JPH0410712B2 - - Google Patents
Info
- Publication number
- JPH0410712B2 JPH0410712B2 JP57198024A JP19802482A JPH0410712B2 JP H0410712 B2 JPH0410712 B2 JP H0410712B2 JP 57198024 A JP57198024 A JP 57198024A JP 19802482 A JP19802482 A JP 19802482A JP H0410712 B2 JPH0410712 B2 JP H0410712B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- salt
- solute
- organic solvent
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Primary Cells (AREA)
Description
【発明の詳細な説明】
この発明はLiPF6の如き超酸性塩基(super
acid anion)のリチウム塩からなる非水電解液用
溶質を製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention describes the use of super acidic bases such as LiPF 6 .
This invention relates to a method for producing a solute for a non-aqueous electrolyte consisting of a lithium salt of (acid anion).
リチウムを陰極活物質とする電池にあつては、
その電解液として有機溶媒に適宜の溶質、つまり
イオン伝導性を付与するための電解質を溶解させ
てなる非水電解液が用いられている。この種の電
解液における上記溶質の代表的なものとして
LiPF6が知られている。LiPF6は一般に無水のフ
ツ化水素中にLiFを溶解させこれにガス状のPF5
を吹き込んで反応させる方法でつくられており、
この方法でつくられるLiPF6は通常結晶粒子中に
フツ化水素やHPOxFyの如き酸性不純物を含ん
でいる。 For batteries that use lithium as the cathode active material,
As the electrolytic solution, a non-aqueous electrolytic solution is used, which is obtained by dissolving an appropriate solute, that is, an electrolyte for imparting ionic conductivity, in an organic solvent. Typical examples of the above solutes in this type of electrolyte are
LiPF 6 is known. LiPF 6 is generally produced by dissolving LiF in anhydrous hydrogen fluoride and adding gaseous PF 5 to this.
It is made by injecting and reacting,
LiPF 6 produced by this method usually contains acidic impurities such as hydrogen fluoride and HPOxFy in the crystal particles.
このようなLiPF6を有機溶媒に溶解させて非水
電解液とすると、液が酸性側となるためLiPF6の
分解が促進され、またこの分解で生成するPF5が
ルイス塩基を構成するような有機溶媒、たとえば
1・3−ジオキソランなどにアタツクして上記溶
媒を分解ないしポリマー化しやすい。このため、
電池組立後の貯蔵中に内部抵抗の増大や電池容量
の低下を引きおこす結果となる。 When such LiPF 6 is dissolved in an organic solvent to make a non-aqueous electrolyte, the liquid becomes acidic, which accelerates the decomposition of LiPF 6 , and the PF 5 produced by this decomposition is likely to form a Lewis base. It attacks organic solvents such as 1,3-dioxolane and easily decomposes or polymerizes the solvents. For this reason,
This results in an increase in internal resistance and a decrease in battery capacity during storage after battery assembly.
また、上記のLiPF6はいわゆる超酸性塩基のリ
チウム塩として知られる代表的なものであるが、
上記同様のリチウム塩からなる非水電解液用溶質
にはその他LiBF4、LiSbF6、LiAsF6、LiAlCl4な
どが数多く知られている。このような各種のリチ
ウム塩を前述のLiPF6と同様の手法で合成してこ
れにフツ化水素や塩化水素の如き酸性不純物が混
入してきた場合、前記同様の分解や有機溶媒への
悪影響をもたらして電池性能がやはり劣化してく
る傾向がある。 In addition, the LiPF 6 mentioned above is a typical one known as a lithium salt of a so-called super acidic base.
Many other solutes for nonaqueous electrolytes made of lithium salts similar to those described above include LiBF 4 , LiSbF 6 , LiAsF 6 , LiAlCl 4 , and the like. If these various lithium salts are synthesized using the same method as LiPF 6 mentioned above and acidic impurities such as hydrogen fluoride or hydrogen chloride are mixed in, it will cause the same decomposition and adverse effects on the organic solvent as described above. As a result, battery performance tends to deteriorate.
