JP7732273B2 - Water treatment system and method for sterilizing the water treatment system - Google Patents
Water treatment system and method for sterilizing the water treatment systemInfo
- Publication number
- JP7732273B2 JP7732273B2 JP2021133897A JP2021133897A JP7732273B2 JP 7732273 B2 JP7732273 B2 JP 7732273B2 JP 2021133897 A JP2021133897 A JP 2021133897A JP 2021133897 A JP2021133897 A JP 2021133897A JP 7732273 B2 JP7732273 B2 JP 7732273B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- temperature
- inactivated
- flow path
- reverse osmosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Description
本発明は、水処理システム及び水処理システムの殺菌方法に関する。 The present invention relates to a water treatment system and a method for sterilizing a water treatment system.
原水中の殺菌剤を不活化する活性炭濾過装置等の不活化装置と、水を逆浸透膜を用いて膜分離する逆浸透膜装置と、を備える水処理システムが利用されている。このような水処理システムを用いて医薬品、食品等の製造用水を製造する場合、水処理システムにおいて微生物が繁殖することを防止するために、水処理システムに熱水を通水して装置内の殺菌を行うことが知られている。 Water treatment systems are commonly used that include an inactivation device, such as an activated carbon filtration device, which inactivates disinfectants in raw water, and a reverse osmosis membrane device that separates water using a reverse osmosis membrane. When using such water treatment systems to produce water for manufacturing pharmaceuticals, food, etc., it is known that hot water is passed through the system to sterilize the inside of the system in order to prevent the growth of microorganisms in the system.
一般的には、タンク内で水を加熱して水処理システムを殺菌するための熱水を製造するが、熱水を製造するためのエネルギーを節約するために、熱交換器等のインラインで水を加熱して熱水を生成する加熱装置と水処理システムとの間で熱水を循環させる技術も知られている。例えば特許文献1には、直列に接続された不活化装置、逆浸透膜装置及びEDI装置と、熱交換器との間で熱水を循環させる循環系を形成することで、タンクを使用せずに熱水殺菌を行い得る装置が記載されている。 Generally, water is heated in a tank to produce hot water for sterilizing a water treatment system. However, to save energy used to produce hot water, a known technique involves circulating hot water between a heating device that heats water inline, such as a heat exchanger, and the water treatment system. For example, Patent Document 1 describes an apparatus that can perform hot water sterilization without using a tank, by forming a circulation system that circulates hot water between a heat exchanger and an inactivation device, a reverse osmosis membrane device, and an EDI device that are connected in series.
活性炭濾過装置は、保水量が大きく、供給する水の温度変化に対する流出する水の温度変化の応答性が低い場合が少なくない。このため、特許文献1の構成では、活性炭濾過装置に供給する水の温度を上昇させてから逆浸透膜装置及びEDI装置の温度が上昇するまでに遅れが生じる。また、一般的に逆浸透膜は急激な温度変化に弱いため、温度変化率を例えば2℃/min程度に制限する必要がある。逆浸透膜装置における水温の変化率が大きくなり過ぎないようにするためには、活性炭濾過装置の熱応答性の低さを考慮して、活性炭濾過装置に供給する水の温度変化率を十分に小さくすることが必要となる。この結果、特許文献1の構成では、熱水殺菌に要する時間が長くなる。 Activated carbon filtration devices have a large water retention capacity, and the responsiveness of the temperature change in the outflowing water to the temperature change in the supplied water is often poor. For this reason, with the configuration of Patent Document 1, there is a delay between raising the temperature of the water supplied to the activated carbon filtration device and the temperature increase in the reverse osmosis membrane device and the EDI device. Furthermore, because reverse osmosis membranes are generally vulnerable to sudden temperature changes, the temperature change rate must be limited to, for example, around 2°C/min. To prevent the rate of change in water temperature in the reverse osmosis membrane device from becoming too large, it is necessary to sufficiently reduce the temperature change rate of the water supplied to the activated carbon filtration device, taking into account the poor thermal responsiveness of the activated carbon filtration device. As a result, the configuration of Patent Document 1 requires a long time for hot water sterilization.
このため、本発明は、熱水殺菌を短時間で終了できる水処理システム及び水処理システムの殺菌方法を提供することを目的とする。 For this reason, the present invention aims to provide a water treatment system and a sterilization method for a water treatment system that can complete hot water sterilization in a short period of time.
本発明の一態様に係る水処理システムは、原水中の殺菌剤を不活化することにより不活化水を得る不活化手段と、逆浸透膜によって前記不活化水を透過水と膜濃縮水とに分離する逆浸透膜装置と、前記不活化手段から流出する前記不活化水を前記逆浸透膜装置に案内し、前記不活化水を遮断する不活化水遮断弁を有する不活化水ラインと、前記不活化手段を含む第1循環流路を形成するよう、前記不活化水ラインの前記不活化水遮断弁よりも上流側と前記不活化手段の上流側の流路とを接続する第1還流ラインと、前記第1循環流路に配置され、水温を調節する第1温度調節装置と、前記逆浸透膜装置を含む第2循環流路を形成するよう、前記逆浸透膜装置の下流側の流路と前記不活化水ラインの前記不活化水遮断弁よりも下流側とを接続する第2還流ラインと、前記第2循環流路に配置され、水温を調節する第2温度調節装置と、を備える。 A water treatment system according to one embodiment of the present invention comprises an inactivation means for obtaining inactivated water by inactivating a disinfectant in raw water; a reverse osmosis membrane device for separating the inactivated water into permeate and membrane-concentrated water using a reverse osmosis membrane; an inactivated water line for guiding the inactivated water flowing out of the inactivation means to the reverse osmosis membrane device and having an inactivated water shut-off valve for shutting off the inactivated water; a first reflux line connecting the inactivated water line upstream of the inactivated water shut-off valve to a flow path upstream of the inactivation means to form a first circulation flow path including the inactivation means; a first temperature adjustment device disposed in the first circulation flow path for adjusting the water temperature; a second reflux line connecting the flow path downstream of the reverse osmosis membrane device to the inactivated water line downstream of the inactivated water shut-off valve to form a second circulation flow path including the reverse osmosis membrane device; and a second temperature adjustment device disposed in the second circulation flow path for adjusting the water temperature.
上述の水処理システムは、電気再生式脱塩により前記透過水からイオンを除去した純水と前記イオンの含有量を増大した電気濃縮水とを得るEDI装置をさらに備え、前記第2還流ラインは、前記逆浸透膜装置から流出する前記膜濃縮水の流路、前記EDI装置から流出する前記純水の流路、及び前記EDI装置から流出する前記電気濃縮水の流路に接続されてもよい。 The above-mentioned water treatment system may further include an EDI device that uses electrical regeneration demineralization to obtain pure water by removing ions from the permeate and electroconcentrated water with an increased ion content, and the second reflux line may be connected to the flow path of the membrane-concentrated water flowing out of the reverse osmosis membrane device, the flow path of the pure water flowing out of the EDI device, and the flow path of the electroconcentrated water flowing out of the EDI device.
上述の水処理システムにおいて、前記不活化水ラインにおける前記第1還流ラインの接続点と前記不活化水遮断弁との距離及び前記第2還流ラインの接続点と前記不活化水遮断弁との距離は、前記不活化水ラインの内径の6倍以下であってもよい。 In the above-described water treatment system, the distance between the connection point of the first return line in the inactivated water line and the inactivated water shutoff valve, and the distance between the connection point of the second return line and the inactivated water shutoff valve may be no more than six times the inner diameter of the inactivated water line.
