JPH04106925A - Manufacture of silicon wafer - Google Patents
Manufacture of silicon waferInfo
- Publication number
- JPH04106925A JPH04106925A JP2224714A JP22471490A JPH04106925A JP H04106925 A JPH04106925 A JP H04106925A JP 2224714 A JP2224714 A JP 2224714A JP 22471490 A JP22471490 A JP 22471490A JP H04106925 A JPH04106925 A JP H04106925A
- Authority
- JP
- Japan
- Prior art keywords
- silicon wafer
- oxygen concentration
- pulled
- pulled silicon
- interstitial oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 157
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 157
- 239000010703 silicon Substances 0.000 title claims abstract description 157
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 59
- 239000001301 oxygen Substances 0.000 claims abstract description 59
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 58
- 238000007667 floating Methods 0.000 claims abstract description 37
- 235000012431 wafers Nutrition 0.000 claims description 153
- 230000005540 biological transmission Effects 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 17
- 238000007517 polishing process Methods 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 5
- 238000005259 measurement Methods 0.000 abstract description 17
- 230000003287 optical effect Effects 0.000 abstract description 7
- 238000007689 inspection Methods 0.000 abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 230000031700 light absorption Effects 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000010287 polarization Effects 0.000 abstract 1
- 238000005247 gettering Methods 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000000149 argon plasma sintering Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の目的
[産業上の利用分野]
本発明は、シリコンウェーハの製造方法に関し、特に、
機械研磨工程で表裏両面が機械研磨された未鏡面研磨の
引上シリコンウェーハに対し平行偏光をブリュースター
角で入射せしめて測定した光透過特性と表裏両面が鏡面
研磨された対間としての浮遊帯域シリコンウェーハに対
し平行偏光をブリュースター角で入射せしめて測定した
光透過特性とから引上シリコンウェーハの格子間酸素濃
度を算出し基準値と比較することにより格子間酸素濃度
が不良の引上シリコンウェーハを排除してなるシリコン
ウェーハの製造方法に関するものである。Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing silicon wafers, and in particular,
Light transmission characteristics measured by incident parallel polarized light at the Brewster angle on an unmirrored pulled silicon wafer whose front and back surfaces have been mechanically polished in a mechanical polishing process, and the floating band between pairs whose front and back surfaces have been mirror-polished. The interstitial oxygen concentration of the pulled silicon wafer was calculated from the light transmission characteristics measured by making parallel polarized light incident on the silicon wafer at Brewster's angle, and the interstitial oxygen concentration of the pulled silicon wafer was compared with the reference value. The present invention relates to a method of manufacturing silicon wafers that excludes wafers.
[従来の技術]
従来、この種のシリコンウェーハの製造方法としては、
表裏両面が機械研磨され未だ化学研磨されていない製造
ラインから抜き取られた引上シリコンウェーハと、表裏
両面が鏡面研磨されかつ機械研磨によって引上シリコン
ウェーハの表裏両面と同一の光学的挙動を確保するよう
加工された対照としての浮遊帯域シリコンウェーハとに
対して赤外光を同時に入射せしめることにより、引上シ
リコンウェーハの光透過特性および浮遊帯域シリコンウ
ェーハの光透過特性を測定して引上シリコンウェーハの
格子間酸素濃度を求め、その求められた格子間酸素濃度
に応じて不良の引上シリコンウェーハか否かを判断する
ものが、提案されていた。[Conventional technology] Conventionally, the method for manufacturing this type of silicon wafer is as follows:
A pulled silicon wafer extracted from a production line whose front and back surfaces are mechanically polished and has not been chemically polished yet, and a pulled silicon wafer whose front and back surfaces are mirror polished and mechanically polished to ensure the same optical behavior as both the front and back sides of the pulled silicon wafer. The light transmission characteristics of the pulled silicon wafer and the floating zone silicon wafer were measured by simultaneously making infrared light incident on the floating zone silicon wafer as a control processed in the same manner. A method has been proposed in which the interstitial oxygen concentration of a pulled silicon wafer is determined and whether the pulled silicon wafer is defective or not is determined based on the determined interstitial oxygen concentration.
[解決すべき問題点コ
しかしながら、従来のシリコンウェーハの製造方法では
、引上シリコンウェーハと浮遊帯域シリコンウェーハと
が光学的挙動を同一とされていたので、(1)測定作業
が煩雑で時間を要する欠点があり、ひいては(ii)製
造ライン中で引上シリコンウェーハを全数検査すること
が事実上不可能となる欠点があって、(iiil不良の
引上シリコンウェーハに不必要な加工処理を施してしま
う欠点があり、結果的に(1v)製造ラインの生産性を
改善できない欠点があった。[Problems to be solved] However, in the conventional silicon wafer manufacturing method, the optical behavior of the pulled silicon wafer and the floating zone silicon wafer is the same, so (1) the measurement work is complicated and time-consuming; Furthermore, (ii) it is virtually impossible to inspect all pulled silicon wafers in the production line, and (iii) unnecessary processing is performed on defective pulled silicon wafers. As a result, (1v) there was a drawback that the productivity of the manufacturing line could not be improved.
そこで、本発明は、これらの欠点を除去する目的で、表
裏両面が鏡面研磨された浮遊帯域シリコンウェーハをそ
のまま対照として使用可能とすることにより測定作業を
簡潔としかつ引上シリコンウェーハの格子間酸素濃度を
製造ライン中の所望の箇所で全数検査可能としてなるシ
リコンウェーハの製造方法を提供せんとするものである
。Therefore, in order to eliminate these drawbacks, the present invention simplifies the measurement work by making it possible to use a floating zone silicon wafer whose front and back surfaces are mirror-polished as a control, and to improve the interstitial oxygen concentration of the pulled silicon wafer. It is an object of the present invention to provide a method for manufacturing silicon wafers that enables 100% inspection of concentration at a desired location in a manufacturing line.
