm以下にできる。 The front-back deflection differences W31a-W32a and W31b-W32b of the two sides 13a and 13b along the width direction Y, and the front-back deflection differences W21a-W22a and W21b-W22b of the two sides 12a and 12b along the plate drawing direction X change according to the amount of bending dt (see Figures 12 and 13) of the first curved portion 33 and the second curved portion 34. In other words, if the amount of bending dt is made small, for example, if the amount of bending dt is set to 1 mm to 20 mm, the front-back deflection differences W31a-W32a and W31b-W32b of the two sides 13a and 13b along the width direction Y, and the front-back deflection differences W21a-W22a and W21b-W22b of the two sides 12a and 12b along the plate drawing direction X can be made to be -0.5 mm or more and +0.5 mm or less.

以上のようにして製造されたガラス基板1の形状精度を、上述した表裏撓み差により評価した結果の一例を図15~図17に示す。 An example of the results of evaluating the shape accuracy of the glass substrate 1 manufactured in the above manner based on the difference in the deflection between the front and back sides is shown in Figures 15 to 17.

図15は、本発明との比較に係るガラス基板1の各評価領域A~Gにおける幅方向Yの表裏撓み差の評価結果を表している。ここで、図15に示す幅方向Yの表裏撓み差は、図2及び図3に示すように、評価対象となるガラス基板1から評価領域A~Gに対応する試料ガラス11を採取し、採取した試料ガラス11の幅方向Yに沿った二つの辺13a,13bにそれぞれ生じた自重による撓みW31a,W31b,W32a,W32bを測定し、同じ辺13a(13b)で測定した撓みW31a,W32a(W31b,W32b)の差で表したものである。また、図15中の実線は、試料ガラス11の上流側の辺13bで測定して得た表裏撓み差の分布を表しており、図15中の破線は、試料ガラス11の下流側の辺13aで測定して得た表裏撓み差W31a-W32aの分布を表している。 Figure 15 shows the evaluation results of the front-back deflection difference in the width direction Y in each evaluation area A to G of a glass substrate 1 for comparison with the present invention. Here, the front-back deflection difference in the width direction Y shown in Figure 15 is expressed as the difference between the deflections W31a, W31b, W32a, and W32b measured on the same side 13a (13b) after taking a sample glass 11 corresponding to the evaluation areas A to G from the glass substrate 1 to be evaluated as shown in Figures 2 and 3 and measuring the deflections W31a, W31b, W32a, and W32b caused by the weight of the two sides 13a and 13b of the sampled sample glass 11 along the width direction Y. The solid line in Figure 15 shows the distribution of the front-back deflection difference obtained by measuring the side 13b on the upstream side of the sample glass 11, and the dashed line in Figure 15 shows the distribution of the front-back deflection difference W31a-W32a obtained by measuring the side 13a on the downstream side of the sample glass 11.

また、図16は、本発明に係るガラス基板1の各評価領域A~Gにおける幅方向Yの表裏撓み差の評価結果を表している。ここで、図16に示す幅方向Yの表裏撓み差は、評価対象となるガラス基板1が異なる点を除き、図15に示す表裏撓み差と全て同じ方法で取得し、かつ同じ態様でグラフ化したものである。 Figure 16 shows the evaluation results of the difference in front and back deflection in the width direction Y in each evaluation area A to G of the glass substrate 1 according to the present invention. Here, the differences in front and back deflection in the width direction Y shown in Figure 16 were obtained in the same manner as the differences in front and back deflection shown in Figure 15, and were graphed in the same manner, except that the glass substrate 1 being evaluated is different.