しかるに、従来、LiPF6を代表例とした超酸性
塩基のリチウム塩を非水電解液用溶質として用い
るに当たり、これに含まれる水分や揮発性不純物
を真空乾燥によつて取り除く処理は行なつている
が、前述の酸性不純物を取り除く処理はほとんど
行なつていない。 However, conventionally, when using lithium salts of super acidic bases, such as LiPF 6 as a representative example, as solutes for non-aqueous electrolytes, the water and volatile impurities contained in them have been removed by vacuum drying. However, almost no treatment is performed to remove the aforementioned acidic impurities.
この発明者らは、上記の事情に鑑み、当初、酸
性不純物を含む超酸性塩基のリチウム塩をジメト
キシエタンのような有機溶媒に発熱溶解させたの
ち冷却して再結晶化する方法で酸性不純物を取り
除くことを試みたが、再結晶化するリチウム塩は
溶媒和されたものであるため取り込まれる溶媒分
子中に酸性不純物が残存する結果となり、酸性不
純物を取り除くという所期の目的を充分に達しえ
なかつた。 In view of the above circumstances, the inventors initially solved the acidic impurities by a method in which a lithium salt of a super acidic base containing acidic impurities was dissolved exothermically in an organic solvent such as dimethoxyethane, and then cooled and recrystallized. However, since the lithium salt to be recrystallized is solvated, acidic impurities remain in the incorporated solvent molecules, and the intended purpose of removing acidic impurities cannot be fully achieved. Nakatsuta.
この発明は、上記の観点からさらに検討した結
果、見い出されたものであり、その要旨とすると
ころは、超酸性塩基のリチウム塩からなる非水電
解液用溶質を製造するに当たり、上記塩基のナト
リウム塩もしくはカリウム塩を有機溶媒に溶解さ
せ、これをリチウムイオン型の陽イオン交換樹脂
でイオン交換させることにより、超酸性塩基のリ
チウム塩を得ることを特徴とする非水電解液用溶
質の製造法にある。 This invention was discovered as a result of further studies from the above viewpoint, and its gist is that in producing a solute for a non-aqueous electrolyte consisting of a lithium salt of a super acidic base, sodium A method for producing a solute for a nonaqueous electrolyte, characterized by obtaining a lithium salt of a superacidic base by dissolving a salt or a potassium salt in an organic solvent and ion-exchanging it with a lithium ion type cation exchange resin. It is in.
すなわち、この発明においては、超酸性塩基の
リチウム塩を前述の方法で直接合成する方法では
酸性不純物の混入を免れずまたこの不純物を取り
除くことが容易でないことから、まず超酸性塩基
のナトリウム塩もしくはカリウム塩を合成しつぎ
にこれをリチウムイオン型の陽イオン交換樹脂で
イオン交換させるようにしたものであり、この方
法によれば上記ナトリウム塩もしくはカリウム塩
がその製造過程で充分にアルカリ処理されるもの
であるため酸性不純物がほとんど残存せず、した
がつてこれをイオン交換させて得られるリチウム
塩も酸性不純物の非常に少ないものとなる。 That is, in this invention, the method of directly synthesizing the lithium salt of a superacidic base by the method described above inevitably introduces acidic impurities, and it is not easy to remove these impurities. A potassium salt is synthesized and then ion-exchanged with a lithium ion type cation exchange resin. According to this method, the sodium salt or potassium salt is sufficiently treated with alkali during the manufacturing process. Since it is a lithium salt, almost no acidic impurities remain, and therefore the lithium salt obtained by ion-exchanging it also contains very little acidic impurities.