本発明の一態様に係る水処理システムの殺菌方法は、原水中の殺菌剤を不活化することにより不活化水を得る不活化手段と、逆浸透膜によって前記不活化水を透過水と膜濃縮水とに分離する逆浸透膜装置と、前記不活化手段から流出する前記不活化水を前記逆浸透膜装置に案内する不活化水ラインと、を備える水処理システムの殺菌方法であって、前記不活化水ラインと前記不活化手段よりも上流側の流路とを接続することにより、前記不活化手段と水温を調節する第1温度調節装置とを含み、水を循環させる第1循環流路を形成し、前記不活化手段の温度を目標温度に近付けるよう前記第1温度調節装置の出力を調整する工程と、前記逆浸透膜装置よりも下流側の流路と前記不活化水ラインの第1循環流路よりも下流側の部分とを接続することにより、前記逆浸透膜装置と水温を調節する第2温度調節装置とを含み、水を循環させる第2循環流路を形成し、前記逆浸透膜装置の温度を目標温度に近付けるよう前記第2温度調節装置の出力を調整する工程と、を備える。 One aspect of the present invention provides a sterilization method for a water treatment system comprising: an inactivation means for obtaining inactivated water by inactivating a disinfectant in raw water; a reverse osmosis membrane device for separating the inactivated water into permeate and membrane-concentrated water using a reverse osmosis membrane; and an inactivated water line for guiding the inactivated water flowing out of the inactivation means to the reverse osmosis membrane device. The method comprises the steps of: connecting the inactivated water line to a flow path upstream of the inactivation means, forming a first circulation flow path for circulating water, which includes the inactivation means and a first temperature control device for adjusting the water temperature; and adjusting the output of the first temperature control device to bring the temperature of the inactivation means closer to a target temperature, by connecting a flow path downstream of the reverse osmosis membrane device to a portion of the inactivated water line downstream of the first circulation flow path, which includes the reverse osmosis membrane device and a second temperature control device for adjusting the water temperature, by connecting a flow path downstream of the reverse osmosis membrane device to a portion of the inactivated water line downstream of the first circulation flow path, forming a second circulation flow path for circulating water, and adjusting the output of the second temperature control device to bring the temperature of the reverse osmosis membrane device closer to the target temperature.
本発明によれば、熱水殺菌を短時間で終了できる水処理システム及び水処理システムの殺菌方法を提供できる。 The present invention provides a water treatment system and a sterilization method for a water treatment system that can complete hot water sterilization in a short period of time.
以下、本発明の実施形態について図面を参照しながら説明する。図1は、本発明の一実施形態に係る水処理システム100の構成を示す模式図である。 Embodiments of the present invention will now be described with reference to the drawings. Figure 1 is a schematic diagram showing the configuration of a water treatment system 100 according to one embodiment of the present invention.
水処理システム100は、原水タンク1と、不活化手段2と、逆浸透膜装置3と、EDI装置4と、純水タンク5と、第1温度調節装置6と、第2温度調節装置7と、を備える。水処理システム100は、さらに、原水ライン10と、不活化水ライン20と、透過水ライン30と、膜濃縮水ライン40と、純水ライン50と、電気濃縮水ライン60と、第1還流ライン70と、第2還流ライン80と、制御装置90と、を備える。 The water treatment system 100 includes a raw water tank 1, an inactivation means 2, a reverse osmosis membrane device 3, an EDI device 4, a pure water tank 5, a first temperature control device 6, and a second temperature control device 7. The water treatment system 100 also includes a raw water line 10, an inactivated water line 20, a permeate line 30, a membrane-concentrated water line 40, a pure water line 50, an electro-concentrated water line 60, a first reflux line 70, a second reflux line 80, and a control device 90.
原水タンク1は、原水を貯留する。原水としては、例えば水道水等、浄水処理され、殺菌剤を含有する水を用いることができる。 The raw water tank 1 stores raw water. For example, tap water or other purified water containing a disinfectant can be used as raw water.
不活化手段2は、原水中の殺菌剤を不活化することにより不活化水を得るものであり、無人で不活化する不活化装置、作業者が不活化処理を行うために原水へのアクセスを提供する薬注設備等とされ得る。不活化装置としては、例えば活性炭濾過装置、薬注装置を備える薬注システム等が例示される。薬注設備としては作業者が薬品を注入可能な水槽等が例示される。 Inactivation means 2 inactivates the disinfectant in the raw water to obtain inactivated water, and can be an inactivation device that performs inactivation unmanned, or chemical injection equipment that provides workers with access to the raw water for inactivation treatment. Examples of inactivation devices include activated carbon filtration devices and chemical injection systems equipped with chemical injection devices. Examples of chemical injection equipment include water tanks into which workers can inject chemicals.
逆浸透膜装置3は、逆浸透膜によって不活化水を、逆浸透膜を透過した透過水と逆浸透膜を透過しなかった膜濃縮水とに分離する。 The reverse osmosis membrane device 3 separates the inactivated water using a reverse osmosis membrane into permeate that has passed through the reverse osmosis membrane and membrane-concentrated water that has not passed through the reverse osmosis membrane.
EDI装置4は、電気再生式脱塩により透過水からイオンを除去した純水と、透過水のイオンの含有量を増大した電気濃縮水とを得る。 The EDI device 4 uses electrical regeneration desalination to remove ions from the permeate, producing pure water, and electro-concentrated water, which has an increased ion content in the permeate.
純水タンク5は、EDI装置4が生成した純水を貯留する。 The pure water tank 5 stores the pure water produced by the EDI device 4.
第1温度調節装置6は、通過又は一時的に保留する水の温度を調節する。具体例として、第1温度調節装置6としては、外部から供給される水蒸気等の温熱源流体と熱交換することにより系内の水の温度を調節する熱交換器、例えば電気ヒータ、バーナ等の熱源を有するボイラなど用いることができる。第1温度調節装置6は、水を加熱する機能のみを有してもよいが、水を冷却する機能をさらに有してもよい。例えば第1温度調節装置6は、系内の水と冷却水等の冷熱源流体との間で熱交換可能な熱交換器とすることができる。 The first temperature adjustment device 6 adjusts the temperature of the water passing through or temporarily retained. As a specific example, the first temperature adjustment device 6 can be a heat exchanger that adjusts the temperature of the water in the system by exchanging heat with a hot heat source fluid such as steam supplied from the outside, such as a boiler with a heat source such as an electric heater or burner. The first temperature adjustment device 6 may only have the function of heating water, or it may also have the function of cooling water. For example, the first temperature adjustment device 6 can be a heat exchanger that can exchange heat between the water in the system and a cold heat source fluid such as cooling water.
第2温度調節装置7は、第1温度調節装置6と同様に、通過又は一時的に保留する水の温度を調節する。 The second temperature control device 7, like the first temperature control device 6, adjusts the temperature of the water passing through or temporarily retained.
原水ライン10は、原水タンク1から不活化手段2に原水を供給する。原水ライン10は、原水を加圧する原水ポンプ11と、原水を遮断する原水遮断弁12と、をこの順番に有する構成とされ得る。 The raw water line 10 supplies raw water from the raw water tank 1 to the inactivation means 2. The raw water line 10 may be configured to include, in this order, a raw water pump 11 that pressurizes the raw water and a raw water shutoff valve 12 that shuts off the raw water.