(2)発明の構成
[問題点の解決手段]
本発明により提供される問題点の解決手段は、「引上シ
リコン単結晶から切り出されたウェーハに対し機械研磨
工程を含む一連の処理工程を施すことにより引上シリコ
ンウェーハを作成してなるシリコンウェーハの製造方法
において、
(a1機械研磨工程で表裏両面が機械研磨された未鏡面
研磨の引上シリコン
ウェーハに対し平行偏光をブリュー
スター角で入射せしめることにより
引上シリコンウェーハの光透過特性
を測定するための第1の工程と、
fb1表裏両面が鏡面研磨された対照としての浮遊帯域
シリコンウェーハに
対し平行偏光をブリュースター角で
入射せしめることにより浮遊帯域シ
リコンウェーへの光透過特性を測定
するための第2の工程と、
(c)第1の工程によって測定された引上シリコンウェ
ーハの光透過特性と
第2の工程によって測定された浮遊
帯域シリコンウェーハの光透過特性
とから引上シリコンウェーハの格子
間酸素濃度を算出するための第3の
工程と、
(d)第3の工程によって算出された引上シリコンウェ
ーハの格子間酸素濃
度を基準値と比較するための第4の
工程と、
(el第4の工程によって比較された結果に応じ格子間
酸素濃度が不良の引
上シリコンウェーハを排除するため
の第5の工程と
を備えてなることを特徴とするシリコンウェーハの製造
方法」
である。(2) Structure of the Invention [Means for Solving Problems] The means for solving problems provided by the present invention is to perform a series of processing steps including a mechanical polishing step on a wafer cut from a pulled silicon single crystal. In a method for manufacturing a silicon wafer, in which a pulled silicon wafer is produced by (a1) mechanically polishing process, parallel polarized light is made incident at Brewster's angle on a pulled silicon wafer whose front and back sides have been mechanically polished and which has not been mirror-polished. The first step is to measure the light transmission properties of the pulled silicon wafer by making parallel polarized light incident at the Brewster angle on a control floating band silicon wafer whose front and back sides have been mirror-polished. (c) a second step for measuring the light transmission properties of the pulled silicon wafer measured by the first step and the floating band silicon wafer measured by the second step; a third step for calculating the interstitial oxygen concentration of the pulled silicon wafer from the light transmission characteristics of the wafer; (d) setting the interstitial oxygen concentration of the pulled silicon wafer calculated in the third step to a reference value; and a fifth step for excluding pulled silicon wafers with poor interstitial oxygen concentration according to the results of the comparison in the fourth step. A method for manufacturing a silicon wafer characterized by the following.
[作用3
本発明にかかるシリコンウェーハの製造方法は、上述の
[問題点の解決手段]の欄に開示したごとく、機械研磨
工程で表裏両面が機械研磨された未鏡面研磨の引上シリ
コンウェーハの光透過特性と表裏両面が鏡面研磨された
浮遊帯域シリコンウェーハの光透過特性とから引上シリ
コンウェーハの格子間酸素濃度を算出し基準値と比較す
ることにより格子間酸素濃度が不良の引上シリコンウェ
ーハを排除しているので、
fi)表裏両面が鏡面研磨された浮遊帯域シリコンウェ
ーハを加工することなく鏡面のままで使用可能とする作
用
をなし、ひいては
fiil引上シリコンウェーハの格子間酸素濃度の測定
作業を簡潔とする作用
をなし、これにより
fiiil引上シリコンウェーハの格子間酸素1度を製
造ライン中の所望の箇所で全数検査によって測定可能と
する作用
をなし、結果的に
(1v)製造ラインの生産性を改善する作用をなす。[Operation 3] As disclosed in the above section [Means for solving problems], the method for manufacturing a silicon wafer according to the present invention is to produce a pulled silicon wafer whose front and back surfaces have been mechanically polished in a mechanical polishing process, and which is not mirror-polished. The interstitial oxygen concentration of the pulled silicon wafer is calculated from the light transmission characteristics and the light transmission characteristics of the floating zone silicon wafer whose front and back surfaces are mirror-polished, and compared with the reference value to identify pulled silicon with poor interstitial oxygen concentration. Since the wafer is excluded, fi) the floating zone silicon wafer with mirror polished front and back surfaces can be used without processing, and the interstitial oxygen concentration of the fiil-pulled silicon wafer can be reduced. This has the effect of simplifying the measurement work, thereby making it possible to measure the interstitial oxygen 1 degree of FIII pulled silicon wafers by 100% inspection at a desired location in the production line, resulting in (1v) production. It works to improve the productivity of the line.
[実施例コ
次に、本発明にかかるシリコンウェーハの製造方法につ
いて、その好ましい実施例を挙げ、添付図面を参照しつ
つ、具体的に説明する。[Example 2] Next, a method for manufacturing a silicon wafer according to the present invention will be specifically explained by giving preferred examples thereof and referring to the attached drawings.
工匡江2皿五韮」工
第1図は、本発明にかかるシリコンウェーハの製造方法
の第1の実施例を実行する測定装置を示すための簡略構
成図である。FIG. 1 is a simplified configuration diagram showing a measuring device for carrying out the first embodiment of the silicon wafer manufacturing method according to the present invention.
第2図は、本発明にかかるシリコンウェーハの製造方法
の第1の実施例を実行する搬送装置を示すための簡略構
成図である。FIG. 2 is a simplified configuration diagram showing a transfer device for carrying out the first embodiment of the silicon wafer manufacturing method according to the present invention.
第3図および第4図は、本発明にかかるシリコンウェー
ハの製造方法の一実施例を説明するための説明図である
。FIGS. 3 and 4 are explanatory diagrams for explaining one embodiment of the silicon wafer manufacturing method according to the present invention.
第1の 例の ・
まず、本発明にかかるシリコンウェーハの製造方法の第
1の実施例について、その構成および作用を詳細に説明
する。First Example - First, the structure and operation of the first example of the silicon wafer manufacturing method according to the present invention will be described in detail.
本発明にかかるシリコンウェーハの製造方法は、製造ラ
イン中の機械研磨工程に付随して実行される洗浄工程の
のち、ゲッタリング工程に先行して格子間酸素濃度の測
定工程が実行される。In the silicon wafer manufacturing method according to the present invention, after a cleaning step that is performed in conjunction with a mechanical polishing step in a manufacturing line, a step of measuring an interstitial oxygen concentration is performed prior to a gettering step.
