[go: up one dir, main page]

JPH0410587B2 - - Google Patents

Info

Publication number
JPH0410587B2
JPH0410587B2 JP58070602A JP7060283A JPH0410587B2 JP H0410587 B2 JPH0410587 B2 JP H0410587B2 JP 58070602 A JP58070602 A JP 58070602A JP 7060283 A JP7060283 A JP 7060283A JP H0410587 B2 JPH0410587 B2 JP H0410587B2
Authority
JP
Japan
Prior art keywords
carrier
porous
silanol groups
silane
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58070602A
Other languages
Japanese (ja)
Other versions
JPS59195153A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58070602A priority Critical patent/JPS59195153A/en
Publication of JPS59195153A publication Critical patent/JPS59195153A/en
Publication of JPH0410587B2 publication Critical patent/JPH0410587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3263Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. an heterocyclic or heteroaromatic structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 本発明は多孔性担体の製造方法に関する。更に
詳細には、クロマトグラフイー用に適した多孔性
担体の製造方法に関する。 従来、蛋白質等の生化学関連物質のクロマトグ
ラフイー用担体としては、架橋デキストラン、ポ
リアクリルアミドなどが知られている。 これらの担体は水溶性物質に対する吸着性が少
ないため、クロマトグラフイー用充填剤として分
析及び精製用として使用されている。 しかし、これらのゲルは機械的強度が少さいた
め、低流速でしか使用出来ない。また、PH、イオ
ン強度、溶離液組成の変化によつて担体の膨潤度
が変化し、カラム効率を低下させることが知られ
ており、カラム安定性の高い分離担体が待望され
ていた。そこでメタクリレート系ゲル、ポリビニ
ルアルコール系ゲル、スチレンビニルベンゼン系
ゲル等の有機ポリマーゲルが開発利用されてきて
いるが、最も重要な吸着性(疎水性吸着)及び分
離の点で劣つている。又、前記のゲルと同様、機
械的強度、溶離液組成の変化等の面で改良はなさ
れているが、また不充分であつた。 最近、シリコン系クロマトグラフ支柱をアルコ
ールでエステル化する工程を含み基質と定常相と
を化学的に結合させることが提案されている(特
開昭46−7296号)。しかしながら、得られるSi−
O−C結合は加水分解を受け易く、溶質を吸着さ
せるばかりでなく、クロマトグラフイーの再現性
及びカラム効率を低下させる。更に、エポキシ基
を有するシランカツプリング剤をSi−O−Si結合
で一次的に化学結合させ、さらにこのエポキシ基
と反応しうる化学物質で二次的に反応をさせるこ
とにより細孔を有する多孔性担体を被覆する方法
が提案された(特開昭55−5941号、特開昭55−
66756号)。これは一次的化学結合反応で反応にあ
ずからなかつた表面シラノール基を二次的反応に
より覆い、吸着性シラノールを表面に露出させな
いものである。しかし、“J.Amer.Chem,Soc.”
72 776〜782Feb.,(1950).I.SHAPIRO AND
I.M.KoLTHOFFらによつて報告されているメチ
ルレツド吸着法を参考に表面にシラノール基を測
定したところ、23μmol/gとかなりのシラノー
ル基が表面に露出しており、蛋白質、酵素等の試
料を吸着し、回収率も低下する。又、二次的反応
により担体表面に形成される高分子層が、基質で
ある多孔性担体が本来持つ微細な細孔径を狭くし
てしまう。さらに反応する化学物質が均一に反応
しないため細孔径の孔径分布が広がり、ゲルクロ
マト担体としての性能が低下する。さらに、J.