図17は、本発明に係るガラス基板1の各評価領域A~Gにおける板引き方向Yの表裏撓み差の評価結果を表している。ここで、図17に示す板引き方向Xの表裏撓み差は、図7及び図8に示すように、評価対象となるガラス基板1から評価領域A~Gに対応する試料ガラス11を採取し、採取した試料ガラス11の板引き方向Xに沿った二つの辺12a,12bにそれぞれ生じた自重による撓みW21a,W21b,W22a,W22bを測定し、同じ辺12a(12b)で測定した撓みW21a,W22a(W21b,W22b)の差で表したものである。また、図17中の実線は、試料ガラス11の幅方向一方側の辺12bで測定して得た表裏撓み差W21b-W22bの分布を表しており、図17中の破線は、試料ガラス11の幅方向他方側の辺12aで測定して得た表裏撓み差W21a-W22aの分布を表している。 Figure 17 shows the evaluation results of the difference in front and back deflection in the drawing direction Y in each evaluation area A to G of the glass substrate 1 according to the present invention. Here, the difference in front and back deflection in the drawing direction X shown in Figure 17 is expressed as the difference between the deflections W21a, W22a (W21b, W22b) measured on the same side 12a (12b) after taking a sample glass 11 corresponding to evaluation areas A to G from the glass substrate 1 to be evaluated as shown in Figures 7 and 8, measuring the deflections W21a, W21b, W22a, W22b caused by the weight of the two sides 12a, 12b of the taken sample glass 11 along the drawing direction X. In addition, the solid line in FIG. 17 represents the distribution of the front-back deflection difference W21b-W22b obtained by measuring the edge 12b on one side of the width direction of the sample glass 11, and the dashed line in FIG. 17 represents the distribution of the front-back deflection difference W21a-W22a obtained by measuring the edge 12a on the other side of the width direction of the sample glass 11.

図15に示すように、本発明との比較に係るガラス基板1では、何れの評価領域A~Gにおいても、下流側の辺13aと上流側の辺13bとで幅方向Yの表裏撓み差の正負が一致、あるいは一方が実質的に零となっている。 As shown in FIG. 15, in the glass substrate 1 for comparison with the present invention, in all evaluation areas A to G, the positive and negative differences in the front and back deflections in the width direction Y of the downstream side 13a and the upstream side 13b match, or one of them is substantially zero.

これに対して、図16に示すように、本発明に係るガラス基板1では、所定の評価領域B,Cにおいて、幅方向Yの表裏撓み差の正負が逆転している。このことから、本発明に係るガラス基板1のうち少なくとも評価領域B,Cに対応する領域では、下流側と上流側とで表裏の撓み方向が逆転しており、板引き方向Xで図6に示す如き波打ち形状をなしていることが推察される。 In contrast, as shown in Figure 16, in the glass substrate 1 according to the present invention, the positive and negative difference in the front and back deflection in the width direction Y is reversed in the predetermined evaluation areas B and C. From this, it is presumed that in at least the areas of the glass substrate 1 according to the present invention corresponding to the evaluation areas B and C, the direction of the front and back deflection is reversed between the downstream side and the upstream side, forming a wavy shape in the sheet drawing direction X as shown in Figure 6.

また、図17に示すように、本発明に係るガラス基板1では、所定の評価領域Aにおいて、板引き方向Xの表裏撓み差の正負が逆転している。このことから、本発明に係るガラス基板1のうち少なくとも評価領域Aに対応する領域では、幅方向一方側と他方側とで表裏の撓み方向が逆転しており、幅方向Yで図6に示す如き波打ち形状をなしていることが推察される。 As shown in Figure 17, in the glass substrate 1 according to the present invention, the positive and negative difference in the front and back deflection in the drawing direction X is reversed in a predetermined evaluation area A. From this, it is presumed that in at least the area of the glass substrate 1 according to the present invention corresponding to the evaluation area A, the direction of the front and back deflection is reversed between one side and the other side in the width direction, forming a wavy shape in the width direction Y as shown in Figure 6.

また、図16及び図17に示すように、本発明に係るガラス基板1では、複数の評価領域A~G全てにおいて、幅方向Yに平行な下流側の辺13aと上流側の辺13bにおける表裏撓み差の絶対値、及び板引き方向Xに平行な幅方向一方側の辺12aと他方側の辺12bにおける表裏撓み差の絶対値が何れも0.2mm以内に収まっていることが分かる。 In addition, as shown in Figures 16 and 17, in the glass substrate 1 according to the present invention, in all of the evaluation areas A to G, the absolute value of the difference in the front and back deflections between the downstream side 13a and the upstream side 13b parallel to the width direction Y, and the absolute value of the difference in the front and back deflections between the side 12a on one side of the width direction and the side 12b on the other side of the width direction parallel to the sheet drawing direction X, are all within 0.2 mm.