このように、この発明によれば、酸性不純物の
少ない高純度の超酸性塩基のリチウム塩を得るこ
とができるから、これを有機溶媒に溶解させて非
水電解液としたときに上記リチウム塩の経時的な
分解が抑えられ、また有機溶媒の分解ないしポリ
マー化などを誘発するおそれが回避され、電池組
立後の電池容量や内部抵抗の経日特性にきわめて
良好な結果が得られる。 As described above, according to the present invention, it is possible to obtain a highly pure lithium salt of a super acidic base with few acidic impurities, so when it is dissolved in an organic solvent to form a non-aqueous electrolyte, the lithium salt is Decomposition over time is suppressed, and the possibility of inducing decomposition or polymerization of the organic solvent is avoided, and extremely good results can be obtained in the aging characteristics of battery capacity and internal resistance after battery assembly.
この発明において超酸性塩基のリチウム塩の代
表的なものはLiPF6であるが、その他前述した如
きLiBF4、LiSbF6、LiAsF6およびLiAlCl4などが
含まれる。これら以外にも超酸性塩基のリチウム
塩として知られ、酸性不純物の混入によつて分解
などの悪影響を受けやすいものは上記同様にこの
発明の目的物質に包含される。 In this invention, a typical lithium salt of a superacidic base is LiPF 6 , but other examples include LiBF 4 , LiSbF 6 , LiAsF 6 and LiAlCl 4 as described above. In addition to these, those known as lithium salts of superacidic bases, which are susceptible to adverse effects such as decomposition due to contamination with acidic impurities, are also included in the target substances of the present invention, as described above.
この発明では、まず上記リチウム塩に対応する
超酸性塩基のカリウム塩もしくはナトリウム塩を
得る。この方法は、その製造工程中に充分なアル
カリ処理工程を含むものであれば任意であり、た
とえばKPF6またはNaPF6ではつぎの方法が有効
である。すなわち、塩化カリウムないし塩化ナト
リウムと五塩化リンとを液体フツ化水素中でフツ
素化し、油浴上で加熱してフツ化水素を追い出
す。その後、塩化カリウムを用いたものでは粗製
の塩を温湯に溶解し、フエノールフタレインでア
ルカリ性を示すまで水酸化カリウム溶液を加えて
沈澱物を除去したのち氷浴に入れて冷却すること
により、また塩化ナトリウムを用いたものでは粗
製の塩をメタノールに溶解し、水酸化ナトリウム
のメタノール溶液をフエノールフタレインでアル
カリ性を示すまで加えて沈澱物を遠心分離したの
ち濃縮し、減圧下で結晶析出させることにより、
それぞれ純粋なKPF6またはNaPF6を得る。 In this invention, first, a potassium salt or a sodium salt of a superacidic base corresponding to the above-mentioned lithium salt is obtained. This method is arbitrary as long as the manufacturing process includes a sufficient alkali treatment step. For example, the following method is effective for KPF 6 or NaPF 6 . That is, potassium chloride or sodium chloride and phosphorus pentachloride are fluorinated in liquid hydrogen fluoride and heated on an oil bath to drive off the hydrogen fluoride. After that, in the case of using potassium chloride, the crude salt is dissolved in warm water, potassium hydroxide solution is added until it becomes alkaline with phenolphthalein, the precipitate is removed, and then the salt is cooled in an ice bath. For those using sodium chloride, dissolve the crude salt in methanol, add a methanol solution of sodium hydroxide until it becomes alkaline with phenolphthalein, centrifuge the precipitate, concentrate, and precipitate crystals under reduced pressure. According to
Obtain pure KPF 6 or NaPF 6 respectively.
つぎに、上記のカリウム塩ないしナトリウム塩
を必要に応じて減圧乾燥するなどして水分その他
の不純物を除去したのち、適宜の有機溶媒に溶解
させ、これをリチウムイオン型の陽イオン交換樹
脂に通してカリウムイオンないしナトリウムイオ
ンとリチウムイオンとのイオン交換を行なわせる
か(カラム法)、あるいはカリウム塩ないしナト
リウム塩を溶解した有機溶媒中にリチウムイオン
型の陽イオン交換樹脂を浸漬してイオン交換を行
なわせる(バツチ法)。 Next, the above potassium salt or sodium salt is dried under reduced pressure to remove water and other impurities as necessary, then dissolved in an appropriate organic solvent, and passed through a lithium ion type cation exchange resin. ion exchange between potassium or sodium ions and lithium ions (column method), or ion exchange by immersing a lithium ion type cation exchange resin in an organic solvent in which potassium or sodium salts are dissolved. Let them do it (Batsuchi method).