すなわち、本発明にかかるシリコンウェーハの製造方法
における測定工程は、製造ライン中の機械研磨工程によ
って表裏両面が機械研磨され洗浄工程で洗浄された引上
シワコンウェーハ(゛機械研磨引上シリコンウェーハ”
という)に対し平行偏光をブリュースター角φ1で入射
せしめることにより引上シリ」ンウェーハ(すなわち機
械研磨引上シリコンウェーハ)の光透過特性(ここでは
透過光強度I ass;以下同様)を測定するための第
1の工程と、表裏両面が鏡面研磨された対照としての浮
遊帯域シリコンウェーハ(“鏡面研磨浮遊帯域シリコン
ウェーハ”という)に対し平行偏光をブリュースター角
ψ、で入射せしめることにより浮遊帯域シリコンウェー
ハ(すなわち鏡面研磨浮遊帯域シリコンウェーハ)の光
透過特性(ここでは透過光強度工。、以下同様)を測定
するための第2の工程と、第1の工程によって測定され
た引上シリコンウェーハ(すなわち機械研磨引上シリコ
ンウェーハ)の光透過特性(ここでは透過光強度工。□
)と第2の工程によって測定された浮遊帯域シリコンウ
ェーハ(すなわち鏡面研磨浮遊帯域シリコンウェーハ)
の光透過特性(ここでは透過光強度工。)とから引上シ
リコンウェーハの格子間酸素濃度[0+c]を算出する
ための第3の工程と、第3の工程によって算出された引
上シリコンウェーハの格子間酸素濃度[0,、]を基準
値と比較するための第4の工程と、第4の工程によって
比較された結果に応じて格子間酸素濃度[0,clが不
良の (たとえば基準値を超えた)引上シリコンウェー
ハを排除するための第5の工程とを備えている。That is, the measurement step in the method of manufacturing a silicon wafer according to the present invention is performed on a pulled wrinkled wafer (a "mechanically polished pulled silicon wafer") whose front and back surfaces are mechanically polished in a mechanical polishing process in the manufacturing line and cleaned in a cleaning process.
In order to measure the light transmission characteristics (here, the transmitted light intensity Iass; hereinafter the same) of a pulled silicon wafer (i.e., a mechanically polished pulled silicon wafer) by making parallel polarized light incident at a Brewster angle φ1 The floating band silicon wafer (hereinafter referred to as "mirror polished floating band silicon wafer") is made of parallel polarized light at the Brewster angle ψ. A second step for measuring the light transmission properties (here, transmitted light intensity) of the wafer (i.e. mirror-polished floating zone silicon wafer) and a pulled silicon wafer ( In other words, the light transmission characteristics (in this case, transmitted light intensity) of mechanically polished pulled silicon wafers.□
) and the floating zone silicon wafer measured by the second step (i.e. mirror polished floating zone silicon wafer)
A third step for calculating the interstitial oxygen concentration [0+c] of the pulled silicon wafer from the light transmission characteristics (here, transmitted light intensity), and the pulled silicon wafer calculated by the third step. The fourth step is to compare the interstitial oxygen concentration [0, , ] with the reference value, and the interstitial oxygen concentration [0, and a fifth step for excluding pulled silicon wafers (exceeding the value).
第1.第2の工程で、それぞれ、引上シリコンウェーハ
(すなわち機械研磨引上シリコンウエーハ)および浮遊
帯域シリコンウェーハ(すなわち鏡面研磨浮遊帯域シリ
コンウェーハ)に対してそれぞれブリュースター角φ6
で平行偏光を入射せしめる根拠は、引上シリコンウェー
ハ(すなわち機械研磨引上シリコンウェーハ)および浮
遊帯域シリコンウェーハ(すなわち鏡面研磨浮遊帯域シ
リコンウェーハ)への平行偏光の入射および出射に際し
て反射が生じることを実質的に阻止し、引上シリコンウ
ェーハ(すなわち機械研磨引上シリコンウェーハ)およ
び浮遊帯域シリコンウェーハ(すなわち鏡面研磨浮遊帯
域シリコンウェーハ)の内部で多重反射が生じることを
防止することにある。ここで、平行偏光とは、入射対象
(ここでは機械研磨引上シリコンウェーハならびに鏡面
研磨浮遊帯域シリコンウェーハ)への入射面に平行な成
分のみを有する偏光をいう。また、引上シリコンウェー
ハとは、引上法(いわゆる゛°チョクラルスキー法″)
によって製造されたシリコン単結晶(°“引上シリコン
単結晶°°という)から切り出されたウェーハに対し機
械研磨工程を含む一連の処理工程を施すことにより加工
されたシリコンウェーハをいい、通常はシリコン単結晶
の切断工程によって発生した表裏両面の破砕層を除去す
るための化学研磨工程に先立ち平坦度を確保するために
表裏両面が機械研磨されている。更に、浮遊帯域シリコ
ンウェーハとは、浮遊帯域溶融法によって製造されたシ
リコン単結晶から作成されたシリコンウェーハをいう。1st. In the second step, the Brewster angle φ6 is applied to the pulled silicon wafer (i.e. mechanically polished pulled silicon wafer) and the floating zone silicon wafer (i.e. mirror polished floating zone silicon wafer), respectively.
The basis for making parallel polarized light incident is that reflection occurs when parallel polarized light enters and exits pulled silicon wafers (i.e. mechanically polished pulled silicon wafers) and floating band silicon wafers (i.e. mirror polished floating band silicon wafers). The objective is to substantially prevent multiple reflections from occurring within pulled silicon wafers (ie, mechanically polished pulled silicon wafers) and floating zone silicon wafers (ie, mirror polished floating zone silicon wafers). Here, parallel polarized light refers to polarized light that has only a component parallel to the plane of incidence on the incident objects (here, mechanically polished pulled silicon wafers and mirror polished floating zone silicon wafers). In addition, pulled silicon wafers are produced using the pulling method (so-called “Czochralski method”).
A silicon wafer that is processed by performing a series of processing steps including mechanical polishing on a wafer cut from a silicon single crystal (referred to as pulled silicon single crystal) manufactured by Both the front and back sides are mechanically polished to ensure flatness prior to the chemical polishing process to remove the fracture layers on both sides caused by the single crystal cutting process.Furthermore, floating zone silicon wafers are A silicon wafer made from silicon single crystal produced by a melting method.
第2の工程で、浮遊帯域シリコンウェーハが対照として
採用されている根拠は、その格子間酸素濃度[○IF]
が引上シリコンウェーハの格子間酸素濃度[0,e]に
比べて極めて小さいことにある。また、浮遊帯域シリコ
ンウェーハの表裏両面が鏡面研磨されている根拠は、入
射光(ここでは平行偏光)が表裏両面で散乱されること
を防止することにある。In the second step, the floating zone silicon wafer is used as a control because its interstitial oxygen concentration [○IF]
is extremely small compared to the interstitial oxygen concentration [0,e] of the pulled silicon wafer. Further, the reason why both the front and back surfaces of the floating zone silicon wafer are mirror-polished is to prevent incident light (here, parallel polarized light) from being scattered on both the front and back surfaces.