不活化水ライン20は、不活化手段2から流出する不活化水を逆浸透膜装置3に案内する。不活化水ライン20は、不活化水を遮断する不活化水遮断弁21と、不活化水を加圧する不活化水ポンプ22と、をこの順番に有する構成とされ得る。不活化水ライン20は、少なくとも第1還流ライン70の接続点と第2還流ラインの接続点との間が直線状であることが好ましい。 The inactivated water line 20 guides the inactivated water flowing out from the inactivation means 2 to the reverse osmosis membrane device 3. The inactivated water line 20 may be configured to include, in this order, an inactivated water shutoff valve 21 that shuts off the inactivated water, and an inactivated water pump 22 that pressurizes the inactivated water. It is preferable that the inactivated water line 20 be linear at least between the connection point with the first return line 70 and the connection point with the second return line.
透過水ライン30は、逆浸透膜装置3から流出する透過水をEDI装置4に案内する。透過水ライン30は、透過水の流量を検出する透過水流量計31と、透過水を系外に排出する透過水排出弁32と、透過水を加圧する透過水ポンプ33と、をこの順番に有する構成とされ得る。 The permeate line 30 guides the permeate flowing out from the reverse osmosis membrane device 3 to the EDI device 4. The permeate line 30 may be configured to include, in this order: a permeate flow meter 31 that detects the flow rate of the permeate, a permeate discharge valve 32 that discharges the permeate outside the system, and a permeate pump 33 that pressurizes the permeate.
膜濃縮水ライン40は、逆浸透膜装置3から流出する膜濃縮水の一部を不活化水ライン20の不活化水ポンプ22の上流側に還流させる戻り部41と、逆浸透膜装置3から流出する膜濃縮水の一部を系外に排出する膜濃縮水排出部42と、を有する構成とされ得る。戻り部41には、不活化水ライン20から膜濃縮水ライン40に水が流入することを防止する逆止弁43が設けられ得る。膜濃縮水排出部42には、膜濃縮水排出部42に流入する膜濃縮水の流量を検出する膜濃縮水流量計44と、系外に排出される膜濃縮水の流量を調節する膜濃縮水調節弁45が設けられ得る。 The membrane concentrated water line 40 may be configured to include a return section 41 that returns a portion of the membrane concentrated water flowing out from the reverse osmosis membrane device 3 to the upstream side of the inactivated water pump 22 in the inactivated water line 20, and a membrane concentrated water discharge section 42 that discharges a portion of the membrane concentrated water flowing out from the reverse osmosis membrane device 3 to the outside of the system. The return section 41 may be provided with a check valve 43 that prevents water from flowing from the inactivated water line 20 into the membrane concentrated water line 40. The membrane concentrated water discharge section 42 may be provided with a membrane concentrated water flow meter 44 that detects the flow rate of the membrane concentrated water flowing into the membrane concentrated water discharge section 42, and a membrane concentrated water adjustment valve 45 that adjusts the flow rate of the membrane concentrated water discharged to the outside of the system.
戻り部41は直線状に配設されることが好ましい。また、逆止弁43の弁体から戻り部41の両端までの距離がそれぞれ戻り部41の内径の6倍以下であることが好ましく、5倍以下であることがより好ましい。これにより、第2循環流路L2を循環する水が逆止弁43の弁体にまで達し得るため、熱水を第2循環流路L2に循環させることにより戻り部41も殺菌することができる。 The return section 41 is preferably arranged in a straight line. Furthermore, the distance from the valve body of the check valve 43 to each end of the return section 41 is preferably no more than six times the inner diameter of the return section 41, and more preferably no more than five times. This allows the water circulating through the second circulation flow path L2 to reach the valve body of the check valve 43, so that the return section 41 can also be sterilized by circulating hot water through the second circulation flow path L2.
純水ライン50は、EDI装置4から流出する純水を純水タンク5に案内する。純水ライン50は、純水を系外に排出する純水排出弁51を有する構成とされてもよい。 The pure water line 50 guides the pure water flowing out of the EDI device 4 to the pure water tank 5. The pure water line 50 may be configured to include a pure water discharge valve 51 that discharges the pure water outside the system.
電気濃縮水ライン60は、EDI装置4から流出する電気濃縮水を系外に排出する。 The electroconcentrated water line 60 discharges the electroconcentrated water flowing out of the EDI device 4 outside the system.
第1還流ライン70は、不活化水ライン20の不活化水遮断弁21よりも上流側と、不活化手段2の上流側の流路、具体的には原水ライン10の原水遮断弁12よりも下流側と、を第1温度調節装置6を介して接続する。第1還流ライン70は、不活化水ライン20側から原水ライン10側への水の流れを形成する第1循環ポンプ71と、不活化水ライン20からの不活化水の流入を防止する第1入口遮断弁72と、原水ライン10からの原水の流入を防止する第1出口遮断弁73と、を有する構成とされ得る。第1還流ライン70は、第1出口遮断弁73の上流側に水を系外に排出する第1循環水排出弁74を有してもよい。 The first return line 70 connects the upstream side of the inactivated water shutoff valve 21 of the inactivated water line 20 to the flow path upstream of the inactivation means 2, specifically the downstream side of the raw water shutoff valve 12 of the raw water line 10, via the first temperature control device 6. The first return line 70 may be configured to include a first circulation pump 71 that creates a water flow from the inactivated water line 20 to the raw water line 10, a first inlet shutoff valve 72 that prevents the inflow of inactivated water from the inactivated water line 20, and a first outlet shutoff valve 73 that prevents the inflow of raw water from the raw water line 10. The first return line 70 may also include a first circulating water discharge valve 74 upstream of the first outlet shutoff valve 73 that discharges water out of the system.
第1還流ライン70は、第1入口遮断弁72及び第1出口遮断弁73を開放することによって、原水ライン10の一部及び不活化水ライン20の一部と合わせて、不活化手段2及び第1温度調節装置6を含むループ状の第1循環流路L1を形成する。 By opening the first inlet shutoff valve 72 and the first outlet shutoff valve 73, the first reflux line 70, together with a portion of the raw water line 10 and a portion of the inactivated water line 20, forms a loop-shaped first circulation flow path L1 that includes the inactivation means 2 and the first temperature adjustment device 6.
第1還流ライン70の不活化水ライン20との接続点と、不活化水遮断弁21の弁体との距離は、第1還流ライン70の内径の6倍以下であることが好ましく、5倍以下であることがより好ましい。これにより、第1循環流路L1を循環する水が不活化水遮断弁21の弁体にまで達し得るため、熱水を第1循環流路L1に循環させることにより、不活化水ライン20の第1循環流路L1と不活化水遮断弁21の間の部分まで殺菌することができる。 The distance between the connection point of the first reflux line 70 with the inactivated water line 20 and the valve body of the inactivated water shut-off valve 21 is preferably no more than six times the inner diameter of the first reflux line 70, and more preferably no more than five times. This allows the water circulating through the first circulation flow path L1 to reach the valve body of the inactivated water shut-off valve 21, so by circulating hot water through the first circulation flow path L1, the portion of the inactivated water line 20 between the first circulation flow path L1 and the inactivated water shut-off valve 21 can be sterilized.