Chromatog,Sci.14 316〜320(1976)等でグリ
セロールプロピルシラン結合を持つた多孔性ガラ
スの性能が報告されており、従来の担体より吸着
性、操作性、回収率がかなり改良されているが、
多孔性ガラス表面のシラノール基とシランカツプ
リング剤との反応が不充分のため未反応シラノー
ル基が存残し、シラノール基による吸着等で蛋白
質、酵素等の回収率が低い。そこで本発明者達は
多孔性担体の細孔表面のシラノール基をほぼ完全
に有機シラン化合物と反応させ、被覆する方法に
ついて鋭意検討した結果本発明に至つたものであ
る。 本発明の第1の目的は担体表面のシラノール基
をほぼ完全に被覆し吸着性の低い多孔性担体を提
供することにある。 本発明の第2の目的は、多孔性担体が本来もつ
微細な細孔径を狭めないで優れた多孔性担体を提
供することにある。 本発明の第3の目的は、機械的強度、再現性、
カラム効率(性能)、試料の回収率にすぐれたク
ロマトグラフイー担体を提供することにある。 すなわち、本発明の上記の目的は、シリカゲ
ル、多孔性ガラスの如き多孔性担体の細孔表面の
シラノール基と、有機シラン化合物を界面活性剤
を用いて反応させることによつて達成される。 本発明において最も重要な点は、多孔性担体表
面のシラノール基と有機シランとを化学結合させ
る際に、触媒として界面活性剤を反応系内に添加
することである。界面活性剤としては、カチオン
系界面活性剤(例えば、ラウリルアミンアセテー
ト、ラウリルトリメチルアンモニウムクロライ
ド、ステアリルトリメチルアンモニウムクロライ
ド、ジステアリルジメチルアンモニウムクロライ
ド、ポリオキシエチレンアルキルアミンなど)、
アニオン系界面活性剤(例えば、ラウリル酸ナト
リウム、ラウリル硫酸トリエタノールアミン、ラ
ウリル硫酸アンモニウム、ポリオキシエチレンア
ルキルエーテル硫酸ナトリウム、ポリオキシエチ
レンアルキルエーテル硫酸トリエタノールアミン
など)、ノニオン系界面活性剤(例えば、ポリオ
キシエチレンラウリルエーテル、ポリオキシエチ
レンセチルエーテル、ポリオキシエチレンステア
リルエーテルソルビタンモノラウレートなど)が
挙げられる。本発明において、界面活性剤は多孔
性担体表面のシラノール基と有機シランとの化学
結合反応を著しく促進させ、かつ表面シラノール
基をほぼ完全に被覆させる効果がある。特に、ア
ニオン系界面活性剤が最適である。シラノール基
と有機シランとの反応温度は20〜100℃であるが、
反応効率(速度)の面から反応温度は85〜95℃が
好ましい。 本発明の多孔性担体はシリカゲル、多孔性ガラ
ス、ケイソウ土類の細孔を有し、表面にシラノー
ル基を有する多孔性担体である。 本発明に用いられる多孔性担体は、細孔表面に
シラノール基を0.5個/mm2以上、好ましくは5
個/mm2以上有するものが最適である。また、多孔
性担体の形状は任意の形状を有するものを使用で
き、さらに多孔性該担体の粒子径は1〜500μm、
好ましくは30〜200μm、細孔の大きさは平均細
孔径5〜5000Åの担体が適用できる。 本発明における有機シラン化合物はシランカツ
プリング剤として用いるものであり、1分子中に
低級アルコキシ基原子を1〜3個持ち、水又はPH
3〜10の水溶液あるいは水溶性有機溶剤を30wt
%以下含む水溶液に可溶なものが好ましい。例え
ば一般式(),()で示される化合物がある。 (式中、R1、R2は特に限定しない、Xは炭素
原子1〜2のアルコキシ基、Y、Zはメチル基、
エチル基、炭素数1〜2のアルコキシ基を示す。) 一般式()、()で示される化合物で、例え
ばγ−グリシジルオキシプロピルトリメトキシシ
ラン、γ−グリシドキシプロピルジメチルエトキ
シシラン、γ−グリシドキシプロピルメチルジエ
トキシシラン、γ−アミノプロピルトリエトキシ
シラン、γ−メルカプトプロピルトリメトキシシ
ラン、N−β(アミノエチル)−γ−アミノプロピ
ルメチルジメトキシシラン、ビニルトリエトキシ
シラン、ビス(2−ヒドロキシエチル)アミノプ
ロピルトリエトキシシラン、などの水溶性シラン
カツプリング剤(水又は塩酸、水酸化カリウム、
リン酸塩等で調整したPH3〜10の水溶液あるい
は、30wt%以下の水溶性有機溶剤を含む水に1wt
%以上可溶なもの)が挙げられる。 本発明において多孔性担体に有機シラン化合物
を反応させる方法は、シラノール基を有する多孔
性担体を水溶媒又は水−有機溶媒で希釈した有機
シラン中に含浸させ、さらに界面活性剤をこの溶
液中に添加し、所定温度、所定時間、通常の還流
を行う。次に、生成したシラン処理体をロ別し、
水溶媒、メタノール溶媒又はアセトン溶媒で数回
洗浄後、減圧乾燥するものである。 本発明において、溶媒の存在下で反応を行うの
は多孔性担体のシラノール基に有機シランを化学
結合させるとき表面処理の均一性に対する安定度
や操作性の点から好ましいからである。溶媒とし
ては、水又は塩酸、水酸化カリウム、リン酸塩等
で調整したPH3〜10の水溶液、さらには、水溶性
有機溶媒(例えば、メタノール、エタノール、イ
ソプロパノール、アセトン、ジオキサン)を
30wt%以下含む水溶液等を挙げることができる。
好ましくは塩酸、水酸化カリウムで調整したPH
6‐8の水溶媒が最適である。 又、多孔性担体に対する有機シランの使用量
は、担体中に存在する表面シラノール基量に依存
するため、本発明者らは、多孔性担体表面のシラ
ノール基量を測定する手段として“J.Amer.
Chem,Soc”72 776〜782Fed.,(1950).I.