以上、本発明の一実施形態を説明したが、本発明に係るガラス基板、及びガラス基板の製造方法は、上記実施形態には限定されることなく、本発明の範囲内で種々の形態を採ることが可能である。 Although one embodiment of the present invention has been described above, the glass substrate and the method for manufacturing the glass substrate according to the present invention are not limited to the above embodiment and can take various forms within the scope of the present invention.

例えば、上記実施形態では、一枚のガラス基板1につき、7つの評価領域A~Gを設定し、対応する7枚(評価領域と同数)の試料ガラス11を採取した場合を例示したが、もちろんこれには限られない。例えば一枚のガラス基板1につき3つ~10つの評価領域を設定し、設定した評価領域と同数の試料ガラス11をガラス基板1から採取して各々の試料ガラス11につき表裏撓み差を取得してもよい。 For example, in the above embodiment, seven evaluation areas A to G are set for one glass substrate 1, and seven corresponding glass samples 11 (the same number as the evaluation areas) are taken, but of course this is not limited to this. For example, three to ten evaluation areas may be set for one glass substrate 1, and the same number of glass samples 11 as the set evaluation areas may be taken from the glass substrate 1, and the difference in front and back deflection may be obtained for each glass sample 11.

また、評価領域(すなわち試料ガラス11)のサイズについても上記例示の寸法には限定されず、例えば幅方向Yに沿った辺の大きさが250mm以上でかつ600mm以下であってもよい。また、評価領域(試料ガラス11)の板引き方向Xに沿った辺の大きさが300mm以上でかつ700mm以下であってもよい。支持スパンM、Nも上記例示の寸法には限定されず、例えば試料ガラス11の幅方向Y又は板引き方向Xに平行な辺の大きさの80~98%に設定してもよい。 The size of the evaluation area (i.e., the sample glass 11) is not limited to the dimensions given in the above examples, and may be, for example, a side along the width direction Y that is 250 mm or more and 600 mm or less. The size of the side of the evaluation area (sample glass 11) along the sheet drawing direction X that is 300 mm or more and 700 mm or less. The support spans M and N are also not limited to the dimensions given in the above examples, and may be, for example, set to 80 to 98% of the size of the side of the sample glass 11 that is parallel to the width direction Y or the sheet drawing direction X.

また、上記実施形態では、一枚のガラス基板1から評価領域A~Gに対応して複数の試料ガラス11を採取して、各試料ガラス11の表裏撓み差を測定した場合を例示したが、これ以外の手法をとることも可能である。例えば同一の製造ラインで製造された複数枚のガラス基板1を取得し、取得した各ガラス基板1から評価領域に応じた数の試料ガラス11を採取する。そして、各試料ガラス11の各辺12a,12b,13a,13bの表裏撓み差を取得し、同一の評価領域で取得した複数の表裏撓み差の平均値又は最大値を求めることで、当該評価領域における表裏撓み差を評価してもかまわない。 In the above embodiment, a case was exemplified in which multiple glass samples 11 were taken from one glass substrate 1 corresponding to the evaluation areas A to G, and the difference in front and back deflection of each glass sample 11 was measured, but other methods can also be used. For example, multiple glass substrates 1 manufactured on the same production line are obtained, and a number of glass samples 11 corresponding to the evaluation area are taken from each obtained glass substrate 1. Then, the front and back deflection differences of each side 12a, 12b, 13a, and 13b of each glass sample 11 are obtained, and the average or maximum value of the multiple front and back deflection differences obtained in the same evaluation area is calculated, thereby evaluating the front and back deflection difference in the evaluation area.