第2還流ライン80は、逆浸透膜装置3の下流側の流路、具体的には膜濃縮水ライン40、純水ライン50及び電気濃縮水ライン60と、不活化水ライン20の不活化水遮断弁21よりも下流側と、を接続する。第2還流ライン80は、逆浸透膜装置3の下流側から不活化水ライン20側への水の流れを形成する第2循環ポンプ81と、膜濃縮水ライン40から第2還流ライン80に水を流入させる膜濃縮水切換弁82と、純水ライン50から第2還流ライン80に水を流入させる純水切換弁83と、電気濃縮水ライン60から第2還流ライン80に水を流入させる電気濃縮水切換弁84と、不活化水ライン20からの不活化水の流入を防止する第2出口遮断弁85と、を有する構成とされ得る。第2還流ライン80は、第2出口遮断弁85の上流側に水を系外に排出する第2循環水排出弁86を有してもよい。なお、純水切換弁83及び電気濃縮水切換弁84は、それぞれ2つの遮断弁によって構成されてもよい。 The second reflux line 80 connects the flow paths downstream of the reverse osmosis membrane device 3, specifically the membrane concentrated water line 40, pure water line 50, and electroconcentrated water line 60, to the inactivated water line 20 downstream of the inactivated water shut-off valve 21. The second reflux line 80 may be configured to include a second circulation pump 81 that creates a water flow from the downstream side of the reverse osmosis membrane device 3 to the inactivated water line 20, a membrane concentrated water switching valve 82 that allows water to flow from the membrane concentrated water line 40 into the second reflux line 80, a pure water switching valve 83 that allows water to flow from the pure water line 50 into the second reflux line 80, an electroconcentrated water switching valve 84 that allows water to flow from the electroconcentrated water line 60 into the second reflux line 80, and a second outlet shut-off valve 85 that prevents inactivated water from flowing from the inactivated water line 20. The second reflux line 80 may have a second circulating water discharge valve 86 upstream of the second outlet shutoff valve 85, which discharges water outside the system. Note that the pure water switching valve 83 and the electrically concentrated water switching valve 84 may each be configured with two shutoff valves.
第2還流ライン80は、膜濃縮水切換弁82により、膜濃縮水ライン40から水を系外に排出せずに第2還流ライン80に導入するよう流路を切り替え、純水切換弁83により、純水ライン50から水を純水タンクに導入せずに第2還流ライン80に導入するよう流路を切り替え、電気濃縮水切換弁84により、電気濃縮水ライン60から水を系外に排出せずに第2還流ライン80に導入するよう流路を切り替え、且つ第2出口遮断弁85を開放することによって、不活化水ライン20の一部、透過水ライン30の全部、膜濃縮水ライン40の一部、純水ライン50の一部、及び電気濃縮水ライン60の一部と合わせて、逆浸透膜装置3、EDI装置4及び第2温度調節装置7を含むループ状の第2循環流路L2を形成する。 The second reflux line 80 is configured such that the membrane concentrated water switching valve 82 switches the flow path so that water is introduced from the membrane concentrated water line 40 into the second reflux line 80 without being discharged outside the system, the pure water switching valve 83 switches the flow path so that water is introduced from the pure water line 50 into the second reflux line 80 without being introduced into the pure water tank, and the electroconcentrated water switching valve 84 switches the flow path so that water is introduced from the electroconcentrated water line 60 into the second reflux line 80 without being discharged outside the system. Furthermore, by opening the second outlet shutoff valve 85, a loop-shaped second circulation flow path L2 is formed that includes the reverse osmosis membrane device 3, EDI device 4, and second temperature control device 7, along with part of the inactivated water line 20, the entire permeate line 30, part of the membrane concentrated water line 40, part of the pure water line 50, and part of the electroconcentrated water line 60.
第2還流ライン80の不活化水ライン20との接続点と、不活化水遮断弁21の弁体との距離は、不活化水ライン20の内径の6倍以下であることが好ましく、5倍以下であることがより好ましい。これにより、第2循環流路L2を循環する水が不活化水遮断弁21の弁体にまで達し得るため、熱水を第2循環流路L2に循環させることにより、不活化水ライン20の第2循環流路L2と不活化水遮断弁21の間の部分まで殺菌することができる。 The distance between the connection point of the second reflux line 80 with the inactivated water line 20 and the valve body of the inactivated water shut-off valve 21 is preferably no more than six times the inner diameter of the inactivated water line 20, and more preferably no more than five times. This allows the water circulating through the second circulation flow path L2 to reach the valve body of the inactivated water shut-off valve 21, so by circulating hot water through the second circulation flow path L2, the portion of the inactivated water line 20 between the second circulation flow path L2 and the inactivated water shut-off valve 21 can be sterilized.
制御装置90は、水処理システム100の他の構成要素の動作を制御することにより、水処理システム100の運転を制御する。制御装置90は、水処理システム100により純水を製造する製造運転と、水処理システム100の殺菌を行う殺菌運転と、EDI装置4を再生する再生運転と、を繰り返し行う。殺菌運転は、本発明に係る水処理システムの殺菌方法を実施する運転である。 The control device 90 controls the operation of the water treatment system 100 by controlling the operation of the other components of the water treatment system 100. The control device 90 repeatedly performs a production operation to produce pure water using the water treatment system 100, a sterilization operation to sterilize the water treatment system 100, and a regeneration operation to regenerate the EDI device 4. The sterilization operation is an operation that implements the sterilization method for a water treatment system according to the present invention.
製造運転は、初期ブロー工程と、通水工程と、フラッシング工程と、を有し得る。初期ブロー工程では、運転状態が安定して十分に清浄な純水が得られるまでの間、EDI装置4から純水ライン50に流出する水を純水タンク5に導入することなく、純水排出弁51から系外に排出する。初期ブロー工程は、純水排出弁51を省略し、純水切換弁83により純水ライン50から第2還流ライン80に水を流入させ、第2還流ライン80に流入した水を第2循環水排出弁86から系外に排出することによって行ってもよい。通水工程では、不活化手段2、逆浸透膜装置3及びEDI装置4を通して純水ライン50に流出する純水を純水タンク5に導入する。フラッシング工程では、膜濃縮水調節弁45の開度を大きくして、逆浸透膜装置3の内部の膜濃縮水側の空間及び膜濃縮水ライン40の内部の水の不純物濃度を低下させるともに、透過水排出弁32から透過水を系外に排出する。 The production operation may include an initial blowing process, a water flowing process, and a flushing process. In the initial blowing process, until the operating conditions stabilize and sufficiently clean pure water is obtained, water flowing out of the EDI device 4 into the pure water line 50 is discharged from the system through the pure water discharge valve 51 without being introduced into the pure water tank 5. The initial blowing process may be performed by omitting the pure water discharge valve 51 and instead using the pure water switching valve 83 to allow water to flow from the pure water line 50 into the second reflux line 80, and then discharging the water that has flowed into the second reflux line 80 out of the system through the second circulating water discharge valve 86. In the water flowing process, pure water that flows out of the pure water line 50 through the inactivation means 2, the reverse osmosis membrane device 3, and the EDI device 4 is introduced into the pure water tank 5. During the flushing process, the opening of the membrane concentrate control valve 45 is increased to reduce the impurity concentration in the space on the membrane concentrate side inside the reverse osmosis membrane device 3 and in the water inside the membrane concentrate line 40, and the permeate is discharged outside the system through the permeate discharge valve 32.