第3の工程で、第1の工程によって測定された引上シリ
コンウェーハ(すなわち機械研磨引上シリコンウェーハ
)の光透過特性(ここでは透過光強度工◇、)と第2の
工程によって測定された浮遊帯域シリコンウェーハ(す
なわち鏡面研磨浮遊帯域シリコンウェーハ)の光透過特
性(ここでは透過光強度I。)とから引上シソコンウェ
ーハの格子間酸素濃度[0,c]を算出する要領は、以
下のとおりである。In the third step, the light transmission characteristics of the pulled silicon wafer (i.e., mechanically polished pulled silicon wafer) measured in the first step (here, the transmitted light intensity measurement ◇) and the light transmission characteristics measured in the second step are determined. The procedure for calculating the interstitial oxygen concentration [0, c] of a pulled silicon wafer from the light transmission characteristics (here, transmitted light intensity I) of a floating zone silicon wafer (that is, a mirror-polished floating zone silicon wafer) is as follows. It is as follows.
まず、引上シリコンウェーハの格子間酸素濃度[0,。First, the interstitial oxygen concentration of the pulled silicon wafer is [0,
1は、引上シリコンウェーハの格子間酸素の振動に起因
した光吸収係数(°°引上シリコンウェーハの光吸収係
数”ともいう)α、と変換係数k(現在3.03X10
”個/cm”と考えられている;以下同様)とを用いて
[0,c]=にα、
のごとく表現できる。ここで、引上シリコンウェーハの
光吸収係数α、は、格子間酸素の振動に起因した波数1
106cm−’における肉厚dの引上シリコンウェーハ
の吸光度Aとブリュースター角φ、で入射された平行偏
光の光路長ff= 1.042dとを用いて、ランベル
ト−ベールの法則から、のどと(表現できる。1 is the light absorption coefficient (also referred to as "light absorption coefficient of pulled silicon wafer") α caused by the vibration of interstitial oxygen in the pulled silicon wafer, and the conversion coefficient k (currently 3.03X10
It can be expressed as [0,c]=α, using α, which is considered to be “pieces/cm” (the same applies hereafter). Here, the optical absorption coefficient α of the pulled silicon wafer is the wave number 1 due to the vibration of interstitial oxygen.
Using the absorbance A of a pulled silicon wafer with a wall thickness d at 106 cm-' and the optical path length ff of parallel polarized light incident at the Brewster angle φ = 1.042 d, from the Beer-Lambert law, the throat ( I can express it.
引上シリコンウェーハの吸光度Aは、表裏両面が鏡面研
磨された引上シリコンウェーハ(”8面研磨引上シリコ
ンウェーハーともいう)の光透過特性(ここでは透過光
強度I)と浮遊帯域シリコンウェーハ(すなわち鏡面研
磨浮遊帯域シリコンウェーハ)の光透過特性(ここでは
透過光強度工。)とを用いて
のごとく表現できるので、機械研磨引上シワコンウェー
ハの格子間酸素による光吸収に伴なう光透過特性(ここ
では透過光強度工。、3)と鏡面研磨浮遊帯域シリコン
ウェーハの光透過特性(ここでは透過光強度工。)と機
械研磨引上シリコンウェーハの表面における光散乱特性
(ここでは散乱光強度I 、、)と機械研磨引上シリコ
ンウェーハの裏面における光散乱特性(ここでは散乱光
強度工、□)とを用いて
のごと(表現できる。The absorbance A of a pulled silicon wafer is determined by the light transmission characteristics (here, transmitted light intensity I) of a pulled silicon wafer whose front and back sides are mirror-polished (also referred to as an 8-sided polished pulled silicon wafer) and the floating zone silicon wafer (here, transmitted light intensity I). In other words, the light transmission characteristics (in this case, transmitted light intensity) of a mirror-polished floating band silicon wafer) can be expressed as follows: The transmission characteristics (here, the transmitted light intensity), the light transmission characteristics (here, the transmitted light intensity) of a mirror-polished floating zone silicon wafer, and the light scattering characteristics (here, the scattering) on the surface of a mechanically polished pulled-up silicon wafer. It can be expressed as follows using the light intensity I,, ) and the light scattering property on the back side of the mechanically polished pulled silicon wafer (here, the scattered light intensity I, ).
したがって、引上シリコンウェーハの格子間酸素1度[
0,1は、
と求められる。Therefore, the interstitial oxygen of the pulled silicon wafer is 1 degree [
0 and 1 are calculated as follows.
研磨引上シリコンウェーハの光透過特性(ここでは透過
光強度■。□)と機械研磨引上シリコンウェーハの表面
における光散乱特性(ここでは散乱光強度工1.)と機
械研磨引上シリコンウェーハの裏面における光散乱特性
(ここでは散乱光強度I −J との和と鏡面研磨浮遊
帯域シリコンウェーハの光透過特性(ここでは透過光強
度■。)との比の逆数の自然対数である吸光度特性から
算出すればよく、具体的には格子間酸素濃度[0,c]
がOでない場合の吸光度特性(実線で示す)の波数11
06cm−’における値(すなわちピーク値)と格子間
酸素濃度[0□c1がOである場合の吸光度特性(破線
で示す)の波数1106cm−’における値とから第2
図に示したごとく求めればよい。Light transmission characteristics of polished pulled silicon wafers (here, transmitted light intensity ■. □), light scattering characteristics on the surface of mechanically polished pulled silicon wafers (here, scattered light intensity 1.), and mechanically polished pulled silicon wafers. From the absorbance property, which is the natural logarithm of the reciprocal of the ratio of the light scattering property on the back surface (here, the sum of the scattered light intensity I - J) and the light transmission property of the mirror-polished floating zone silicon wafer (here, the transmitted light intensity ■). It is sufficient to calculate, specifically, the interstitial oxygen concentration [0, c]
The wave number 11 of the absorbance characteristic (shown by the solid line) when is not O
From the value at 06 cm-' (that is, the peak value) and the value at wave number 1106 cm-' of the absorbance characteristic (indicated by the broken line) when the interstitial oxygen concentration [0□c1 is O], the second
It can be calculated as shown in the figure.
第1の の ′−1
また、第1図および第2図を参照しつつ、本発明にかか
るシリコンウェーハの製造方法の第1の実施例を実行す
るための測定装置について、その構成および作用を詳細
に説明する。Part 1'-1 Also, with reference to FIGS. 1 and 2, the configuration and operation of the measuring device for carrying out the first embodiment of the silicon wafer manufacturing method according to the present invention will be explained. Explain in detail.
厘は、本発明にかかるシリコンウェーハの製造方法を実
行するための測定装置(単に°゛測定装置”ともいう)
であって、グローバー灯などの光源11と、光源11か
ら与えられた光を半透明fi12Aによって2つに分け
て可動鏡12Bおよび固定鏡12Gによって反射せしめ
たのち重ね合わせることにより干渉光を形成するマイケ
ルソン干渉計12と、マイケルソン干渉計12から与え
られた光(すなわち干渉光)を偏光せしめて得た平行偏
光を後述の搬送装置践によって供給された試料(ここで
は機械研磨引上シリコンウェーハ)Mおよび対照 (こ
こでは鏡面研磨浮遊帯域シリコンウェーハ)Rに与える
ための偏光子13と、試料Mの光透過特性(ここでは平
行偏光の透過光強度I。mslおよび対照Rの光透過特
性にこては平行偏光の透過光強度IO+を検出するため
の検出器14と、検出器14に接続されており試料Mの
光透過特性(すなわち透過光強度I。mslおよび対照
Rの光透過特性(すなわち透過光強度■。)から吸光度
特性を算出したのち試$−4Mの格子間酸素濃度を算出
するための計算装置15と、計IE装置15によって算
出された格子間酸素濃度を基準値(たとえば上限基準値
および下限基準値)と比較するための比較袋216とを
備えている。試料Mおよび対照Rと検出器14との間に
は、必要に応じ、反射鏡17A、 17Bが挿入されて
いる。ちなみに、マイケルソン干渉計12と偏光子13
との間には、必要に応じ、反射鏡(図示せず)が挿入さ
れていてもよい。Rin is a measuring device (also simply referred to as a measuring device) for carrying out the silicon wafer manufacturing method according to the present invention.
A light source 11 such as a Grover lamp and light given from the light source 11 are divided into two by a semi-transparent fi 12A, reflected by a movable mirror 12B and a fixed mirror 12G, and then superimposed to form interference light. The Michelson interferometer 12 polarizes the light (i.e., interference light) given from the Michelson interferometer 12 and converts the parallel polarized light into a sample (in this case, a mechanically polished pulled silicon wafer) supplied by a transport device described later. ) M and the control (here a mirror-polished floating zone silicon wafer) R and the light transmission properties of the sample M (here the transmitted light intensity of parallel polarized light I.msl and the light transmission properties of the control R). The trowel is connected to a detector 14 for detecting the transmitted light intensity IO+ of parallel polarized light, and is connected to the detector 14 to detect the light transmission characteristics of the sample M (i.e., the transmitted light intensity I.msl and the light transmission characteristics of the reference R ( In other words, the absorbance characteristic is calculated from the transmitted light intensity (2), and then the interstitial oxygen concentration calculated by the calculation device 15 for calculating the interstitial oxygen concentration of the test $-4M and the IE device 15 is set as a reference value (for example, A comparison bag 216 is provided for comparison with the upper limit reference value and lower limit reference value).Reflecting mirrors 17A and 17B are inserted between the sample M and the reference R and the detector 14 as necessary. By the way, Michelson interferometer 12 and polarizer 13
A reflecting mirror (not shown) may be inserted between the two, if necessary.
搬送装置輩は、試料Mおよび対照Rをそれぞれ搬送容器
T I l + T l 2から1つずつ押し出すため
の押出部材21と、押出部材21によって押し出された
試料Mおよび対照Rを1つずつ一端部から他端部へ搬送
するための搬送ベルト22と、搬送ベルト22の他端部
において試料Mおよび対照Rを1つずつ把持して測定領
域まで搬送し測定領域で回転装置23Aにより試料Mお
よび対照Rを回転せしめて平行偏光に対しブリュースタ
ー角φ6に保持し格子間酸素濃度の測定が終了したのち
再び回転装置23Aにより試料Mおよび対照Rを当初の
状態まで回転せしめて測定領域から除去するための把持
部材23と、把持部材23によって測定領域から除去さ
れ解放された試料Mおよび対照Rを一端部で受は取って
他端部に配置された搬送容器T 11.Ta2゜T、3
.T、。まで搬送するための他の搬送ベルト24とを備
えている。対照Rは、搬送容器TI2に対して収容され
ているが、搬送容器T、に試料Mとともに収容されてい
てもよいにのときには搬送容器TI2が除去される)。The transport device includes a pushing member 21 for pushing out the sample M and the control R one by one from the transport container T I l + T l 2, and a pushing member 21 for pushing out the sample M and the control R one by one from the transport container T I l + T l 2, and one end for each of the sample M and the control R pushed out by the pushing member 21. A conveyor belt 22 is used to convey the sample M and the reference R one by one at the other end of the conveyor belt 22, and the sample M and the control R are held one by one and conveyed to the measurement area. After completing the measurement of the interstitial oxygen concentration by rotating the reference R and holding it at the Brewster angle φ6 with respect to the parallel polarized light, the sample M and the reference R are again rotated to their original state using the rotating device 23A and removed from the measurement area. 11. A gripping member 23 for holding the sample M and the control R removed from the measurement area by the gripping member 23 and a transport container T disposed at the other end. Ta2゜T, 3
.. T. It is also provided with another conveyor belt 24 for conveying up to. The control R is accommodated in the transport container TI2, but the transport container TI2 is removed when the control R may be stored in the transport container T together with the sample M).
搬送容器Tx+r Tza+Tt3. Ta4は、それ
ぞれ、たとえば格子間酸素濃度が上限の基準値を超えた
不良の試料Mを収容するための搬送容器と、格子間酸素
濃度が上限の基準値と下限の基準値との間にある良好な
試料Mを収容するための搬送容器と、格子間酸素濃度が
下限の基準値に達しない不良の試料Mを収容するための
搬送容器と、対照Rを収容するための搬送容器として準
備されており、測定装雪匹の比較装置16による比較の
結果に応じて試料Rを受は取り、また対照Rを受は取る
ために搬送ベルト24の他端部に移動される。Transport container Tx+r Tza+Tt3. Ta4 is located between a transport container for accommodating a defective sample M whose interstitial oxygen concentration exceeds the upper limit reference value, and an interstitial oxygen concentration between the upper limit reference value and the lower limit reference value, respectively. A transport container for accommodating a good sample M, a transport container for accommodating a defective sample M whose interstitial oxygen concentration does not reach the lower limit standard value, and a transport container for accommodating a control R are prepared. According to the result of the comparison by the comparison device 16 of the measured snowfish, the specimen R is transferred to the other end of the conveyor belt 24 in order to receive the sample R and to receive the control R.
しかして、測定装置厘では、光源11から与えられた光
からマイケルソン干渉計12によって作成された干渉光
が、偏光子13によって平行偏光とされたのち、搬送装
置赳によって搬送容器T、、、T、□から1つずつ押し
出されたのち測定領域まで搬送され保持された試料Mお
よび対照Rに対しブリュースター角φ6で入射される。In the measuring device, the interference light generated by the Michelson interferometer 12 from the light given from the light source 11 is converted into parallel polarized light by the polarizer 13, and then is transferred to the transport container T by the transport device. After being pushed out one by one from T and □, they are incident on the sample M and control R, which are transported to the measurement area and held, at a Brewster angle φ6.
試料Mおよび対照Rでは、その光学特性に応じて吸収な
らびに散乱が行なわれるので、検出器14による検出結
果から計算装置15によって算出された吸光度特性は、
第3図に示したごとき形状となる。Since the sample M and the control R absorb and scatter according to their optical properties, the absorbance properties calculated by the calculation device 15 from the detection results by the detector 14 are as follows.
The shape is as shown in FIG.
計算装置15は、第3図もしくはこれに相当する料(す
なわち機械研磨引上シリコンウェーハ)Mの光吸収係数
αEを
1.042d
のごとく算出し、更に試料 (すなわち機械研磨引上シ
リコンウェーハ)Mの格子間酸素濃度[0,c]を
のごとく算出する。The calculation device 15 calculates the optical absorption coefficient αE of the sample (i.e., mechanically polished pulled silicon wafer) M as shown in FIG. The interstitial oxygen concentration [0, c] is calculated as follows.
そののち、比較装置16が、計算装置15によって算出
された試料(すなわち機械研磨引上シリコンウェーハ)
Mの格子間酸素濃度[0,,1を基準値(たとえば上限
基準値および下限基準値)と比較する。Thereafter, the comparison device 16 compares the sample (i.e. mechanically polished pulled silicon wafer) calculated by the calculation device 15 with
The interstitial oxygen concentration [0,,1 of M is compared with a reference value (for example, an upper reference value and a lower reference value).
比較装置16の比較結果は、搬送装置翻に与えられてお
り、試料Mおよび対照Rを搬送容器T21゜T2□+
Tzs、 T24に収容するために利用される。The comparison result of the comparison device 16 is given to the transfer device T21゜T2□+ for the sample M and the control R.
Tzs, T24.
ユ東ス二叉通±1
更に、本発明にかかるシリコンウェーハの製造方法の第
2の実施例゛について、その構成および作用を詳細に説
明する。Further, the structure and operation of the second embodiment of the silicon wafer manufacturing method according to the present invention will be explained in detail.
第2の実施例は、ブックリング工程に先行する格子間酸
素濃度の測定工程に加え、ゲッタリング工程に後続して
格子間酸素濃度の測定工程を実行してなることを除き、
第1の実施例と同一の構成を有している。The second embodiment has the following exceptions: In addition to the step of measuring the interstitial oxygen concentration preceding the bookling step, the step of measuring the interstitial oxygen concentration is performed subsequent to the gettering step.
It has the same configuration as the first embodiment.
ゲッタリング工程に後続する格子間酸素濃度の測定工程
は、ゲッタリング工程に先行する格子間酸素濃度の測定
工程すなわち第1の実施例のi+j定工程と同一の構成
を有している。The interstitial oxygen concentration measuring step that follows the gettering step has the same configuration as the interstitial oxygen concentration measuring step that precedes the gettering step, that is, the i+j constant step of the first embodiment.
したがって、第2の実施例は、上述の第1の実施例を参
照すれば容易に理解できようから、ここでは、これ以上
の説明を省略する。Therefore, since the second embodiment can be easily understood by referring to the first embodiment described above, further explanation will be omitted here.
ユ11凶!施土工
加えて、本発明にかかるシリコンウェーハの製造方法の
第3の実施例について、その構成および作用を詳細に説
明する。Yu 11 evil! In addition to the construction work, the structure and operation of the third embodiment of the silicon wafer manufacturing method according to the present invention will be described in detail.
第3の実施例は、ゲッタリング工程に先行する格子間酸
素濃度の測定工程に代え、ゲッタリング工程に後続して
格子間酸素濃度の測定工程を実行してなることを除き、
第1の実施例と同一の構成を有している。In the third embodiment, instead of the interstitial oxygen concentration measurement step preceding the gettering step, the interstitial oxygen concentration measurement step is performed after the gettering step.
It has the same configuration as the first embodiment.
ゲッタリング工程に後続する格子間酸素濃度の測定工程
は、第1の実施例の測定工程と同一の構成を有している
。The interstitial oxygen concentration measurement step subsequent to the gettering step has the same configuration as the measurement step of the first embodiment.
したがって、第3の実施例は、上述の第1の実施例を参
照すれば容易に理解できようから、ここでは、これ以上
の説明を省略する。Therefore, since the third embodiment can be easily understood by referring to the first embodiment described above, further explanation will be omitted here.
ユ且生豊り
併せて、本発明にかかるシリコンウェーハの製造方法の
理解を促進する目的で、具体的な数値などを挙げて説明
する。ここでは、便宜上、上述の第1の実施例の場合に
ついて説明する。In addition, for the purpose of promoting understanding of the silicon wafer manufacturing method according to the present invention, specific numerical values will be given and explained. Here, for convenience, the case of the above-mentioned first embodiment will be described.
夾五五上二亙
引上シリコンウェーハは、まず、表裏両面が機械研磨さ
れた状態(すなわちm械研磨引上シリコンウェーハの状
態)で、本発明にががる製造方法にしたがって格子間酸
素濃度[0,c]が測定された(第1表参照)。First, the pulled silicon wafer is mechanically polished on both the front and back sides (in other words, the state of a mechanically polished pulled silicon wafer), and the interstitial oxygen concentration is reduced according to the manufacturing method of the present invention. [0,c] was measured (see Table 1).
そののち、引上シリコンウェーハは、表裏両面が化学研
磨されたのち鏡面研磨され、この状態(すなわち鏡面研
磨引上シリコンウェーハの状態)で、本発明にかかる製
造方法にしたがって格子間酸素濃度[0,cl”が測定
された(第1表参照)。After that, the pulled silicon wafer is chemically polished on both the front and back sides, and then mirror polished, and in this state (that is, the state of the mirror polished pulled silicon wafer), the interstitial oxygen concentration [0 , cl'' were measured (see Table 1).
機械研磨引上シリコンウェーハについて測定された格子
間酸素濃度[0,cl と鏡面研磨引上シリコンウェー
ハについて測定された格子間酸素濃度[01e]°とは
、それぞれを縦軸Yおよび横軸Xとするグラフ上にプロ
ットしたところ、第4図に示すとおり、直線Y=X上に
あって十分に一致していた。The interstitial oxygen concentration [0,cl] measured for mechanically polished pulled silicon wafers and the interstitial oxygen concentration [01e]° measured for mirror polished pulled silicon wafers are expressed by the vertical axis Y and the horizontal axis X, respectively. When plotted on the graph shown in FIG. 4, it was found that they were on the straight line Y=X and were in good agreement.
これにより、本発明によれば、機械研磨引上シリコンウ
ェーハおよび鏡面研磨浮遊帯域シリコンウェーハをその
まま試料および対照として採用することにより、引上シ
リコンウェーハの格子間酸素濃度[0,C]を製造ライ
ン中で直接に測定できることが判明した。Therefore, according to the present invention, the interstitial oxygen concentration [0,C] of the pulled silicon wafer can be adjusted to It turned out that it was possible to measure it directly inside.
」良形血圧
なお、上述では、マイケルソン干渉計12を利用した場
合についてのみ説明したが、本発明は、これに限定され
るものではなく、マイケルソン干渉計に代え分光器を利
用する場合をも包摂している。"Good Blood Pressure" In the above description, only the case where the Michelson interferometer 12 is used has been described, but the present invention is not limited to this, and the case where a spectrometer is used instead of the Michelson interferometer is also described. It also includes.
また、格子間酸素濃度の測定工程が鏡面研磨工程に後続
したゲッタリング工程の前後で実行される場合について
のみ説明したが、本発明は、これらに限定されるもので
はなく、格子間酸素濃度の測定工程が鏡面研磨工程に後
続した他の所望の箇所 (たとえばシリコンウェーハの
検査工程)で実行される場合も包摂している。In addition, although the case where the step of measuring the interstitial oxygen concentration is performed before and after the gettering step subsequent to the mirror polishing step has been described, the present invention is not limited thereto; It also covers the case where the measurement process is performed at another desired location (for example, a silicon wafer inspection process) subsequent to the mirror polishing process.
(3)発明の効果
上述より明らかなように、本発明にかかるシリコンウェ
ーハの製造方法は、上述の[問題点の解決手段]の欄に
開示したごとく、機械研磨工程によって表裏両面が機械
研磨され未鏡面研磨の引上シリコンウェーハの光透過特
性と表裏両面が鏡面研磨された浮遊帯域シリコンウェー
ハの光透過特性とから引上シリコンウェーハの格子間酸
素濃度を算出し基準値と比較することにより格子間酸素
濃度が不良の引上シリコンウェーハを排除しているので
、
fi1表裏両面が鏡面研磨された浮遊帯域シリコンウェ
ーハを加工することなく鏡面のままで使用可能とできる
効果
を有し、ひいては
(11)引上シリコンウェーハの格子間酸素濃度の測定
作業を簡潔とできる効果
を有し、これにより
(iiil引上シリコンウェーハの格子間酸素濃度を製
造ライン中の所望の箇所で全数検査によって測定可能と
できる効果
を有し、結果的に
fivl製造ラインの生産性を改善できる効果を有する
。(3) Effects of the Invention As is clear from the above, the method for manufacturing a silicon wafer according to the present invention is such that both the front and back surfaces are mechanically polished by a mechanical polishing process, as disclosed in the [Means for solving problems] section above. The interstitial oxygen concentration of the pulled silicon wafer is calculated from the light transmission characteristics of the unmirrored pulled silicon wafer and the light transmission characteristics of the floating zone silicon wafer whose front and back surfaces are mirror polished, and the interstitial oxygen concentration of the pulled silicon wafer is compared with a reference value. Since pulled silicon wafers with poor inter-oxygen concentration are excluded, it has the effect that floating zone silicon wafers with mirror-polished surfaces on both the fi1 front and back surfaces can be used as mirror-finished surfaces without processing, and as a result, (11 ) It has the effect of simplifying the measurement work of the interstitial oxygen concentration of pulled silicon wafers, and thereby (iii) it is possible to measure the interstitial oxygen concentration of pulled silicon wafers at a desired location in the production line by 100% inspection. As a result, the productivity of the fivl production line can be improved.
第1図は本発明にかかるシリコンウェーハの製造方法の
第1の実施例を実行するための製造装置を示す簡略構成
図、第2図は本発明にかかるシリコンウェーハの製造方
法の第1の実施例を実行するための搬送装置を示す簡略
構成図、第3図および第4図は本発明にかかるシリコン
ウェーハの製造方法の一実施例を説明するための説明図
である。
lO・・・・・・・・・・・・・・・測定装置11・・
・・・・・・・・・・光源
12・・・・・・・・・・・・マイケルソン干渉計12
A ・ ・ ・半透明鏡
12B ・ 可動鏡
12cm−・固定鏡
13・・・ ・ ・偏光子
14 ・・・・・・・・・検出器
15・・・・・・・・・・計算装置
16・・・・ ・ ・比較装置
17A、17B・ ・・・・反射鏡
20・・・・・・ ・・・・・搬送装置21・・・・・
・・・・・押出部材
22・・・ ・・・・搬送ベルト
23・・・・ ・・・把持部材
23A ・・回転装置
24・・・ ・・ ・・ 搬送ベルト
M・・・・・・・・・・ 試料
R・・・・・・・・・ ・・・・対照
T 11 、 T I2・・・・・・・搬送容器Tel
〜T24・・ ・・・搬送容器
第2図
毅FIG. 1 is a simplified configuration diagram showing a manufacturing apparatus for carrying out a first embodiment of the silicon wafer manufacturing method according to the present invention, and FIG. 2 is a first embodiment of the silicon wafer manufacturing method according to the present invention. 3 and 4 are explanatory diagrams for explaining an embodiment of the silicon wafer manufacturing method according to the present invention. lO......Measuring device 11...
・・・・・・・・・・Light source 12・・・・・・・・・・Michelson interferometer 12
A... Semi-transparent mirror 12B - Movable mirror 12cm - Fixed mirror 13... Polarizer 14...Detector 15...Calculation device 16・・・・Comparison devices 17A, 17B・・・Reflector 20・・・・・Transport device 21・・・
... Pushing member 22 ... ... Conveyor belt 23 ... Gripping member 23A ... Rotating device 24 ... ... Conveyor belt M ... ... Sample R ... ... Control T 11 , T I2 ...... Transport container Tel
~T24...Transportation container 2nd picture Tsuyoshi
Claims (1)
機械研磨工程を含む一連の処理工程を施すことにより引
上シリコンウェーハを作成してなるシリコンウェーハの
製造方法において、 (a)機械研磨工程で表裏両面が機械研磨された未鏡面
研磨の引上シリコンウェーハに対し平行偏光をブリュー
スター角で入射せしめることにより引上シリコンウェー
ハの光透過特性を測定するための第1の工程と、 (b)表裏両面が鏡面研磨された対照としての浮遊帯域
シリコンウェーハに対し平行偏光をブリュースター角で
入射せしめることにより浮遊帯域シリコンウェーハの光
透過特性を測定するための第2の工程と、 (c)第1の工程によって測定された引上シリコンウェ
ーハの光透過特性と第2の工程によって測定された浮遊
帯域シリコンウェーハの光透過特性とから引上シリコン
ウェーハの格子間酸素濃度を算出するための第3の工程
と、 (d)第3の工程によって算出された引上シリコンウェ
ーハの格子間酸素濃度を基準値と比較するための第4の
工程と、 (e)第4の工程によって比較された結果に応じ格子間
酸素濃度が不良の引上シリコンウェーハを排除するため
の第5の工程とを備えてなることを特徴とするシリコン
ウェーハの製造方法。[Scope of Claims] A method for manufacturing a silicon wafer in which a pulled silicon wafer is created by subjecting a wafer cut from a pulled silicon single crystal to a series of processing steps including a mechanical polishing step, comprising: (a) A first step for measuring the light transmission characteristics of a pulled silicon wafer by making parallel polarized light incident at the Brewster angle on an unmirrored pulled silicon wafer whose front and back surfaces have been mechanically polished in a mechanical polishing process; (b) a second step for measuring the light transmission characteristics of the floating zone silicon wafer by making parallel polarized light incident at the Brewster angle on a floating zone silicon wafer as a control whose front and back surfaces are mirror-polished; (c) Calculating the interstitial oxygen concentration of the pulled silicon wafer from the light transmission characteristics of the pulled silicon wafer measured in the first step and the light transmission characteristics of the floating zone silicon wafer measured in the second step. (d) a fourth step for comparing the interstitial oxygen concentration of the pulled silicon wafer calculated in the third step with a reference value; (e) by the fourth step. and a fifth step of eliminating pulled silicon wafers with poor interstitial oxygen concentrations according to the compared results.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP22471490A JP2587714B2 (en) | 1990-08-27 | 1990-08-27 | Silicon wafer manufacturing method |
| US07/738,043 US5287167A (en) | 1990-07-31 | 1991-07-31 | Method for measuring interstitial oxygen concentration |
| EP91112865A EP0469572B1 (en) | 1990-07-31 | 1991-07-31 | A method measuring interstitial oxygen concentration |
| KR1019910013266A KR0156939B1 (en) | 1990-07-31 | 1991-07-31 | Silicon wafer measuring method, silicon wafer manufacturing method, and oxygen concentration measurement between lattice |
| DE69130245T DE69130245T2 (en) | 1990-07-31 | 1991-07-31 | Method of measuring interstitial oxygen concentration |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP22471490A JP2587714B2 (en) | 1990-08-27 | 1990-08-27 | Silicon wafer manufacturing method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH04106925A true JPH04106925A (en) | 1992-04-08 |
| JP2587714B2 JP2587714B2 (en) | 1997-03-05 |
Family
ID=16818101
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP22471490A Expired - Fee Related JP2587714B2 (en) | 1990-07-31 | 1990-08-27 | Silicon wafer manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2587714B2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8809447B2 (en) | 2010-12-15 | 2014-08-19 | Eastman Chemical Company | Acetoacetate-functional monomers and their uses in coating compositions |
| US8809446B2 (en) | 2010-12-15 | 2014-08-19 | Eastman Chemical Company | Substituted 3-oxopentanoates and their uses in coating compositions |
| US9029451B2 (en) | 2010-12-15 | 2015-05-12 | Eastman Chemical Company | Waterborne coating compositions that include 2,2,4-trimethyl-3-oxopentanoate esters as reactive coalescents |
-
1990
- 1990-08-27 JP JP22471490A patent/JP2587714B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8809447B2 (en) | 2010-12-15 | 2014-08-19 | Eastman Chemical Company | Acetoacetate-functional monomers and their uses in coating compositions |
| US8809446B2 (en) | 2010-12-15 | 2014-08-19 | Eastman Chemical Company | Substituted 3-oxopentanoates and their uses in coating compositions |
| US9029451B2 (en) | 2010-12-15 | 2015-05-12 | Eastman Chemical Company | Waterborne coating compositions that include 2,2,4-trimethyl-3-oxopentanoate esters as reactive coalescents |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2587714B2 (en) | 1997-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI596333B (en) | Means for measuring a film with a transparent substrate and a measuring method thereof | |
| CN101587081A (en) | Defect detecting method and device | |
| US20200300615A1 (en) | Hybrid systems and methods for characterizing stress in chemically strengthened transparent substrates | |
| CN107275244A (en) | A kind of chip detection method and device | |
| WO2018072447A1 (en) | Differential interference-based optical film defect detection method | |
| US5287167A (en) | Method for measuring interstitial oxygen concentration | |
| JPH04106925A (en) | Manufacture of silicon wafer | |
| US20220214267A1 (en) | Compact gas sensor | |
| JPH01224646A (en) | Quantitative evaluation method for light absorption measurement | |
| KR0157030B1 (en) | Substituted carbon concentration measuring method, silicon wafer manufacturing method and silicon wafer measuring method | |
| JP2855476B2 (en) | Silicon wafer manufacturing method | |
| JP2897931B2 (en) | Silicon wafer manufacturing method | |
| JP2897933B2 (en) | Silicon wafer manufacturing method | |
| JP3046724B2 (en) | Wafer thickness measurement method | |
| JP2855474B2 (en) | Silicon wafer manufacturing method | |
| JPH04108693A (en) | Production of silicon wafer | |
| JP2909680B2 (en) | Method for measuring interstitial oxygen or substitutional carbon concentration in silicon wafer | |
| JP2897932B2 (en) | Method for measuring interstitial oxygen concentration of pulled silicon wafer | |
| JPH04106947A (en) | Interlattice oxygen concentration measurement of pulled-up silicon wafer | |
| JPH04109145A (en) | Substitution type carbon concentration measuring method for pickup silicone wafer | |
| JPH04105046A (en) | Measuring method for inter-lattice oxygen concentration of drawup silicon wafer | |
| JPH09210918A (en) | Optical system for detecting foreign matter on silicon wafer surface | |
| JPH04109146A (en) | Substitution type carbon concentration measuring method for pickup silicone wafer | |
| JP2003279484A (en) | Particle detection method, particle detection device, particle production device, particle production program, recording medium, and solid state device | |
| JP2001201319A (en) | Thickness testing method and device for plate glass |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071205 Year of fee payment: 11 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071205 Year of fee payment: 11 |
|
| R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071205 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091205 Year of fee payment: 13 |
|
| LAPS | Cancellation because of no payment of annual fees |