また、上記実施形態では、オーバーフローダウンドロー法によりガラスリボン30を成形する場合を説明したが、例えば、スロットダウンドロー法やリドロー法などの他のダウンドロー法又はフロート法によりガラスリボン30を成形するようにしてもよい。 In the above embodiment, the glass ribbon 30 is formed by the overflow downdraw method. However, the glass ribbon 30 may be formed by other downdraw methods such as the slot downdraw method or the redraw method, or by the float method.

また、以上の説明に係るガラス基板1は、例えば、液晶ディスプレイや有機ELディスプレイなどのディスプレイのガラス基板やカバーガラスに適用可能である。 The glass substrate 1 described above can be used as a glass substrate or cover glass for displays such as liquid crystal displays and organic electroluminescence displays.

1 ガラス基板
2 板引き方向に沿った辺
3 幅方向に沿った辺
4 主表面
11 試料ガラス
11a,11b 主表面
12a,12b 板引き方向に沿った辺
13a,13b 幅方向に沿った辺
20,20,21,21 支持部材
30 ガラスリボン
30a,30b 主表面
31 溶融ガラス
32,33,34 湾曲部
35 反転部
100 製造装置
101 炉
102 成形ゾーン
103 徐冷ゾーン
104 冷却ゾーン
105 ローラ
106 ローラ群
107 ローラ軸
121 成形体
A,B,C,D,E,F,G 評価領域
M,N 支持スパン
W21a,W21b,W22a,W22b 板引き方向に沿った辺の撓み
W31a,W31b,W32a,W32b 幅方向に沿った辺の撓み
X 板引き方向
Y 幅方向
1 Glass substrate 2 Side along the sheet drawing direction 3 Side along the width direction 4 Main surface 11 Sample glass 11a, 11b Main surface 12a, 12b Side along the sheet drawing direction 13a, 13b Side along the width direction 20, 20, 21, 21 Support member 30 Glass ribbon 30a, 30b Main surface 31 Molten glass 32, 33, 34 Curved portion 35 Inverted portion 100 Manufacturing apparatus 101 Furnace 102 Forming zone 103 Annealing zone 104 Cooling zone 105 Roller 106 Roller group 107 Roller shaft 121 Formed body A, B, C, D, E, F, G Evaluation area M, N Support span W21a, W21b, W22a, W22b Deflection of side along the sheet drawing direction W31a, W31b, W32a, W32b Deflection of side along the width direction X Plate drawing direction Y Width direction

Claims (9)

板引き方向に沿った第一の辺と、前記板引き方向と直交する幅方向に沿った第二の辺とを有する矩形状のガラス基板であって、
前記第二の辺の方向に沿った複数の位置で矩形状をなす評価領域を設定し、前記複数の評価領域のうち少なくとも一つの評価領域で、前記第二の辺と平行な二つの辺における表裏撓み差の正負が異なり、
前記各評価領域の前記第二の辺の大きさが370mmで、前記第一の辺の大きさが470mmであり、
前記複数の評価領域は、前記第二の辺の方向に沿った方向で等間隔に離れた位置関係となるように有効ゾーン内に7つ設定されているガラス基板。
A rectangular glass substrate having a first side along a drawing direction and a second side along a width direction perpendicular to the drawing direction,
a plurality of rectangular evaluation areas are set at positions along the direction of the second side, and in at least one of the plurality of evaluation areas, the difference in front-back deflection between two sides parallel to the second side is different in positive and negative,
The second side of each of the evaluation areas is 370 mm and the first side is 470 mm;
The glass substrate has seven evaluation regions set within an effective zone so as to be equally spaced apart in a direction along the second side .
前記複数の評価領域のうち少なくとも一つの評価領域で、前記第一の辺と平行な二つの辺における表裏撓み差の正負が異なっている請求項1に記載のガラス基板。 The glass substrate according to claim 1, wherein in at least one of the multiple evaluation areas, the difference in front-back deflection between two sides parallel to the first side is different in sign. 前記複数の評価領域全てにおいて、
前記第一の辺と平行な二つの辺における表裏撓み差が何れも-0.5mm以上でかつ+0.5mm以下であり、
前記第二の辺と平行な二つの辺における表裏撓み差が何れも-0.5mm以上でかつ+0.5mm以下である請求項1又は2に記載のガラス基板。
In all of the plurality of evaluation regions,
The difference in front-back deflection in each of the two sides parallel to the first side is −0.5 mm or more and +0.5 mm or less,
3. The glass substrate according to claim 1 , wherein a difference in front-back deflection in each of the two sides parallel to the second side is −0.5 mm or more and +0.5 mm or less.
前記第一の辺と前記第二の辺のうち相対的に短い辺が1100mm以上で相対的に長い辺が1300mm以上であり、厚み寸法が200μm以上でかつ1000μm以下である請求項1~の何れか一項に記載のガラス基板。 The glass substrate according to any one of claims 1 to 3 , wherein the relatively shorter of the first and second sides is 1100 mm or more and the relatively longer side is 1300 mm or more, and the thickness dimension is 200 µm or more and 1000 µm or less. 板引き方向に沿った第一の辺と、前記板引き方向と直交する幅方向に沿った第二の辺とを有する矩形状のガラス基板の製造方法であって、
帯状ガラスを成形する成形工程と、
前記帯状ガラスから前記ガラス基板を切出す切出し工程と、
前記ガラス基板から前記第一の辺及び前記第二の辺とそれぞれ平行な二つの辺を有する矩形状の試料ガラスを採取する採取工程と、
前記試料ガラスの前記第一の辺と平行な辺の表裏撓み差を測定する測定工程とを備えるガラス基板の製造方法。
A method for manufacturing a rectangular glass substrate having a first side along a drawing direction and a second side along a width direction perpendicular to the drawing direction, comprising:
forming a ribbon of glass;
a cutting step of cutting the glass substrate from the ribbon glass;
a step of extracting a rectangular glass sample from the glass substrate, the rectangular glass sample having two sides parallel to the first side and the second side;
and measuring a difference in deflection between the front and back sides of the sample glass along a side parallel to the first side.
前記測定工程で、前記第一の辺と平行な前記試料ガラスの二つの辺でそれぞれ前記表裏撓み差を測定する請求項に記載のガラス基板の製造方法。 6. The method for manufacturing a glass substrate according to claim 5 , wherein in the measuring step, the difference in the front and back deflections is measured for each of two sides of the sample glass parallel to the first side. 前記測定工程で測定した前記試料ガラスの前記第一の辺と平行な辺の表裏撓み差の正負を評価する評価工程をさらに備える請求項5又は6に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 5 or 6 , further comprising an evaluation step of evaluating whether a difference between the front and back deflections of the side of the sample glass parallel to the first side measured in the measurement step is positive or negative. 前記測定工程で、前記第二の辺と平行な前記試料ガラスの二つの辺でそれぞれ前記表裏撓み差を測定する請求項5~7の何れか一項に記載のガラス基板の製造方法。 8. The method for manufacturing a glass substrate according to claim 5 , wherein in the measuring step, the difference in front-back deflection is measured for each of two sides of the sample glass parallel to the second side. 前記測定工程で測定した前記試料ガラスの前記第二の辺と平行な辺の表裏撓み差の正負を評価する評価工程をさらに備える請求項に記載のガラス基板の製造方法。 The method for manufacturing a glass substrate according to claim 8 , further comprising an evaluation step of evaluating whether a difference between the front and back deflections of the side of the sample glass parallel to the second side measured in the measurement step is positive or negative.
JP2020159602A 2020-09-24 2020-09-24 Glass substrate and method for manufacturing glass substrate Active JP7636708B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020159602A JP7636708B2 (en) 2020-09-24 2020-09-24 Glass substrate and method for manufacturing glass substrate
KR1020237012271A KR20230072479A (en) 2020-09-24 2021-09-15 A glass substrate and a manufacturing method of the glass substrate
PCT/JP2021/034007 WO2022065169A1 (en) 2020-09-24 2021-09-15 Glass substrate, and method for manufacturing glass substrate
CN202180063992.0A CN116194412A (en) 2020-09-24 2021-09-15 Glass substrate and method for manufacturing glass substrate
TW110135214A TWI887488B (en) 2020-09-24 2021-09-23 Glass substrate and method for manufacturing glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020159602A JP7636708B2 (en) 2020-09-24 2020-09-24 Glass substrate and method for manufacturing glass substrate

Publications (2)

Publication Number Publication Date
JP2022053027A JP2022053027A (en) 2022-04-05
JP7636708B2 true JP7636708B2 (en) 2025-02-27

Family

ID=80846574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020159602A Active JP7636708B2 (en) 2020-09-24 2020-09-24 Glass substrate and method for manufacturing glass substrate

Country Status (5)

Country Link
JP (1) JP7636708B2 (en)
KR (1) KR20230072479A (en)
CN (1) CN116194412A (en)
TW (1) TWI887488B (en)
WO (1) WO2022065169A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511398A (en) 2005-05-10 2009-03-19 コーニング インコーポレイテッド Manufacturing method of glass sheet
WO2012026412A1 (en) 2010-08-23 2012-03-01 日本電気硝子株式会社 Method for producing glass plate
JP2019137587A (en) 2018-02-13 2019-08-22 日本電気硝子株式会社 Glass substrate group and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7818980B2 (en) * 2006-11-30 2010-10-26 Corning Incorporated Forming glass sheets with improved shape stability
JP5729653B2 (en) 2013-06-03 2015-06-03 日本電気硝子株式会社 Sheet glass
CN103837091A (en) * 2014-02-28 2014-06-04 刘敏 Glass warping degree testing device and method
US11053153B2 (en) * 2016-04-07 2021-07-06 Corning Incorporated Forming bodies for forming continuous glass ribbons and glass forming apparatuses comprising the same
CN110799464A (en) * 2017-06-26 2020-02-14 康宁股份有限公司 Sheet separation apparatus and method with tension measurement
CN108996893A (en) * 2018-07-27 2018-12-14 彩虹显示器件股份有限公司 A kind of control device and method of plate glass warpage quality

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511398A (en) 2005-05-10 2009-03-19 コーニング インコーポレイテッド Manufacturing method of glass sheet
WO2012026412A1 (en) 2010-08-23 2012-03-01 日本電気硝子株式会社 Method for producing glass plate
JP2019137587A (en) 2018-02-13 2019-08-22 日本電気硝子株式会社 Glass substrate group and method for manufacturing the same

Also Published As

Publication number Publication date
JP2022053027A (en) 2022-04-05
WO2022065169A1 (en) 2022-03-31
TWI887488B (en) 2025-06-21
CN116194412A (en) 2023-05-30
KR20230072479A (en) 2023-05-24
TW202219001A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
CN105492654B (en) Metal plate, manufacturing method of metal plate, and method of manufacturing mask using metal plate
CN105637110B (en) Metal plate, method of manufacturing metal plate, and method of manufacturing evaporation mask using metal plate
EP2959264B1 (en) Methods for measuring the asymmetry of a glass-sheet manufacturing process
CN104854254B (en) Metal plate, method of manufacturing metal plate, and method of manufacturing evaporation mask using metal plate
CN111712471B (en) Glass substrate group and its manufacturing method
TWI487676B (en) Glass plate manufacturing method
JP4930336B2 (en) Warpage inspection method and manufacturing method of glass substrate
JP7636708B2 (en) Glass substrate and method for manufacturing glass substrate
JP2012137758A (en) Glass substrate
JP2025008914A (en) Glass plate inspection method and inspection device, and glass plate manufacturing method
JP2025008916A (en) Glass plate inspection device and glass plate manufacturing method
WO2022107547A1 (en) Glass substrate for display
JP2025008915A (en) Glass plate inspection method and inspection device, and glass plate manufacturing method
KR20230159690A (en) Glass plate for chemical strengthening, method for manufacturing strengthened glass plate, and glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250128

R150 Certificate of patent or registration of utility model

Ref document number: 7636708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150