殺菌運転は、透過水ライン30。膜濃縮水ライン40、純水ライン50及び電気濃縮水ライン60に滞留する水を系外に排出し、系内の不純物量を低減する準備工程と、不活化手段2及び第1温度調節装置6を含み、水を循環させる第1循環流路L1を形成し、不活化手段2の温度を目標温度に近付けるよう、第1循環流路L1に配置される第1温度調節装置6の出力を調整する第1段殺菌工程と、逆浸透膜装置3、EDI装置4及び第2温度調節装置7とを含み、水を循環させる第2循環流路L2を形成し、逆浸透膜装置3及びEDI装置4の温度を目標温度に近付けるよう、第2循環流路L2に配置される第2温度調節装置7の出力を調整する第2段殺菌工程と、を備える。第1段殺菌工程と第2段殺菌工程とは独立して行うことができ、並行して行ってもよい。典型には、第1段殺菌工程と第2段殺菌工程とは同時に開始され、独立して制御される。 The sterilization operation includes a preparatory process in which water remaining in the permeate line 30, membrane-concentrated water line 40, pure water line 50, and electroconcentrated water line 60 is discharged from the system to reduce the amount of impurities within the system; a first-stage sterilization process in which a first circulation flow path L1 is formed, including an inactivation means 2 and a first temperature control device 6, for circulating water, and the output of the first temperature control device 6 disposed in the first circulation flow path L1 is adjusted to bring the temperature of the inactivation means 2 closer to the target temperature; and a second-stage sterilization process in which a second circulation flow path L2 is formed, including a reverse osmosis membrane device 3, an EDI device 4, and a second temperature control device 7, for circulating water, and the output of the second temperature control device 7 disposed in the second circulation flow path L2 is adjusted to bring the temperatures of the reverse osmosis membrane device 3 and the EDI device 4 closer to the target temperatures. The first-stage sterilization process and the second-stage sterilization process can be performed independently or in parallel. Typically, the first-stage sterilization process and the second-stage sterilization process are initiated simultaneously and controlled independently.
第1段殺菌工程は、不活化手段2の温度を予め設定される第1殺菌温度まで上昇させる第1昇温工程と、不活化手段2の温度を第1殺菌温度に所定の第1殺菌時間の間保持する第1温度保持工程と、不活化手段2の温度を下降させる第1降温工程と、を有し得る。 The first-stage sterilization process may include a first temperature-raising process in which the temperature of the inactivation means 2 is raised to a predetermined first sterilization temperature, a first temperature-maintaining process in which the temperature of the inactivation means 2 is maintained at the first sterilization temperature for a predetermined first sterilization time, and a first temperature-lowering process in which the temperature of the inactivation means 2 is lowered.
第1昇温工程では、原水遮断弁12及び不活化水遮断弁21を閉鎖し、第1循環ポンプ71により第1循環流路L1内の水を循環させ、第1温度調節装置6によって循環する水を加熱することにより、不活化手段2の温度を第1殺菌温度まで上昇させる。不活化手段2の温度としては、不活化手段2の筐体等の温度を検出してもよく、不活化手段2の出口における循環水の水温を検出してもよい。 In the first temperature-raising step, the raw water shutoff valve 12 and the inactivated water shutoff valve 21 are closed, the first circulation pump 71 circulates water in the first circulation flow path L1, and the first temperature regulator 6 heats the circulating water, thereby raising the temperature of the inactivation means 2 to the first sterilization temperature. The temperature of the inactivation means 2 may be detected by detecting the temperature of the housing of the inactivation means 2, or by detecting the temperature of the circulating water at the outlet of the inactivation means 2.
第1昇温工程における不活化手段2の温度勾配(昇温速度)は、特に制限されないが、第1温度調節装置6の容量などを考慮して、第1殺菌温度を過度にオーバーシュートしないように制御可能な値に設定されることが好ましく、予め設定される一定の温度勾配で第1殺菌温度まで不活化手段2の温度を上昇させることがより好ましい。つまり、第1昇温工程では、終始、第1殺菌温度を不活化手段2の目標温度として第1温度調節装置6の熱量を調整してもよく、予め設定されるプロファイルで第1殺菌温度まで上昇する目標温度に不活化手段2の温度を近づけるよう第1温度調節装置6の熱量を調整してもよい。 The temperature gradient (rate of temperature rise) of the inactivation means 2 in the first temperature rise step is not particularly limited, but is preferably set to a controllable value that does not excessively overshoot the first sterilization temperature, taking into account factors such as the capacity of the first temperature adjustment device 6. It is more preferable to raise the temperature of the inactivation means 2 to the first sterilization temperature at a predetermined constant temperature gradient. In other words, during the first temperature rise step, the heat amount of the first temperature adjustment device 6 may be adjusted throughout, with the first sterilization temperature as the target temperature of the inactivation means 2, or the heat amount of the first temperature adjustment device 6 may be adjusted so that the temperature of the inactivation means 2 approaches the target temperature that rises to the first sterilization temperature according to a predetermined profile.
第1温度保持工程では、第1循環ポンプ71により第1循環流路L1内の水を循環させ、不活化手段2の温度を第1殺菌温度に保持するよう、第1温度調節装置6による循環水の加熱量を調節する。第1殺菌温度は、例えば80℃以上85℃以下の温度とされ得る。第1殺菌時間は、第1殺菌温度にもよるが、例えば30分以上1時間以下の時間とされ得る。 In the first temperature maintenance step, the first circulation pump 71 circulates water in the first circulation flow path L1, and the first temperature adjustment device 6 adjusts the amount of heat applied to the circulating water so that the temperature of the inactivation means 2 is maintained at the first sterilization temperature. The first sterilization temperature may be, for example, 80°C or higher and 85°C or lower. The first sterilization time may be, for example, 30 minutes to 1 hour, depending on the first sterilization temperature.
第1降温工程では、第1温度調節装置6によって循環水を冷却してもよく、原水遮断弁12を開放して第1循環流路L1に原水を導入することによって循環水の温度を低下させてもよい。原水を導入する場合、第1循環水排出弁74から過剰な循環水を排出してもよく、第2循環流路L2の状態によっては不活化水遮断弁21を開放して下流側に過剰な循環水を流出させてもよい。 In the first temperature reduction step, the circulating water may be cooled by the first temperature control device 6, or the temperature of the circulating water may be lowered by opening the raw water shutoff valve 12 and introducing raw water into the first circulation flow path L1. When raw water is introduced, excess circulating water may be discharged from the first circulating water discharge valve 74, or, depending on the condition of the second circulation flow path L2, the inactivated water shutoff valve 21 may be opened to allow excess circulating water to flow downstream.
第2段殺菌工程は、逆浸透膜装置3及びEDI装置4の温度を予め設定される第2殺菌温度まで上昇させる第2昇温工程と、逆浸透膜装置3及びEDI装置4の温度を第2殺菌温度に所定の第2殺菌時間の間保持する第2温度保持工程と、逆浸透膜装置3及びEDI装置4の温度を下降させる第2降温工程と、を有し得る。 The second-stage sterilization process may include a second temperature-raising process in which the temperatures of the reverse osmosis membrane device 3 and the EDI device 4 are raised to a predetermined second sterilization temperature, a second temperature-maintaining process in which the temperatures of the reverse osmosis membrane device 3 and the EDI device 4 are maintained at the second sterilization temperature for a predetermined second sterilization time, and a second temperature-lowering process in which the temperatures of the reverse osmosis membrane device 3 and the EDI device 4 are lowered.