上記の有機溶媒としては、非水電解液用として
一般に用いられている1・2−ジメトキシエタ
ン、1・3−ジオキソラン、テトラヒドロフラ
ン、1・2−ジエトキシエタン、2−メチルテト
ラヒドロフラン、プロピレンカーボネート、γ−
ブチロラクトンなどの分子内にエーテル結合やエ
ステル結合の如き極性基を持つた誘電率の高いも
のが好ましいが、これら以外の溶媒であつても差
し支えない。有機溶媒中のカリウム塩ないしナト
リウム塩の濃度としては通常1〜30重量%程度で
ある。 Examples of the above organic solvents include 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 1,2-diethoxyethane, 2-methyltetrahydrofuran, propylene carbonate, and γ, which are commonly used for non-aqueous electrolytes. −
A solvent having a polar group such as an ether bond or an ester bond in its molecule, such as butyrolactone, and having a high dielectric constant is preferred, but other solvents may be used. The concentration of potassium salt or sodium salt in the organic solvent is usually about 1 to 30% by weight.
リチウムイオン型の陽イオン交換樹脂は、ナト
リウムイオン型の一般の陽イオン交換樹脂をリチ
ウムイオンたとえば塩化リチウムが高濃度で含ま
れた有機溶媒中で撹拌処理するかあるいはナトリ
ウムイオン型のイオン交換樹脂にリチウムイオン
を含む有機溶媒を通すかして、ナトリウムイオン
とリチウムイオンとのイオン交換を行なわせるこ
とにより容易に得ることができる。上記に用いる
有機溶媒としてはリチウムイオンを高濃度、たと
えば10〜30重量%程度にまで溶解できるものが選
択され、具体的には前述した超酸性塩基のカリウ
ム塩もしくはナトリウム塩を溶解させるための有
機溶媒として例示したものが同様に用いられる。 Lithium ion type cation exchange resin is produced by stirring a general sodium ion type cation exchange resin in an organic solvent containing a high concentration of lithium ions, such as lithium chloride, or by stirring it into a sodium ion type ion exchange resin. It can be easily obtained by passing an organic solvent containing lithium ions through it to cause ion exchange between sodium ions and lithium ions. The organic solvent used in the above process is one that can dissolve lithium ions at a high concentration, for example, about 10 to 30% by weight. Those exemplified as solvents can be used in the same manner.
上記方法でイオン交換させて得られる超酸性塩
基のリチウム塩の有機溶媒溶液は、これを必要に
応じて脱水処理したのち非水電解液としてそのま
ま使用に供することができる。また、一旦有機溶
媒を減圧留去するなどしてリチウム塩単体を得、
これを所定の有機溶媒に再溶解させて非水電解液
としてもよい。 The organic solvent solution of the lithium salt of a superacidic base obtained by ion exchange in the above method can be used as it is as a non-aqueous electrolyte after being dehydrated if necessary. In addition, the lithium salt alone is obtained by once removing the organic solvent under reduced pressure,
This may be redissolved in a predetermined organic solvent to form a non-aqueous electrolyte.
以下に、この発明の実施例を記載してより具体
的に説明する。 EXAMPLES Below, examples of the present invention will be described in more detail.
実施例 1
市販のナトリウムイオン型の陽イオン交換樹脂
のカラムに、塩化リチウムが15重量%溶解された
1・3−ジオキソランをゆつくり通すことによ
り、リチウムイオン型の陽イオン交換樹脂を得
た。Example 1 A lithium ion type cation exchange resin was obtained by slowly passing 1,3-dioxolane in which 15% by weight of lithium chloride was dissolved into a column of a commercially available sodium ion type cation exchange resin.
つぎに、アルカリ処理工程を経て酸性不純物が
ほとんで排除された市販のNaPF6を、有機溶媒
としての1・3−ジオキソラン100mlに対して18
g溶解させ、これを前記のリチウムイオン型の陽
イオン交換樹脂に通して、酸性不純物を含まない
純粋なLiPF6を溶解した1・3−ジオキソランを
得た。 Next, commercially available NaPF 6 from which most of the acidic impurities have been removed through an alkali treatment process was added to 18 ml of 1,3-dioxolane as an organic solvent.
This was passed through the lithium ion type cation exchange resin described above to obtain 1,3-dioxolane in which pure LiPF 6 containing no acidic impurities was dissolved.
これを電解液として用いて常法により図示され
るようなリチウム電池を作製した。図中、1はリ
チウムを活物質とする陰極、2はFeS2、MnO2ま
たはTiS2などを活物質とする陽極、3はポリプ
ロピレンのような不織布からなるセパレータ、4
は陽極缶5と陰極端子板6との間に介装されたガ
スケツトである。 Using this as an electrolyte, a lithium battery as shown in the figure was produced by a conventional method. In the figure, 1 is a cathode made of lithium as an active material, 2 is an anode made of FeS 2 , MnO 2 or TiS 2 as an active material, 3 is a separator made of nonwoven fabric such as polypropylene, and 4 is a cathode made of lithium as an active material.
is a gasket interposed between the anode can 5 and the cathode terminal plate 6.
この電池を60℃下で貯蔵したときの電池容量並
びに内部抵抗の経日変化を調べた結果は、下記の
とおりであつた。なお、比較のため、無水のフツ
化水素中にLiFを溶解させこれにガス状のPF5を
吹き込んで直接合成したLiPF6(酸性不純物を含
む)を非水電解液用溶質とした以外は実施例1と
同様にして作製したリチウム電池につき、上記同
様の試験結果を併記した。 The results of examining the battery capacity and internal resistance over time when this battery was stored at 60°C were as follows. For comparison, the experiments were carried out except that LiPF 6 (containing acidic impurities), which was directly synthesized by dissolving LiF in anhydrous hydrogen fluoride and blowing gaseous PF 5 into it, was used as the solute for the non-aqueous electrolyte. Regarding the lithium battery produced in the same manner as in Example 1, test results similar to those described above are also listed.
実施例品 比較例品
電池容量の劣化率 1%/月 4%/月
内部抵抗の上昇率 50%/月 60%/月
上記の結果から明らかなように、この発明法に
よれば電池性能の向上に寄与する高純度の超酸性
塩基のリチウム塩を作業容易に製造できるもので
あることがわかる。 Example product Comparative example product Deterioration rate of battery capacity 1%/month 4%/month Rate of increase in internal resistance 50%/month 60%/month As is clear from the above results, this invention method improves battery performance. It can be seen that the highly purified lithium salt of a superacidic base that contributes to improvement can be produced easily.
図面はこの発明の方法により得られた非水電解
液用溶質を用いて作製したリチウム電池の一例を
示す断面図である。
The drawing is a cross-sectional view showing an example of a lithium battery manufactured using the solute for non-aqueous electrolyte obtained by the method of the present invention.
Claims (1)
塩からなる非水電解液用溶質を製造するに当た
り、上記塩基のナトリウム塩もしくはカリウム塩
を有機溶媒に溶解させ、これをリチウムイオン型
の陽イオン交換樹脂でイオン交換させることによ
り、超酸性塩基のリチウム塩を得ることを特徴と
する非水電解液用溶質の製造法。 2 超酸性塩基のリチウム塩が、LiPF6、
LiBF4、LiSbF6、LiAsF6およびLiAlCl4のなかか
ら選ばれたものである特許請求の範囲第1項記載
の非水電解液用溶質の製造法。[Claims] 1. In producing a solute for a non-aqueous electrolyte consisting of a lithium salt of a super acid anion, the sodium salt or potassium salt of the base is dissolved in an organic solvent, and lithium ions are dissolved in the solute. A method for producing a solute for a non-aqueous electrolyte, characterized by obtaining a lithium salt of a super acidic base by ion exchange with a type of cation exchange resin. 2 The lithium salt of superacid base is LiPF 6 ,
The method for producing a solute for a non-aqueous electrolyte according to claim 1, wherein the solute is selected from LiBF 4 , LiSbF 6 , LiAsF 6 and LiAlCl 4 .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP57198024A JPS5987774A (en) | 1982-11-10 | 1982-11-10 | Manufacture of solute for nonaqueous electrolyte |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP57198024A JPS5987774A (en) | 1982-11-10 | 1982-11-10 | Manufacture of solute for nonaqueous electrolyte |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5987774A JPS5987774A (en) | 1984-05-21 |
| JPH0410712B2 true JPH0410712B2 (en) | 1992-02-26 |
Family
ID=16384249
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP57198024A Granted JPS5987774A (en) | 1982-11-10 | 1982-11-10 | Manufacture of solute for nonaqueous electrolyte |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5987774A (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0673302B2 (en) * | 1985-03-20 | 1994-09-14 | 三洋電機株式会社 | Non-aqueous electrolyte battery |
| JPH0675402B2 (en) * | 1986-09-30 | 1994-09-21 | 富士電気化学株式会社 | Method for preparing non-aqueous electrolyte |
| JPH0675401B2 (en) * | 1986-09-30 | 1994-09-21 | 富士電気化学株式会社 | Method for preparing non-aqueous electrolyte |
| JP5532181B1 (en) * | 2013-10-31 | 2014-06-25 | Jointエンジニアリング株式会社 | Method and apparatus for producing lithium salt for electrolyte of lithium battery and / or lithium ion battery |
-
1982
- 1982-11-10 JP JP57198024A patent/JPS5987774A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5987774A (en) | 1984-05-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6383688B1 (en) | Electrolyte for lithium cells and method of producing the same | |
| US6033808A (en) | Process for removing acids from lithium salt solutions | |
| TWI232126B (en) | Method of removing water and other protic impurities from organic liquid electrolytes | |
| US10316006B2 (en) | Heterocyclic ionic liquids | |
| US10511068B2 (en) | Process for recovering an electrolyte salt | |
| JPH11512563A (en) | Battery containing bis (perfluoroalkylsulfonyl) imide salt and cyclic perfluoroalkylene disulfonylimide salt | |
| JPH0318309B2 (en) | ||
| CN111573639A (en) | Method for preparing lithium bis (fluorosulfonyl) imide by using organic metal lithium reagent | |
| CN117613381A (en) | Electrolyte containing six-membered cyclic sulfate | |
| JPH02260374A (en) | organic electrolyte battery | |
| US10903521B2 (en) | Modified ionic liquids containing triazine | |
| JPH0410711B2 (en) | ||
| JPS5981869A (en) | Lithium battery manufacturing method | |
| KR102275418B1 (en) | method for preparing lithium bisfluorosulfonylimide | |
| EP1721900B1 (en) | Novel imidazolium compound | |
| KR20220135283A (en) | Method for manufacturing sodium bis(fluorosulfonyl)imide | |
| JPH1092468A (en) | Electrolyte for lithium battery, method for refining it, and lithium battery using it | |
| US20030022069A1 (en) | Method for dehydrating composition comprising lithium bis (pentafluoroethanesulfonyl) imide | |
| JPH0410712B2 (en) | ||
| US4895778A (en) | Method of purifying electrolytes of alkali metal batteries | |
| KR101982603B1 (en) | Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (2) | |
| JP3555720B2 (en) | Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same | |
| JP2654552B2 (en) | Electrolyte for lithium secondary battery | |
| JPH1131529A (en) | Solvent for lithium ion secondary battery | |
| JPH07235309A (en) | Method for producing non-aqueous electrolyte |