SHAPIRO AND I.M.KOLTHOFFらによつて
報告されている、メチルレツド吸着法を用いた。 この測定法から得られた表面シラノール基量を
基に有機シランの使用量を決定した。有機シラン
使用量は、多孔性担体の総シラノール基量に対
し、1〜10倍モルで可能であるが、表面を完全に
被覆する目的のために好ましいのは、4〜5倍モ
ルである。これより多すぎると細孔径を狭くする
などの欠点が生じる。 即ち、本発明で使用する有機シラン化合物の量
は、反応に使用する多孔性担体の細孔総表面積
(m2で表示)に対し7.9〜9.8μモル/m2である。こ
れに対して、前述した“J.Chromatog,Sci”14
316〜320(1976)によれば多孔性担体に対し
22.3μモル/m2であり、特開昭55−5941号及び特
開昭55−66756号によれば14.1μモル/m2である。
特開昭46−7296号でも56.3μモル/m2の有機シラ
ン化合物の量を使用している。このことから比較
しても本発明の有利な点が明白である。 以上の様にして本発明により得られた担体は、
従来の担体に比較してクロマトグラフイー用担
体、特にゲル過用担体としてきわめて優れた性
能を有している。その第一の特徴は低吸着性にあ
る。これは、担体表面シラノール基が有機シラン
でほぼ完全に被覆されているため残存シラノール
基による溶質(蛋白質、生化学関連物質など)の
吸着が極めて少ないことによる。第2に、表面に
導入される化学物質(有機シラン)が少量で十分
であるため多孔性担体の微細な細孔径をそこなわ
ず、さらに導入化学物質のもつアルキル基、アリ
ール基に起因すると推定される試料と担体表面と
の疎水性相互作用(疎水性吸着)も極めて少ない
ことによる。 第3に、通常の方法で容易に作製できるシリカ
ゲル、ポーラスガラス等の無機の担体は有機ポリ
マー系の担体に比べ細孔径の分布が非常に狭く、
溶媒が異つても膨潤度を変化させない硬質のゲル
を与える。従つて、分離能が非常に高く、高速化
も容易でカラム安定性の良いクロマトグラフイー
用担体の製造も可能である。 それ故、本発明で得られた担体は、きわめて優
れた性能を有し、前に記載した有機シラン(シラ
ンカツプリング剤)を選択し反応に用いることに
より親水性ゲル過用担体、有機溶媒系ゲル過
用担体、イオン交換クロマトグラフイー用担体、
アフイニテイークロマトグラフイー用担体、さら
に酵素固定化用担体等の分離担体の基材として利
用できる。 以下、実施例によつて本発明を詳細に説明する
が、本発明はこれに限定するものではない。 実施例 1 下記物性の多孔性ガラス20gを120℃、4時間
乾燥後、還流冷却器付きの3つ口フラスコに取
り、ラウリル硫酸ナトリウム0.49gを蒸留水50ml
で溶解した溶液中に含浸させ、15分間室温で撹拌
した。 形状:破砕形 粒子形:35〜77μm 比表面積:86m2/g 平均細孔径:240Å 更に、γ−グリシジルオキシプロピルトリメト
キシシラン3.53gを蒸留水64mlで希釈した溶液を
3つ口フラスコに投入し、この溶液のPHをINの
KOH水溶液でPHを約7.0に調整し30分間撹拌し
た。 続いて油浴上で90℃、6時間反応させた。冷却
後、上記のシラン処理多孔性ガラスを別し、蒸
留水150mlで5回洗浄した。更にアセトン150mlで
2回洗浄し、50℃、20mmHgで8時間減圧乾燥す
ることによりシラン処理多孔性ガラス約21gを得
た。 この担体を内径7.5mm、長さ600mmのステンレス
製カラムに充填し、下記の条件で水溶媒系のゲル
浸透クロマトグラフイー用充填剤としての性能を
調べた。 測定条件 装置:ALC/「GPC204型」(商品名;ウオー
ターズ(株)) 検出器:紫外線吸収検出器(280mm) 溶離液:リン酸緩衝液(1/15モル、PH7.0)(1/
10モルNaCl含有) 流 速:1ml/min 試料注入量:0.5%溶液、20μ又は50μ(蛋
白質)、50μ(デキストラン) まず、各種デキストランを試料とし、シランカ
ツプリング剤との反応前(未処理ポーラスガラ
ス)と反応後(シラン処理ポーラスガラス)で担
体の細孔径変化を比較するためデキストラン溶出
実技による較正曲線を作成し第1図に示した。 較正曲線とは、多孔質担体をゲルパーシイエイ
シヨン(GPC)として用いた場合、その担体の
もつ分画範囲を表わす検量線である。 即ち、物質の分子量に対しどの程度、どの範囲
までを分離してクロマトグラフイーが行なわれる
かを標準デキストランにより測定して表わす。 比較例 1 実施例1に於て、界面活性剤ラウリル硫酸ナト
リウムを添加しない以外は全く同一の条件で反応
させて得られたシラン処理多孔性ガラス担体を実
施例1と同一カラムに充填し同一条件で性能を調
べた。 比較例 2 実施例1と同じ多孔性ガラスを使用し、同じ有
機シランをトルエン100mlで希釈した溶液中に含
浸させた。 生成するメタノールを留出させながら還流下8
時間反応させた。シラン処理多孔ガラスを別し
トルエン100mlで3回洗浄し、アセトン100mlで2
回洗浄後乾燥した。次に得られたシラン処理多孔
性ガラスをPH3の塩酸水溶液200mlに含浸し、40
℃、12時間反応させて、ケイ素原子に結合してい
るアルコキシ基を除去するとともに、エポキシ基
を加水分解開環変性した。充分に水洗した後減圧
乾燥して得た担体を実施例1と同一カラムに充填
し同一条件で性能を調べた。 また、本実施例におけるシラン処理担体と、比
較例1及び比較例2の担体の乾燥状態における組
成分析の結果を以下に示す。 【表】 さらに、各種蛋白質の溶出量(溶出位置)と回
収率及びメチルレツド法による担体表面被覆率を
測定した。その結果を第1表に示す。 なお、回収率の測定は、各試量溶液の紫外吸収
log1/T(λ280mm)の値を100%として、充填カ
ラムを通過した各試料の紫外吸収log1/T値(試
料濃度を同一に調整)の百分率で表わした。この
場合測定は3回づつ行ないその平均を求めた。但
し、各蛋白質の失活はないものとした。 【表】 【表】 実施例 2〜6 実施例1と同じ多孔性ガラスを使用し各種有機
シランと各種界面活性剤を用いて実施例1と同一
条件下で反応させた後、得られた担体の特性値の
測定結果を第2表に示す。 【表】 【表】 実施例 7 形状:破砕形 粒子径:10〜20μm 比表面積:93m2/g 平均細孔径:240Å 上記物質の多孔性ガラスを使用して実施例1と
同じ有機シランで同一条件下でシラン処理した
後、洗浄、乾燥して得られた担体を湿式充填し、
同一条件で各種蛋白質を測定した。求めた回収率
と溶出チヤートを第3表及び第2図に示す。 【表】 なお、本発明の方法による多孔性担体の有機シ
ラン処理に於てエポキシ基含有有機シランを使用
する場合のエポキシ基の開環変性については、乾
燥ゲルを塩化水素を溶解した乾燥DMFを一定量
入れ、該ゲルのエポキシ基を開環しクロルヒドリ
ン型とした後、残留塩化水素をナトリウムメチラ
ートで逆適定し、該ゲルに存在するエポキシ基量
を定量した。 その結果、第3図に示すように、本発明の方法
では、反応時間を6時間とするところで該ゲルの
エポキシ基を100%開環変性することが出来るこ
とがわかつた。 一般にエポキシ基の開環にあたつては比較例2
のごとくシラン処理した担体を酸性水溶液で充分
含浸させ、よく水洗してエポキシ基の開環処理を
しなければならない。 さらに、エポキシ基含有有機シラン以外の有機
シラン処理の反応時間は、1時間で充分反応が進
行し、クロマトグラフイー担体としての性能も満
足するものであつた。 実施例 8 形状:破砕型 粒子径:10±2μm 比表面積:400m2/g 平均細孔径:100Å 上記物性のシリカゲル担体20gをラウリル硫酸
ナトリウム2.0g、γ−グリシジルオキシプロピ
ルトリメトキシシラン14.5g、蒸留水275mlを用
い実施例1と同一操作条件下で反応させた後、得
られた担体の乾燥状態における組成分析の結果を
以下に示す。 【表】 得られたシラン処理担体は多孔性ガラスと実施
例1と同様に良好な性能を示した。 以上、シラン処理後の多孔性担体の物性(デキ
ストラン較正曲線、組成分析、蛋白質の回収率、
メチルレツド法による表面被覆率)の結果から、
本発明の方法はクロマトグラフイー分離担体とし
て試料の吸着性がきわめて低く、さらに多孔性担
体が本来もつ微細な細孔径をそこなわず、担体表
面を必要最少限の有機シラン処理剤でほぼ単分子
層に近い形で被覆処理されていることがわかる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous carrier. More specifically, the present invention relates to a method for producing a porous carrier suitable for chromatography. Conventionally, crosslinked dextran, polyacrylamide, and the like have been known as carriers for chromatography of biochemical substances such as proteins. Since these carriers have low adsorption to water-soluble substances, they are used as packing materials for chromatography for analysis and purification. However, these gels have low mechanical strength and can only be used at low flow rates. Furthermore, it is known that changes in pH, ionic strength, and eluent composition change the degree of swelling of the carrier, reducing column efficiency, and a separation carrier with high column stability has been desired. Therefore, organic polymer gels such as methacrylate gels, polyvinyl alcohol gels, and styrene vinylbenzene gels have been developed and used, but they are inferior in the most important aspects of adsorption (hydrophobic adsorption) and separation. Also, similar to the gel described above, improvements have been made in terms of mechanical strength, changes in eluent composition, etc., but these have been insufficient. Recently, it has been proposed to chemically bond a substrate and a stationary phase by including a step of esterifying a silicon-based chromatographic support with alcohol (Japanese Patent Application Laid-Open No. 7296/1983). However, the obtained Si−
O-C bonds are susceptible to hydrolysis, which not only adsorbs solutes but also reduces chromatographic reproducibility and column efficiency. Furthermore, by firstly chemically bonding a silane coupling agent having an epoxy group through Si-O-Si bonds, and then secondarily reacting with a chemical substance that can react with this epoxy group, porous particles having pores are formed. A method of coating a sexual carrier was proposed (Japanese Patent Application Laid-open No. 5941/1983,
No. 66756). In this method, the surface silanol groups that have not participated in the reaction in the primary chemical bonding reaction are covered by the secondary reaction, and the adsorbable silanol is not exposed on the surface. However, “J.Amer.Chem, Soc.”
72 776-782Feb., (1950). I. SHAPIRO AND
When we measured silanol groups on the surface using the methylred adsorption method reported by IMKoLTHOFF et al., we found that a considerable amount of silanol groups (23 μmol/g) were exposed on the surface, and they adsorbed samples such as proteins and enzymes. The recovery rate also decreases. In addition, the polymer layer formed on the surface of the carrier due to the secondary reaction narrows the fine pore diameter originally possessed by the porous carrier that is the substrate. Furthermore, since the reacting chemical substances do not react uniformly, the pore size distribution widens, resulting in a decrease in performance as a gel chromatography carrier. Furthermore, J.
Chromatog, Sci. 14 316-320 (1976) and others have reported the performance of porous glass with glycerolpropylsilane bonds, and although it has considerably improved adsorption, operability, and recovery rate compared to conventional carriers. ,
Since the reaction between the silanol groups on the surface of the porous glass and the silane coupling agent is insufficient, unreacted silanol groups remain, and the recovery rate of proteins, enzymes, etc. is low due to adsorption by the silanol groups. Therefore, the present inventors conducted intensive studies on a method of almost completely reacting the silanol groups on the surface of the pores of a porous carrier with an organic silane compound to coat the carrier, and as a result, the present invention was achieved. The first object of the present invention is to provide a porous carrier that almost completely covers the silanol groups on the carrier surface and has low adsorption properties. A second object of the present invention is to provide an excellent porous carrier without narrowing the fine pore diameter inherent in the porous carrier. The third object of the present invention is to improve mechanical strength, reproducibility,
Our objective is to provide a chromatography carrier with excellent column efficiency (performance) and sample recovery rate. That is, the above object of the present invention is achieved by reacting the silanol groups on the pore surface of a porous carrier such as silica gel or porous glass with an organic silane compound using a surfactant. The most important point in the present invention is to add a surfactant as a catalyst into the reaction system when chemically bonding the silanol groups on the surface of the porous carrier and the organic silane. Examples of surfactants include cationic surfactants (for example, laurylamine acetate, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, polyoxyethylene alkylamine, etc.);
Anionic surfactants (e.g., sodium laurate, triethanolamine lauryl sulfate, ammonium lauryl sulfate, sodium polyoxyethylene alkyl ether sulfate, triethanolamine polyoxyethylene alkyl ether sulfate, etc.), nonionic surfactants (e.g., polyoxyethylene alkyl ether triethanolamine sulfate, etc.), (oxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether sorbitan monolaurate, etc.). In the present invention, the surfactant has the effect of significantly promoting the chemical bonding reaction between the silanol groups on the surface of the porous carrier and the organic silane, and almost completely covering the surface silanol groups. In particular, anionic surfactants are most suitable. The reaction temperature between silanol groups and organic silane is 20 to 100℃,
From the viewpoint of reaction efficiency (speed), the reaction temperature is preferably 85 to 95°C. The porous carrier of the present invention has pores made of silica gel, porous glass, or diatomaceous earth, and has silanol groups on the surface. The porous carrier used in the present invention has 0.5 or more silanol groups/mm 2 , preferably 5 silanol groups on the pore surface.
It is best to have at least 100% of the number of particles/ mm2 . Further, the porous carrier may have any shape, and the particle size of the porous carrier may be 1 to 500 μm,
Preferably, a carrier having a pore size of 30 to 200 μm and an average pore size of 5 to 5000 Å is applicable. The organic silane compound in the present invention is used as a silane coupling agent, has 1 to 3 lower alkoxy group atoms in one molecule, and has water or PH
30wt of 3-10 aqueous solution or water-soluble organic solvent
% or less is preferable. For example, there are compounds represented by the general formulas () and (). (In the formula, R 1 and R 2 are not particularly limited, X is an alkoxy group having 1 to 2 carbon atoms, Y and Z are methyl groups,
It represents an ethyl group and an alkoxy group having 1 to 2 carbon atoms. ) Compounds represented by the general formulas () and (), such as γ-glycidyloxypropyltrimethoxysilane, γ-glycidoxypropyldimethylethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-aminopropyltrimethoxysilane. Water-soluble silanes such as ethoxysilane, γ-mercaptopropyltrimethoxysilane, N-β(aminoethyl)-γ-aminopropylmethyldimethoxysilane, vinyltriethoxysilane, bis(2-hydroxyethyl)aminopropyltriethoxysilane, etc. Coupling agents (water or hydrochloric acid, potassium hydroxide,
Add 1wt to an aqueous solution with a pH of 3 to 10 adjusted with phosphate, etc., or water containing 30wt% or less of a water-soluble organic solvent.
% or more). In the present invention, the method of reacting a porous carrier with an organic silane compound involves impregnating a porous carrier having silanol groups in an organic silane diluted with a water solvent or a water-organic solvent, and then adding a surfactant to this solution. and normal reflux is carried out at a predetermined temperature and for a predetermined time. Next, the generated silanized product is separated,
After washing several times with a water solvent, methanol solvent, or acetone solvent, it is dried under reduced pressure. In the present invention, it is preferable to carry out the reaction in the presence of a solvent from the viewpoint of stability and operability with respect to uniformity of surface treatment when chemically bonding the organic silane to the silanol groups of the porous carrier. Examples of solvents include water or an aqueous solution with a pH of 3 to 10 adjusted with hydrochloric acid, potassium hydroxide, phosphate, etc., and water-soluble organic solvents (e.g., methanol, ethanol, isopropanol, acetone, dioxane).
Examples include aqueous solutions containing 30 wt% or less.
PH adjusted preferably with hydrochloric acid, potassium hydroxide
6-8 water solvent is optimal. In addition, since the amount of organic silane used for a porous carrier depends on the amount of surface silanol groups present in the carrier, the present inventors used "J.Amer. .
Chem, Soc” 72 776-782Fed., (1950).I.
The methyl red adsorption method reported by SHAPIRO AND IMKOLTHOFF et al. was used. The amount of organic silane to be used was determined based on the amount of surface silanol groups obtained from this measurement method. The amount of organic silane used can be 1 to 10 times the total amount of silanol groups in the porous carrier, but is preferably 4 to 5 times the amount to completely cover the surface. If the amount is too large, disadvantages such as narrowing of the pore size will occur. That is, the amount of the organosilane compound used in the present invention is 7.9 to 9.8 μmol/m 2 based on the total pore surface area (expressed in m 2 ) of the porous carrier used in the reaction. In contrast, the aforementioned “J.Chromatog, Sci” 14
316-320 (1976) for porous supports.
According to JP-A No. 55-5941 and JP-A-55-66756, it is 14.1 μmol/m 2 .
JP-A-46-7296 also uses an amount of organosilane compound of 56.3 μmol/m 2 . From this comparison, the advantages of the present invention are clear. The carrier obtained according to the present invention as described above is
Compared to conventional carriers, it has extremely superior performance as a carrier for chromatography, especially as a carrier for gel filtration. Its first feature is low adsorption. This is because the silanol groups on the surface of the carrier are almost completely covered with organic silane, so that the adsorption of solutes (proteins, biochemical related substances, etc.) by the remaining silanol groups is extremely small. Second, since a small amount of the chemical substance (organosilane) introduced to the surface is sufficient, it does not damage the fine pore size of the porous carrier, and it is also assumed that this is due to the alkyl group and aryl group of the introduced chemical substance. This is because there is very little hydrophobic interaction (hydrophobic adsorption) between the sample and the carrier surface. Third, inorganic carriers such as silica gel and porous glass, which can be easily produced by conventional methods, have a much narrower pore size distribution than organic polymer carriers.
To provide a hard gel whose degree of swelling does not change even if different solvents are used. Therefore, it is possible to produce a carrier for chromatography that has very high separation ability, can be easily increased in speed, and has good column stability. Therefore, the carrier obtained in the present invention has extremely excellent performance, and by selecting the organic silane (silane coupling agent) described above and using it in the reaction, it can be used as a hydrophilic gelling carrier or an organic solvent-based carrier. Carrier for gel filtration, carrier for ion exchange chromatography,
It can be used as a base material for affinity chromatography carriers and separation carriers such as enzyme immobilization carriers. EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. Example 1 After drying 20 g of porous glass with the following physical properties at 120°C for 4 hours, it was placed in a three-necked flask equipped with a reflux condenser, and 0.49 g of sodium lauryl sulfate was added to 50 ml of distilled water.
and stirred at room temperature for 15 minutes. Shape: Crushed Particle shape: 35-77 μm Specific surface area: 86 m 2 /g Average pore diameter: 240 Å Furthermore, a solution of 3.53 g of γ-glycidyloxypropyltrimethoxysilane diluted with 64 ml of distilled water was poured into a three-necked flask. , the PH of this solution is
The pH was adjusted to about 7.0 with a KOH aqueous solution and stirred for 30 minutes. Subsequently, the mixture was reacted on an oil bath at 90°C for 6 hours. After cooling, the silane-treated porous glass was separated and washed five times with 150 ml of distilled water. The glass was further washed twice with 150 ml of acetone and dried under reduced pressure at 50° C. and 20 mmHg for 8 hours to obtain about 21 g of silane-treated porous glass. This carrier was packed into a stainless steel column with an inner diameter of 7.5 mm and a length of 600 mm, and its performance as a packing material for gel permeation chromatography in an aqueous solvent system was investigated under the following conditions. Measurement conditions Equipment: ALC/"GPC204 type" (product name: Waters Co., Ltd.) Detector: Ultraviolet absorption detector (280 mm) Eluent: Phosphate buffer (1/15 mol, PH7.0) (1/
(Contains 10 mol NaCl) Flow rate: 1 ml/min Sample injection amount: 0.5% solution, 20 μ or 50 μ (protein), 50 μ (dextran) In order to compare the change in the pore diameter of the carrier after the reaction (silanized porous glass) and after the reaction (silanized porous glass), a calibration curve was created using a practical dextran elution technique and is shown in FIG. A calibration curve is a calibration curve that represents the fractionation range of a porous carrier when the carrier is used as a gel perfusion (GPC). That is, the degree and range of molecular weight of a substance that can be separated and chromatographically measured using standard dextran is expressed. Comparative Example 1 A silane-treated porous glass carrier obtained by reacting under exactly the same conditions as in Example 1 except that the surfactant sodium lauryl sulfate was not added was packed into the same column as in Example 1, and the reaction was carried out under the same conditions. We investigated the performance. Comparative Example 2 The same porous glass as in Example 1 was used and impregnated with the same organic silane in a solution diluted with 100 ml of toluene. 8 under reflux while distilling off the methanol produced.
Allowed time to react. Separate the silane-treated porous glass, wash it three times with 100 ml of toluene, and wash it twice with 100 ml of acetone.
After washing twice, it was dried. Next, the obtained silane-treated porous glass was impregnated with 200 ml of aqueous hydrochloric acid solution of PH3, and
C. for 12 hours to remove the alkoxy group bonded to the silicon atom and to hydrolyze and ring-open the epoxy group. The carrier obtained by thorough washing with water and drying under reduced pressure was packed into the same column as in Example 1, and its performance was examined under the same conditions. Further, the results of compositional analysis in the dry state of the silanized carrier in this example and the carriers in Comparative Examples 1 and 2 are shown below. [Table] Furthermore, the elution amount (elution position) and recovery rate of various proteins and the carrier surface coverage by the methyl red method were measured. The results are shown in Table 1. The recovery rate is measured by measuring the ultraviolet absorption of each sample solution.
The value of log1/T (λ280 mm) was taken as 100%, and it was expressed as a percentage of the ultraviolet absorption log1/T value (sample concentration was adjusted to be the same) of each sample that passed through the packed column. In this case, the measurements were performed three times and the average was determined. However, it was assumed that each protein was not inactivated. [Table] [Table] Examples 2 to 6 Using the same porous glass as in Example 1, the carriers obtained were reacted under the same conditions as in Example 1 using various organic silanes and various surfactants. The measurement results of the characteristic values are shown in Table 2. [Table] [Table] Example 7 Shape: crushed particle size: 10 to 20 μm Specific surface area: 93 m 2 /g Average pore size: 240 Å The same organic silane as in Example 1 using porous glass of the above material. After silane treatment under the following conditions, the carrier obtained by washing and drying is wet-filled,
Various proteins were measured under the same conditions. The determined recovery rate and elution chart are shown in Table 3 and Figure 2. [Table] For ring-opening modification of epoxy groups when using an epoxy group-containing organosilane in the organosilane treatment of a porous carrier according to the method of the present invention, dry gel is mixed with dry DMF in which hydrogen chloride is dissolved. A certain amount of the gel was added to open the epoxy groups of the gel to form a chlorohydrin type, and residual hydrogen chloride was back determined using sodium methylate to quantify the amount of epoxy groups present in the gel. As a result, as shown in FIG. 3, it was found that in the method of the present invention, 100% of the epoxy groups in the gel could be ring-opened and modified with a reaction time of 6 hours. In general, when opening the epoxy group, Comparative Example 2
The silane-treated carrier must be sufficiently impregnated with an acidic aqueous solution and thoroughly washed with water to open the epoxy group. Furthermore, the reaction time for treatment with organic silanes other than epoxy group-containing organic silanes was one hour, and the reaction proceeded sufficiently, and the performance as a chromatography carrier was also satisfactory. Example 8 Shape: Crushed Particle size: 10±2μm Specific surface area: 400m 2 /g Average pore size: 100Å 20g of silica gel carrier with the above physical properties was mixed with 2.0g of sodium lauryl sulfate, 14.5g of γ-glycidyloxypropyltrimethoxysilane, and distilled. After reacting with 275 ml of water under the same operating conditions as in Example 1, the results of compositional analysis of the obtained carrier in a dry state are shown below. [Table] The obtained silane-treated carrier showed good performance similar to that of porous glass and Example 1. The physical properties of the porous carrier after silane treatment (dextran calibration curve, composition analysis, protein recovery rate,
From the results of the surface coverage (based on the methylred method),
The method of the present invention has extremely low sample adsorption as a chromatography separation carrier, and furthermore, it does not damage the fine pore diameter inherent in the porous carrier, and the carrier surface is treated with almost monomolecules using the minimum necessary organic silane treatment agent. It can be seen that the coating treatment is applied in a form similar to that of a layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はデキストラン溶出実技による較正曲線
であり、未処理多孔性ガラス1及びシラン処理多
孔性ガラス2を示す。第2図は、本発明の多孔性
担体による各種蛋白質の溶出チヤートである。第
3図は乾燥ゲルのエポキシ基を開環変性し、エポ
キシ基量の変化を示すグラフである。
FIG. 1 is a calibration curve from a dextran elution experiment, showing untreated porous glass 1 and silane-treated porous glass 2. FIG. 2 is a chart of elution of various proteins using the porous carrier of the present invention. FIG. 3 is a graph showing the change in the amount of epoxy groups when the epoxy groups of the dried gel are subjected to ring-opening modification.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性担体のシラノール基と有機シラン化合
物を界面活性剤の存在下で反応させることを特徴
とする、多孔性担体の製造方法。
1. A method for producing a porous carrier, which comprises reacting a silanol group of the porous carrier with an organic silane compound in the presence of a surfactant.
JP58070602A 1983-04-21 1983-04-21 Production of porous carrier Granted JPS59195153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070602A JPS59195153A (en) 1983-04-21 1983-04-21 Production of porous carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070602A JPS59195153A (en) 1983-04-21 1983-04-21 Production of porous carrier

Publications (2)

Publication Number Publication Date
JPS59195153A JPS59195153A (en) 1984-11-06
JPH0410587B2 true JPH0410587B2 (en) 1992-02-25

Family

ID=13436277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070602A Granted JPS59195153A (en) 1983-04-21 1983-04-21 Production of porous carrier

Country Status (1)

Country Link
JP (1) JPS59195153A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204844A (en) * 1986-03-06 1987-09-09 Ise Kagaku Kogyo Kk Manufacturing method of chromatographic carrier and chromatographic packing material
JPH087203B2 (en) * 1990-06-15 1996-01-29 株式会社日立製作所 Catecholamine analysis method and analyzer
KR20030072652A (en) * 2002-03-06 2003-09-19 이호재 Bonding method to induce functional group for ion exchange
JP4678864B2 (en) * 2005-04-04 2011-04-27 トヨタ紡織株式会社 GAS ADSORBENT, ITS MANUFACTURING METHOD, AND GAS ADSORPTION FILTER
JP5217437B2 (en) * 2005-09-27 2013-06-19 住友ベークライト株式会社 Medical particles and method for producing the same

Also Published As

Publication number Publication date
JPS59195153A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
EP0873189B1 (en) Adsorption medium and method of preparing same
US4517241A (en) Chromatographic support material
US4017528A (en) Preparation of organically modified silicon dioxides
US4847159A (en) Substrates coated with organo-silanes that are sterically-protected
US3983299A (en) Bonded carbohydrate stationary phases for chromatography
EP0269447B1 (en) Structures surface modified with bidentate silanes
CA1320718C (en) Chromatographic material
Alpert Cation-exchange high-performance liquid chromatography of proteins on poly (aspartic acid)—silica
US4835058A (en) Packing material and process for its production
CA1316523C (en) Liquid chromatography dual zone packing materials and method for making and using same
JP3653798B2 (en) New modified silica gel
US20020099104A1 (en) Anion exchanger, process for producing same, and its use
US4379931A (en) Metal extraction from solution and novel compounds used therefor
FR2598634A1 (en) PROCESS FOR PRODUCING REVERSE-PHASE MATERIAL AND MATERIAL OBTAINED
US20080272043A1 (en) Reversed endcapping and bonding of chromatographic stationary phases using hydrosilanes
JPH0410587B2 (en)
Ota et al. Rapid purification of immunoglobulin G using a protein A-immobilized monolithic spin column with hydrophilic polymers
CN111013557A (en) Hydrophobic chromatography medium and preparation method and application thereof
EP0161058B1 (en) Dual surface materials
US5948531A (en) Propylene-bridged bidentate silanes
WO1997020216A1 (en) Organically modified inorganic oxides using silane-modified inorganic oxides
US20090078633A1 (en) Chromatographic stationary phases
JPS6233550B2 (en)
JP3219296B2 (en) Column packing and method for producing the same
CA1293083C (en) Packing material and process for its production