第2昇温工程では、不活化水遮断弁21を閉鎖し、純水切換弁83を第2還流ライン80側に切り換え、第2循環ポンプ81により第2循環流路L2内の水を循環させ、第2温度調節装置7によって循環する水を加熱することにより、逆浸透膜装置3及びEDI装置4の温度を第2殺菌温度まで上昇させる。逆浸透膜装置3及びEDI装置4の温度は、逆浸透膜装置3及びEDI装置4の筐体温度、循環水の出口温度等として検出してもよい。第2昇温工程における逆浸透膜装置3及びEDI装置4の温度勾配は、逆浸透膜を保護するために、例えば2℃/min程度に設定され得る。 In the second heating step, the inactivated water shutoff valve 21 is closed, the pure water switching valve 83 is switched to the second reflux line 80 side, the second circulation pump 81 circulates water in the second circulation flow path L2, and the second temperature control device 7 heats the circulating water, thereby raising the temperatures of the reverse osmosis membrane device 3 and the EDI device 4 to the second sterilization temperature. The temperatures of the reverse osmosis membrane device 3 and the EDI device 4 may be detected as the housing temperatures of the reverse osmosis membrane device 3 and the EDI device 4, the outlet temperature of the circulating water, etc. The temperature gradient of the reverse osmosis membrane device 3 and the EDI device 4 in the second heating step can be set to, for example, approximately 2°C/min to protect the reverse osmosis membrane.
第2昇温工程では、EDI装置4に供給される循環水の流量を確保して逆浸透膜装置3とEDI装置4とを同時に昇温するために、逆浸透膜装置3から透過水ライン30に流出する循環水の流量(透過水流量計31の検出値)の膜濃縮水ライン40に流出する循環水の流量(膜濃縮水流量計44の検出値)に対する比率に保つよう、膜濃縮水調節弁45の開度を調整してもよい。 In the second heating step, in order to ensure the flow rate of circulating water supplied to the EDI device 4 and simultaneously heat the reverse osmosis membrane device 3 and the EDI device 4, the opening of the membrane concentrate control valve 45 may be adjusted to maintain the ratio of the flow rate of circulating water flowing out from the reverse osmosis membrane device 3 to the permeate line 30 (value detected by the permeate flow meter 31) to the flow rate of circulating water flowing out to the membrane concentrate line 40 (value detected by the membrane concentrate flow meter 44).
第2温度保持工程では、第2循環ポンプ81により第2循環流路L2内の水を循環させ、逆浸透膜装置3及びEDI装置4の温度を第2殺菌温度に保持するよう、第2温度調節装置7による循環水の加熱量を調節する。第2殺菌温度は、例えば80℃以上85℃以下の温度とされ得る。第2殺菌時間は、第2殺菌温度にもよるが、例えば30分以上1時間以下の時間とされ得る。 In the second temperature maintenance step, the second circulation pump 81 circulates water in the second circulation flow path L2, and the second temperature adjustment device 7 adjusts the amount of heat applied to the circulating water so that the temperatures of the reverse osmosis membrane device 3 and the EDI device 4 are maintained at the second sterilization temperature. The second sterilization temperature may be, for example, 80°C or higher and 85°C or lower. The second sterilization time may be, for example, 30 minutes to 1 hour, depending on the second sterilization temperature.
第2温度保持工程では、第2昇温工程と同様に膜濃縮水調節弁45の開度を調整してもよいが、膜濃縮水調節弁45の開度を第2昇温工程の終了時の開度に保持してもよい。第2温度保持工程では、逆浸透膜装置3の温度が一定に保たれることにより逆浸透膜の透過抵抗が変化しないので、膜濃縮水調節弁45の開度を変えなければ透過水ライン30に流出する循環水の流量も変化しない。 In the second temperature holding step, the aperture of the membrane concentrate regulating valve 45 may be adjusted as in the second heating step, or the aperture of the membrane concentrate regulating valve 45 may be maintained at the aperture at the end of the second heating step. In the second temperature holding step, the temperature of the reverse osmosis membrane device 3 is maintained constant, so the permeation resistance of the reverse osmosis membrane does not change. Therefore, if the aperture of the membrane concentrate regulating valve 45 is not changed, the flow rate of the circulating water flowing into the permeate line 30 will not change.
第2降温工程では、第2温度調節装置7によって循環水を冷却してもよく、不活化手段2の温度が低い場合には、不活化水遮断弁21を開放して第1循環流路L1の循環水又は原水ライン10から供給されて不活化手段によって不活化された不活化水を導入することによって第2循環流路L2の循環水の温度を低下させてもよい。第2循環水排出弁86から過剰な循環水を排出することができる。第2降温工程における逆浸透膜装置3及びEDI装置4の温度勾配(降温速度)は、逆浸透膜を保護するために、第2昇温工程と同様に、例えば2℃/min程度に設定され得る。 In the second temperature-lowering step, the circulating water may be cooled by the second temperature control device 7. If the temperature of the inactivation means 2 is low, the temperature of the circulating water in the second circulation flow path L2 may be lowered by opening the inactivated water shut-off valve 21 and introducing circulating water in the first circulation flow path L1 or inactivated water supplied from the raw water line 10 and inactivated by the inactivation means. Excess circulating water can be discharged from the second circulating water discharge valve 86. The temperature gradient (temperature-lowering rate) of the reverse osmosis membrane device 3 and the EDI device 4 in the second temperature-lowering step may be set to, for example, approximately 2°C/min, similar to the second temperature-raising step, in order to protect the reverse osmosis membrane.
第1段殺菌工程と第2段殺菌工程とは同時に開始される場合、上述のように、第2昇温工程及び第2降温工程では温度勾配が制限されるため、第2降温工程よりも先に第1降温工程が進行するため、第2降温工程において上流側から比較的低温の水を第2循環流路L2に導入することができる。 When the first and second sterilization stages are started simultaneously, as described above, the temperature gradient is limited during the second temperature-raising and second temperature-lowering stages, so the first temperature-lowering stage proceeds before the second temperature-lowering stage, allowing relatively low-temperature water to be introduced into the second circulation flow path L2 from upstream during the second temperature-lowering stage.
再生運転では、EDI装置4に通電し、EDI装置4から純水ライン50に流出する水を純水排出弁51又は第2還流ライン80を介して第2循環水排出弁86から系外に排出する。これにより、EDI装置4が透過水から不純物イオンを除去できる状態に再生され得る。 During regeneration operation, the EDI device 4 is energized, and water flowing out of the EDI device 4 into the pure water line 50 is discharged from the system via the pure water discharge valve 51 or the second reflux line 80 and the second circulating water discharge valve 86. This allows the EDI device 4 to be regenerated to a state where it can remove impurity ions from the permeate water.
水処理システム100は、不活化手段2を通して第1温度調節装置6によって温度調節される水を循環させる第1循環流路L1を形成する第1還流ライン70と、逆浸透膜装置3及びEDI装置4を通して第2温度調節装置によって温度調節される水を循環させる第2循環流路L2を形成する第2還流ライン80と、を備えるため、一般に保水量が大きくなり得る不活化手段2の熱水殺菌と、急激な温度変化が忌避される逆浸透膜装置3の熱水殺菌とを独立して行うことができる。このため、不活化手段2には温度変化率を気にすることなく大きな熱を供給することできるとともに、逆浸透膜装置3の温度変化を迅速かつ正確に調整することができるので、水処理システム100全体の熱水殺菌を比較的短時間に終了できる。 The water treatment system 100 includes a first reflux line 70 that forms a first circulation flow path L1 for circulating water whose temperature is regulated by the first temperature regulator 6 through the inactivation means 2, and a second reflux line 80 that forms a second circulation flow path L2 for circulating water whose temperature is regulated by the second temperature regulator through the reverse osmosis membrane device 3 and the EDI device 4. Therefore, hot water sterilization of the inactivation means 2, which generally has a large water retention capacity, and hot water sterilization of the reverse osmosis membrane device 3, which is susceptible to sudden temperature changes, can be performed independently. This allows a large amount of heat to be supplied to the inactivation means 2 without regard to the rate of temperature change, and allows the temperature change of the reverse osmosis membrane device 3 to be adjusted quickly and accurately, enabling hot water sterilization of the entire water treatment system 100 to be completed in a relatively short time.
以上、本発明の各実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更及び変形が可能である。例として、本発明に係る水処理システムにおいて、EDI装置は省略されてもよく、EDI装置に換えて他の装置を設けてもよく、EDI装置の前後に他の装置(例えばEDI前段に脱炭酸装置、EDI後段にUF膜ろ過装置等)を追加してもよい。また、別の例として、第1温度調節装置は第1循環流路内であればどの位置に配置されてもよく、第2温度調節装置も第2循環流路内であればどの位置に配置されてもよい。また、流量計、調節弁等についても、機能を損なわない範囲で異なる位置に配設され得る。 Although the above describes various embodiments of the present invention, the present invention is not limited to the above-described embodiments and various modifications and variations are possible. For example, in the water treatment system of the present invention, the EDI device may be omitted, or another device may be installed in place of the EDI device, or other devices may be added before or after the EDI device (for example, a decarbonation device before the EDI and a UF membrane filtration device after the EDI). As another example, the first temperature control device may be located anywhere within the first circulation flow path, and the second temperature control device may be located anywhere within the second circulation flow path. Furthermore, flow meters, control valves, etc. may be located in different positions as long as their functionality is not impaired.
1 原水タンク
2 不活化手段
3 逆浸透膜装置
4 EDI装置
5 純水タンク
6 第1温度調節装置
7 第2温度調節装置
10 原水ライン
11 原水ポンプ
12 原水遮断弁
20 不活化水ライン
21 不活化水遮断弁
22 不活化水ポンプ
30 透過水ライン
31 透過水流量計
32 透過水排出弁
33 透過水ポンプ
40 膜濃縮水ライン
41 戻り部
42 膜濃縮水排出部
43 逆止弁
44 膜濃縮水流量計
45 膜濃縮水調節弁
50 純水ライン
51 純水排出弁
60 電気濃縮水ライン
70 第1還流ライン
71 第1循環ポンプ
72 第1入口遮断弁
73 第1出口遮断弁
74 第1循環水排出弁
80 第2還流ライン
81 第2循環ポンプ
82 膜濃縮水切換弁
83 純水切換弁
84 電気濃縮水切換弁
85 第2出口遮断弁
86 第2循環水排出弁
90 制御装置
100 水処理システム
L1 第1循環流路
L2 第2循環流路
REFERENCE SIGNS LIST 1 raw water tank 2 inactivation means 3 reverse osmosis membrane device 4 EDI device 5 pure water tank 6 first temperature control device 7 second temperature control device 10 raw water line 11 raw water pump 12 raw water shutoff valve 20 inactivated water line 21 inactivated water shutoff valve 22 inactivated water pump 30 permeate line 31 permeate flow meter 32 permeate discharge valve 33 permeate pump 40 membrane concentrated water line 41 return section 42 membrane concentrated water discharge section 43 check valve 44 membrane concentrated water flow meter 45 membrane concentrated water adjustment valve 50 pure water line 51 pure water discharge valve 60 electrolytic concentrated water line 70 first reflux line 71 first circulation pump 72 first inlet shutoff valve 73 first outlet shutoff valve 74 first circulation water discharge valve 80 second reflux line 81 Second circulation pump 82 Membrane concentrated water switching valve 83 Pure water switching valve 84 Electric concentrated water switching valve 85 Second outlet shutoff valve 86 Second circulating water discharge valve 90 Control device 100 Water treatment system L1 First circulation flow path L2 Second circulation flow path
Claims (4)
逆浸透膜によって前記不活化水を透過水と膜濃縮水とに分離する逆浸透膜装置と、
前記不活化手段から流出する前記不活化水を前記逆浸透膜装置に案内する不活化水ラインであって、前記不活化水を遮断する不活化水遮断弁を有する不活化水ラインと、
前記不活化手段を含む第1循環流路を形成するよう、前記不活化水ラインの前記不活化水遮断弁よりも上流側と前記不活化手段の上流側の流路とを接続する第1還流ラインと、
前記第1循環流路に配置され、水温を調節する第1温度調節装置と、
前記逆浸透膜装置を含む第2循環流路を形成するよう、前記逆浸透膜装置の下流側の流路と前記不活化水ラインの前記不活化水遮断弁よりも下流側とを接続する第2還流ラインと、
前記第2循環流路に配置され、水温を調節する第2温度調節装置と、
前記第1循環流路に水を循環させ、かつ前記不活化手段の温度を目標温度に近付けるよう前記第1温度調節装置の出力を調整する第1段殺菌工程と、前記第2循環流路に水を循環させ、かつ前記逆浸透膜装置の温度を目標温度に近付けるよう前記第2温度調節装置の出力を調整する第2段殺菌工程と、を同時に開始し、独立して制御する制御装置と、
を備える水処理システム。 an inactivation means for obtaining inactivated water by inactivating the disinfectant in the raw water;
a reverse osmosis membrane device that separates the inactivated water into permeate and membrane-concentrated water using a reverse osmosis membrane;
an inactivated water line that guides the inactivated water flowing out from the inactivation means to the reverse osmosis membrane device, the inactivated water line having an inactivated water shutoff valve that shuts off the inactivated water;
a first reflux line connecting the upstream side of the inactivated water shutoff valve of the inactivated water line to a flow path upstream of the inactivation means so as to form a first circulation flow path including the inactivation means;
a first temperature control device disposed in the first circulation flow path and configured to control a water temperature;
a second return line connecting a flow path downstream of the reverse osmosis membrane device and a downstream side of the inactivated water shutoff valve of the inactivated water line so as to form a second circulation flow path including the reverse osmosis membrane device;
a second temperature control device disposed in the second circulation flow path and configured to control the water temperature;
a control device that simultaneously starts and independently controls a first-stage sterilization process in which water is circulated through the first circulation flow path and the output of the first temperature adjustment device is adjusted so that the temperature of the inactivation means approaches a target temperature, and a second-stage sterilization process in which water is circulated through the second circulation flow path and the output of the second temperature adjustment device is adjusted so that the temperature of the reverse osmosis membrane device approaches a target temperature;
A water treatment system comprising:
前記第2還流ラインは、前記逆浸透膜装置から流出する前記膜濃縮水の流路、前記EDI装置から流出する前記純水の流路、及び前記EDI装置から流出する前記電気濃縮水の流路に接続される、請求項1に記載の水処理システム。 The apparatus further includes an EDI device for obtaining pure water by removing ions from the permeated water through electrical regeneration demineralization and electrically concentrated water in which the content of the ions is increased,
2. The water treatment system of claim 1, wherein the second return line is connected to a flow path of the membrane concentrated water flowing out from the reverse osmosis membrane device, a flow path of the pure water flowing out from the EDI device, and a flow path of the electroconcentrated water flowing out from the EDI device.
前記不活化水ラインの途中と前記不活化手段よりも上流側の流路とを接続することにより、前記不活化手段と水温を調節する第1温度調節装置とを含み、水を循環させる第1循環流路を形成し、前記不活化手段の温度を目標温度に近付けるよう前記第1温度調節装置の出力を調整する第1段殺菌工程と、
前記逆浸透膜装置よりも下流側の流路と前記不活化水ラインの第1循環流路よりも下流側の部分とを接続することにより、前記逆浸透膜装置と水温を調節する第2温度調節装置とを含み、水を循環させる第2循環流路を形成し、前記逆浸透膜装置の温度を目標温度に近付けるよう前記第2温度調節装置の出力を調整する第2段殺菌工程と、
を備え、
前記第1段殺菌工程と前記第2段殺菌工程とを同時に開始し、独立して制御する、水処理システムの殺菌方法。 A sterilization method for a water treatment system comprising: an inactivation means for obtaining inactivated water by inactivating a disinfectant in raw water; a reverse osmosis membrane device for separating the inactivated water into permeate water and membrane-concentrated water using a reverse osmosis membrane; and an inactivated water line for guiding the inactivated water flowing out of the inactivation means to the reverse osmosis membrane device,
a first-stage sterilization step in which a first circulation flow path is formed by connecting a midpoint of the inactivated water line to a flow path upstream of the inactivation means, the first circulation flow path including the inactivation means and a first temperature adjusting device that adjusts the water temperature, and the output of the first temperature adjusting device is adjusted so that the temperature of the inactivation means approaches a target temperature;
a second-stage sterilization process in which a second circulation flow path is formed by connecting a flow path downstream of the reverse osmosis membrane device to a portion of the inactivated water line downstream of the first circulation flow path, the second circulation flow path including the reverse osmosis membrane device and a second temperature adjustment device that adjusts the water temperature, and the output of the second temperature adjustment device is adjusted so that the temperature of the reverse osmosis membrane device approaches a target temperature;
Equipped with
The method for sterilizing a water treatment system , wherein the first stage sterilization process and the second stage sterilization process are initiated simultaneously and controlled independently .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021133897A JP7732273B2 (en) | 2021-08-19 | 2021-08-19 | Water treatment system and method for sterilizing the water treatment system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021133897A JP7732273B2 (en) | 2021-08-19 | 2021-08-19 | Water treatment system and method for sterilizing the water treatment system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2023028285A JP2023028285A (en) | 2023-03-03 |
| JP7732273B2 true JP7732273B2 (en) | 2025-09-02 |
Family
ID=85331563
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2021133897A Active JP7732273B2 (en) | 2021-08-19 | 2021-08-19 | Water treatment system and method for sterilizing the water treatment system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP7732273B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7743555B2 (en) * | 2024-02-22 | 2025-09-24 | オルガノ株式会社 | Water treatment system and method for operating same |
| CN119240965B (en) * | 2024-09-23 | 2025-09-19 | 珠海格力电器股份有限公司 | Mineralization system, mineralization system control method and mineralization equipment |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011147911A (en) | 2010-01-25 | 2011-08-04 | Nomura Micro Sci Co Ltd | Purified water producing method and purified water producing apparatus |
| JP2011147880A (en) | 2010-01-21 | 2011-08-04 | Nomura Micro Sci Co Ltd | Method and apparatus for production of purified water for medicine |
| JP2012040474A (en) | 2010-08-16 | 2012-03-01 | Nomura Micro Sci Co Ltd | Method and device for producing pure water |
| JP2014113512A (en) | 2012-12-06 | 2014-06-26 | Daicen Membrane Systems Ltd | Apparatus for producing medical purified water and operation method of the same |
| JP2017136541A (en) | 2016-02-03 | 2017-08-10 | 三菱ケミカルアクア・ソリューションズ株式会社 | Medicinal purified water production apparatus and production method |
| JP2019025456A (en) | 2017-08-02 | 2019-02-21 | 野村マイクロ・サイエンス株式会社 | Method and device for producing injection water |
| JP2019107617A (en) | 2017-12-19 | 2019-07-04 | オルガノ株式会社 | Sterilization method of pure water production apparatus |
| JP2019214005A (en) | 2018-06-11 | 2019-12-19 | オルガノ株式会社 | Activated carbon treatment system, method of sterilizing activated carbon column with hot water in the system |
| JP2020012639A (en) | 2018-07-13 | 2020-01-23 | 株式会社大林組 | Dead leg evaluation method and dead leg evaluation system |
-
2021
- 2021-08-19 JP JP2021133897A patent/JP7732273B2/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011147880A (en) | 2010-01-21 | 2011-08-04 | Nomura Micro Sci Co Ltd | Method and apparatus for production of purified water for medicine |
| JP2011147911A (en) | 2010-01-25 | 2011-08-04 | Nomura Micro Sci Co Ltd | Purified water producing method and purified water producing apparatus |
| JP2012040474A (en) | 2010-08-16 | 2012-03-01 | Nomura Micro Sci Co Ltd | Method and device for producing pure water |
| JP2014113512A (en) | 2012-12-06 | 2014-06-26 | Daicen Membrane Systems Ltd | Apparatus for producing medical purified water and operation method of the same |
| JP2017136541A (en) | 2016-02-03 | 2017-08-10 | 三菱ケミカルアクア・ソリューションズ株式会社 | Medicinal purified water production apparatus and production method |
| JP2019025456A (en) | 2017-08-02 | 2019-02-21 | 野村マイクロ・サイエンス株式会社 | Method and device for producing injection water |
| JP2019107617A (en) | 2017-12-19 | 2019-07-04 | オルガノ株式会社 | Sterilization method of pure water production apparatus |
| JP2019214005A (en) | 2018-06-11 | 2019-12-19 | オルガノ株式会社 | Activated carbon treatment system, method of sterilizing activated carbon column with hot water in the system |
| JP2020012639A (en) | 2018-07-13 | 2020-01-23 | 株式会社大林組 | Dead leg evaluation method and dead leg evaluation system |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2023028285A (en) | 2023-03-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5923030B2 (en) | Apparatus for producing purified water for medical use and operation method thereof | |
| JP7732273B2 (en) | Water treatment system and method for sterilizing the water treatment system | |
| JP5307049B2 (en) | Method for producing purified water for pharmaceuticals, and apparatus for producing purified water for pharmaceuticals | |
| KR101344464B1 (en) | Water purifier and Control process of the same | |
| JP5923027B2 (en) | Apparatus for producing purified water for medical use and operation method thereof | |
| JP6149993B1 (en) | Ultrapure water production equipment | |
| JP6725143B2 (en) | Water treatment equipment | |
| WO2018051551A1 (en) | Ultrapure water manufacturing device | |
| JP6948012B2 (en) | Ultrapure water heating method | |
| JP2021178297A (en) | Medicinal water production system and its sterilization method | |
| JP2023031982A (en) | water treatment system | |
| JP2023041226A (en) | water treatment system | |
| JP4475925B2 (en) | Desalination treatment apparatus and desalination treatment method | |
| JP5480063B2 (en) | Pure water production method and pure water production apparatus | |
| JP6953070B2 (en) | Medical purified water production equipment | |
| CN117582824B (en) | Water purification equipment heat sterilization method and water purification equipment heat sterilization system | |
| JP7732278B2 (en) | Water treatment system and method for sterilizing the water treatment system | |
| US20250033999A1 (en) | Warm ultrapure water production device | |
| JP6350718B2 (en) | Ultrapure water production equipment | |
| JP4552483B2 (en) | Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus | |
| JP7734867B1 (en) | Method for producing water for injection and apparatus for producing water for injection | |
| JP2024118701A (en) | Water Treatment Systems | |
| JP7743555B2 (en) | Water treatment system and method for operating same | |
| EP4124378A1 (en) | Water purification device for dialysis | |
| JPH0818022B2 (en) | Heat sterilization method of final filter for ultrapure water |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240521 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20250120 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250305 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250415 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250722 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250804 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7732273 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |