[go: up one dir, main page]

JPH04112455A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH04112455A
JPH04112455A JP2231690A JP23169090A JPH04112455A JP H04112455 A JPH04112455 A JP H04112455A JP 2231690 A JP2231690 A JP 2231690A JP 23169090 A JP23169090 A JP 23169090A JP H04112455 A JPH04112455 A JP H04112455A
Authority
JP
Japan
Prior art keywords
electrode
neg
carbon material
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2231690A
Other languages
Japanese (ja)
Other versions
JP3070936B2 (en
Inventor
Ikurou Nakane
育朗 中根
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2231690A priority Critical patent/JP3070936B2/en
Publication of JPH04112455A publication Critical patent/JPH04112455A/en
Application granted granted Critical
Publication of JP3070936B2 publication Critical patent/JP3070936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a secondary battery having less decrease in the capacity due to self-discharging, less decomposition of electrolyte when storing Li, suppressed generation of gas, and excellent cycle characteristics by using a neg. electrode material chiefly containing a carbonic substance which occludes and emits alkali metal ion or alkali earth metal ion. CONSTITUTION:A neg. electrode 1 chiefly containing carbonic substance is contacted by pressure to a neg. electrode electricity collector 3 secured to the inner bottom surface of a neg. electrode can 2. A pos. electrode 4 is made by molding a black mix of a fluoric resin binder and acetylene black conductivity agent with a Mn oxide as active substance being in pressure contact with the inner bottom surface of the pos. electrode can 5. Examples of neg. electrode material are a carbonic substance obtained through heat treatment of alkali metal, alkali earth metal, or salt of these metals and carbonic material, or a carbonic substance obtained through alkali treatment. Thereby a secondary battery is accomplished having less self-discharge and less leakage of solution due to gas generation resulting from decomposition of the electrolytic solution.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、リチウム等のアルカリ金属、或るいはアルカ
リ土類金属を活物質とする負極と、二酸化マンガン、三
酸化モリブデン、五酸化バナジウム、硫化チタンなどを
活物質とする正極とを備えた二次電池に関するものであ
る。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a negative electrode having an alkali metal such as lithium or an alkaline earth metal as an active material, and manganese dioxide, molybdenum trioxide, vanadium pentoxide. , relates to a secondary battery equipped with a positive electrode made of titanium sulfide or the like as an active material.

(ロ) 従来の技術 この種電池は、負極活物質であるリチウムが、充電の際
に負極表面に樹枝状に成長して正極に接し、内部短終を
引き起こすため、充放電サイクル寿命が極めて短いとい
う問題点がある。
(b) Conventional technology This type of battery has an extremely short charge/discharge cycle life because lithium, which is the negative electrode active material, grows in a dendritic manner on the surface of the negative electrode during charging and comes into contact with the positive electrode, causing internal short-term termination. There is a problem.

この対策として、負極をリチウム合金で構成することや
、負極材料として充放電によりドーピング、脱ドーピン
グされるリチウムを結晶中に混入した黒鉛の層間化合物
を用いたり(例えば特公昭60−23433号公報参照
)、所定の結晶厚み、真密度を持つ炭素材料のnドープ
体を用いたり(特開昭62−90863号公報参照)、
コークス等の炭素材料にリチウムを吸蔵させたものを用
いるもの(特開昭62−90863号公報参照)が、提
案されている。
As a countermeasure against this problem, the negative electrode may be made of a lithium alloy, or a graphite intercalation compound containing lithium in the crystal, which is doped and dedoped by charging and discharging, may be used as the negative electrode material (for example, see Japanese Patent Publication No. 60-23433). ), using an n-doped carbon material having a predetermined crystal thickness and true density (see JP-A-62-90863),
A method using a carbon material such as coke in which lithium is occluded has been proposed (see Japanese Patent Laid-Open No. 62-90863).

特に、負極を炭素材料とリチウムとの化合物で構成すれ
ば、二次電池の充放電サイクル特性が飛躍的に向上する
。その反面、炭素材料中にリチウムをドーピング、或る
いは吸蔵させた材料を負極とした電池では、充電放置し
た場合、自己放電による容量減少が大きく、またこの容
量の減少分はその後サイクルを綴り返しても回復しない
という問題点がある。更に、炭素材料を負極材料とした
ノチウム二次電池では、炭素材料の活性度が高いため、
炭素材料中にリチウムを吸蔵させる場合に、電解液が炭
素材料と反応して分解し、ガス発生が生じて電池の内圧
が上昇し、漏液が生じるなどの問題があった。
In particular, if the negative electrode is made of a compound of carbon material and lithium, the charge/discharge cycle characteristics of the secondary battery will be dramatically improved. On the other hand, in a battery whose negative electrode is a material in which lithium is doped or occluded in a carbon material, if left uncharged, the capacity decreases significantly due to self-discharge, and this decrease in capacity causes the cycle to repeat. However, the problem is that it does not recover. Furthermore, in Notium secondary batteries that use carbon materials as negative electrode materials, the activity of the carbon materials is high;
When lithium is occluded in a carbon material, there are problems such as the electrolyte reacts with the carbon material and decomposes, generating gas, increasing the internal pressure of the battery, and causing leakage.

(ハ) 発明が解決しようとする課題 本発明は、前記問題点に鑑みて成されたものであって、
自己放電による容量減少が小さく、またノチウムを吸蔵
するときの電解液の分解が少なくガス発生が抑制された
、サイクル特性に優れた二次電池を提供しようとするも
のである。
(c) Problems to be solved by the invention The present invention has been made in view of the above problems, and includes:
It is an object of the present invention to provide a secondary battery with excellent cycle characteristics, in which the capacity decrease due to self-discharge is small, and gas generation is suppressed due to little decomposition of the electrolytic solution when notium is occluded.

(ニ) 課題を解決するための手段 本発明の二次電池は、負極材料が、電気化学的にアルカ
リ金属イオン、或るいはアルカリ土類金属イオンを、吸
蔵、放出する炭素材料を主成分としてなり、前記炭素材
料は、アルカリ処理、或るいは熱処理を施したものであ
ることを特徴とするものである。
(d) Means for Solving the Problems In the secondary battery of the present invention, the negative electrode material is mainly composed of a carbon material that electrochemically absorbs and releases alkali metal ions or alkaline earth metal ions. The carbon material is characterized in that it has been subjected to alkali treatment or heat treatment.

そして、前記炭素材料としては、アルカリ金属、アルカ
リ土類金属、或るいはそれらの金属の塩と共に熱処理を
施したものが好ましい。
The carbon material is preferably one that has been heat-treated with an alkali metal, an alkaline earth metal, or a salt of these metals.

そして、この炭素材料としては、カーボンブラック、コ
ークス、グラファイト等を使用することが可能である。
As this carbon material, carbon black, coke, graphite, etc. can be used.

(ホ)作用 本発明によれば、負極材料として、アルカリ金属、アル
カリ土類金属、或るいはそれらの金属の塩と炭素材料と
を熱処理して得た炭素材料、もしくはアルカリ処理され
た炭素材料を負極材料として使用すれば、自己放電が少
なく、また電解液の分解に起因するガス発生による漏液
の少ない二次電池を提供できる。この理由は、カーボン
は、般的に炭素原子が主に六角形に結合した結晶構造を
有するが、その結合の端部においてはその六角構造を保
つことが出来ず、端部の炭素原子は空気中の酸素や水分
と容易に結合して、水酸基(COH)やカルボニル基(
COOI()となっている。
(E) Function According to the present invention, a carbon material obtained by heat-treating an alkali metal, an alkaline earth metal, or a salt of these metals and a carbon material, or an alkali-treated carbon material can be used as a negative electrode material. By using it as a negative electrode material, it is possible to provide a secondary battery with less self-discharge and less leakage due to gas generation due to decomposition of the electrolytic solution. The reason for this is that carbon generally has a crystal structure in which carbon atoms are mainly bonded in a hexagonal shape, but the hexagonal structure cannot be maintained at the ends of the bonds, and the carbon atoms at the ends are air-filled. It easily combines with oxygen and moisture inside, forming hydroxyl groups (COH) and carbonyl groups (
COOI().

これらの官能基は活性度が高いため、電解液と反応して
電解液を分解したり、或るいは充電時に炭素材料内に吸
蔵されたリチウムがこれらの官能基と反応して自己放電
を生じる。従って、予め、これらの官能基の活性度を低
下させることが必要である。即ち、上記官能基の水素原
子をリチウム原子に置換し、炭素材料の電解液の分解に
対する活性度を下げることが出来、電解液の分解を抑制
できる。また、これらの官能基のリチウムとの反応をも
抑制することが出来るので、自己放電の少ない二次電池
が提供できる。
Since these functional groups have high activity, they may react with the electrolyte and decompose it, or the lithium occluded in the carbon material may react with these functional groups during charging, causing self-discharge. . Therefore, it is necessary to reduce the activity of these functional groups in advance. That is, by substituting the hydrogen atom of the functional group with a lithium atom, the activity of the carbon material against decomposition of the electrolytic solution can be lowered, and the decomposition of the electrolytic solution can be suppressed. Furthermore, since the reaction of these functional groups with lithium can be suppressed, a secondary battery with less self-discharge can be provided.

(へ)実施例 第1図は、本発明電池の縦断面図を示す。第1図におい
て、1は本発明の要旨とする炭素材料を主成分とする負
極(具体的な作製例は後述する)であって、負極缶2の
内底面に固着せる負極集電体3に圧着されている。4は
正極であって、活物質としてのマンガン酸化物にアセチ
レンブラック導電剤とフッ素樹脂結着剤とを、それぞれ
8o:10:10 (重量比)の割合で混合した合剤を
成型したものであり、正極缶5の内底面に圧接されてい
る。6はポリプロピレン不織布よりなるセパレータであ
って、このセパレータ6はプロピレンカーボネートと1
.2ジメトキシエタンとの等体積混合溶媒に、過塩素酸
リチウムを1モル/l溶解させた非水電解液が含浸され
ている。7は正、負極缶を絶縁する絶縁バッキング、電
池寸法は、直径25mmφ、厚み3.0mmである。
(f) Example FIG. 1 shows a longitudinal sectional view of the battery of the present invention. In FIG. 1, reference numeral 1 denotes a negative electrode mainly composed of a carbon material, which is the gist of the present invention (specific examples of fabrication will be described later), and a negative electrode current collector 3 fixed to the inner bottom surface of a negative electrode can 2. It is crimped. 4 is a positive electrode, which is made by molding a mixture of manganese oxide as an active material, an acetylene black conductive agent, and a fluororesin binder in a ratio of 8:10:10 (weight ratio), respectively. It is pressed against the inner bottom surface of the positive electrode can 5. 6 is a separator made of polypropylene nonwoven fabric, and this separator 6 is composed of propylene carbonate and 1
.. A non-aqueous electrolytic solution containing 1 mol/l of lithium perchlorate dissolved in an equal volume mixed solvent with 2-dimethoxyethane is impregnated. 7 is an insulating backing that insulates the positive and negative electrode cans, and the battery dimensions are 25 mm in diameter and 3.0 mm in thickness.

次に、負極の作製例について、詳述する。Next, an example of producing a negative electrode will be described in detail.

(作製例1) 水酸化リチウムと石炭系ピッチコークスを重量比で、1
:99となるように混合し、これを第1表に示す温度で
焼成させ、炭素とリチウム塩との複合体の粉末を作製し
た。
(Preparation example 1) Lithium hydroxide and coal-based pitch coke in a weight ratio of 1
:99 and calcined at the temperature shown in Table 1 to produce a composite powder of carbon and lithium salt.

この出発原料の石炭系ピッチコークスと、上記方法のう
ち400℃で焼成して作製した粉末を、赤外線分光分析
により分析した結果、炭素中の水酸基、カルボニル基の
水素が、リチウムと置換されていることが分かった。
Infrared spectroscopy analysis of this starting material, coal-based pitch coke, and the powder produced by firing at 400°C using the above method revealed that hydrogen in the hydroxyl and carbonyl groups in carbon had been replaced with lithium. That's what I found out.

また、これらの炭素材料中の炭素と水素とリチウムの比
を測定したところ、炭素中の水素のほとんどがリチウム
に置換されていることが分かった。
Furthermore, when the ratio of carbon to hydrogen to lithium in these carbon materials was measured, it was found that most of the hydrogen in the carbon was replaced by lithium.

この様にして作製された炭素材料とリチウム塩との複合
材料に、結着剤としてエチレンゴムを90:10 (体
積比)の割合で混合した合剤を、1.5t/cm”の圧
力で加圧成型した。そして、直径20mm、厚さ1.0
mmの炭素材料からなる電極を得た。
A mixture prepared by mixing ethylene rubber as a binder at a ratio of 90:10 (volume ratio) to the composite material of carbon material and lithium salt prepared in this way was applied at a pressure of 1.5 t/cm''. Pressure molded. Diameter 20mm, thickness 1.0
An electrode made of a carbon material with a diameter of 1 mm was obtained.

このようにして得た電極を負極として作製した電池を、
本発明電池A1〜A6、比較電池X1、X2とする。
A battery prepared using the electrode obtained in this way as a negative electrode,
Batteries of the present invention A1 to A6 and comparative batteries X1 and X2.

第1表に、本発明電池Al−A6、比較電池X1、X2
の熱処理温度を示す。
Table 1 shows the invention battery Al-A6, comparative batteries X1 and X2.
The heat treatment temperature is shown below.

(以 下 余 白) 第  1  表 このようにして作製した電池へ1〜A6、Xl、X2の
電池特性を比較した。
(Margins below) Table 1 The battery characteristics of the batteries 1 to A6, Xl, and X2 produced in this way were compared.

第2図は、本発明電池A1〜A6、比較電池X1、X2
のサイクル特性と、室温にて1ケ月保存後の電池の容量
残存率を示す図である。ここで電池の充放電条件は、放
電電流3mAで2vまで放電し、充電は3 m Aで3
.5Vを終止とした。
Figure 2 shows batteries A1 to A6 of the present invention, comparative batteries X1 and X2.
FIG. 3 is a diagram showing the cycle characteristics of the battery and the remaining capacity of the battery after being stored at room temperature for one month. Here, the battery charging and discharging conditions are: discharge to 2V at a discharge current of 3mA, and charge at 3mA to 3V.
.. The end was 5V.

また、第2表は、60℃、1ケ月保存後の本発明電池A
1〜A6、比較電池X1、X2の漏液の発生状況を示す
ものである。
In addition, Table 2 shows the battery A of the present invention after storage at 60°C for one month.
1 to A6, and the occurrence of leakage in comparative batteries X1 and X2.

第  2  表 ていることが分かった。Table 2 I found out that

この様にして作製した炭素材料を用いる他は、前記作製
例1と同様にして作製した電池を、本発明電池B1〜B
5、比較電池Yl、Y2とする。
Batteries of the present invention B1 to B
5. Comparative batteries Yl and Y2.

第  3  表 (作製例2) 石炭系ニードルコークスを、種々濃度の水酸化カリウム
水溶液中に浸漬させ、アルカリ処理を行い、r過した後
、充分乾燥して水酸基やカルボニル基の水素をカリウム
で置換した炭素材料を得た。この炭素材料を水に分散さ
せ、そのpH値を測定したところ、第3表に示す値を得
た。
Table 3 (Preparation Example 2) Coal-based needle coke is immersed in a potassium hydroxide aqueous solution of various concentrations, treated with alkali, passed through a r-filter, and dried thoroughly to replace hydrogen in hydroxyl groups and carbonyl groups with potassium. A carbon material was obtained. When this carbon material was dispersed in water and its pH value was measured, the values shown in Table 3 were obtained.

また、このうちpi(8の炭素材料を、赤外線分光分析
により分析したところ、炭素材料中の水酸基やカルボニ
ル基の水素が、カリウムに置換されこのようにして作製
した電池B1〜B6、Yl、Y2の電池特性を比較した
In addition, when the carbon material of pi (8) was analyzed by infrared spectroscopy, it was found that the hydrogen of the hydroxyl group and carbonyl group in the carbon material was replaced with potassium. The battery characteristics of the two were compared.

第3図は、本発明電池B1〜B5、比較電池Y1、Y2
のサイクル特性と、室温にて1ケ月保存後の電池の容量
残存率を示す図である。
Figure 3 shows the batteries B1 to B5 of the present invention and comparative batteries Y1 and Y2.
FIG. 3 is a diagram showing the cycle characteristics of the battery and the remaining capacity of the battery after being stored at room temperature for one month.

また、第4表は、60℃、1ケ月保存後の本発明電池B
]〜B5、比較電池Y1、Y2の漏液の発生状況を示す
ものである。
In addition, Table 4 shows the battery B of the present invention after storage at 60°C for one month.
]~B5 shows the occurrence of leakage in comparative batteries Y1 and Y2.

第  4  表 第  5  表 (作製例3) 石炭系ニードルコークスに水酸化リチウムを、第5表に
示す如く、混合した後、400℃で焼成してリチウムを
種々濃度で含む炭素材料を作製した。そして、この炭素
材料を使用した以外は、前記作製例1と同様にして作製
した電池を、本発明電池C1〜C5、比較電池Z1、Z
2とする。
Table 4 Table 5 (Production Example 3) Lithium hydroxide was mixed with coal-based needle coke as shown in Table 5, and then fired at 400°C to produce carbon materials containing lithium at various concentrations. Batteries produced in the same manner as in Production Example 1 except for using this carbon material were used as inventive batteries C1 to C5 and comparative batteries Z1 and Z.
Set it to 2.

第5表は、本発明電池C1〜C5、比較電池Z1、Z2
で使用した、水酸化リチウムと炭素材料の混合比を示す
Table 5 shows the batteries C1 to C5 of the present invention and comparative batteries Z1 and Z2.
The mixing ratio of lithium hydroxide and carbon material used in is shown below.

このようにして作製した電池C1〜C6、Zl、Z2の
電池特性を比較した。
The battery characteristics of the batteries C1 to C6, Zl, and Z2 produced in this way were compared.

第4図は、本発明電池01〜C5、比較電池Z1、Z2
のサイクル特性と、室温にて1ケ月保存後の電池の容量
残存率を示す図である。
Figure 4 shows the batteries 01 to C5 of the present invention and comparative batteries Z1 and Z2.
FIG. 3 is a diagram showing the cycle characteristics of the battery and the remaining capacity of the battery after being stored at room temperature for one month.

また、第6表は、60℃、1ケ月保存後の本発明電池0
1〜C5、比較電池Z1、Z2の漏液の発生状況を示す
ものである。
In addition, Table 6 shows the battery of the present invention after storage at 60°C for 1 month.
1 to C5, which shows the occurrence of leakage in comparative batteries Z1 and Z2.

(以 下 余 白) 第  6  表 (まとめ) これらの第2図乃至第4図、第2表、第4表及び第6表
より明らかなように、本発明電池A1〜A6、B1−B
5、C1〜C5は、サイクル特性に優れ、また自己放電
や漏液の発生が少ないものであることが分かる。この理
由は、炭素材料中の水酸基やカルボニル基の水素を、リ
チウムやカリウムなどで置換するため、この部分の活性
度が低下する。この結果、電解液の分解を抑制できるの
で電解液分解によるガス発生や、それによる電池の漏液
を抑制できる。また、充電によって炭素材料中に吸蔵さ
れたリチウムがこれらの官能基と反応し難くなるため、
自己放電による容量の低下も抑制できる。
(Margin below) Table 6 (Summary) As is clear from these Figures 2 to 4, Table 2, Table 4, and Table 6, batteries A1 to A6, B1-B of the present invention
It can be seen that Samples No. 5 and C1 to C5 have excellent cycle characteristics and less occurrence of self-discharge and leakage. The reason for this is that hydrogen in hydroxyl groups and carbonyl groups in the carbon material is replaced with lithium, potassium, etc., and the activity of these parts decreases. As a result, decomposition of the electrolyte can be suppressed, so gas generation due to decomposition of the electrolyte and leakage of the battery caused by this can be suppressed. In addition, charging makes it difficult for the lithium occluded in the carbon material to react with these functional groups.
Decrease in capacity due to self-discharge can also be suppressed.

また更に、前記作製例1において、リチウム塩と炭素材
料の焼成温度は150℃以上1500℃以下が望ましい
ことが分かる。この理由は150℃よりも低い温度では
、リチウム塩と炭素材料の反応が充分に進まず、炭素材
料中の水酸基やカルボニル基の水素がアルカリ金属と置
換されないため、これらの官能基の活性度を低下させる
ことが出来ないと考えられる。一方、1500℃を越え
ると、炭素材料自体の結晶構造が変化し、電気化学的に
リチウムを吸蔵し難くなるものと考えられる。
Furthermore, it can be seen that in Preparation Example 1, the firing temperature of the lithium salt and carbon material is preferably 150° C. or more and 1500° C. or less. The reason for this is that at temperatures lower than 150°C, the reaction between the lithium salt and the carbon material does not proceed sufficiently, and the hydrogens in the hydroxyl and carbonyl groups in the carbon material are not replaced with alkali metals, which reduces the activity of these functional groups. It is considered that it cannot be lowered. On the other hand, if the temperature exceeds 1500°C, the crystal structure of the carbon material itself changes, and it is considered that it becomes difficult to absorb lithium electrochemically.

また、前記作製例2からは、水に分散させたときのpH
値が6以上、10以下の炭素材料が二次電池の負極材料
として、優れた性能を有することが分かる。この理由は
、pH値が低いと、炭素材料中の水酸基やカルボニル基
の水素がアルカリ金属に充分に置換されないため、これ
らの官能基の活性度を低下させることが出来ないことに
起因する。一方、pH値が高い炭素材料では、炭素材料
に付着した未反応のアルカリ金属塩が多いため、これが
電解液の分解などを生じさせ、特性を劣化させるものと
考えられる。
In addition, from Preparation Example 2, the pH when dispersed in water was
It can be seen that carbon materials having a value of 6 or more and 10 or less have excellent performance as negative electrode materials for secondary batteries. The reason for this is that when the pH value is low, the hydrogens of the hydroxyl groups and carbonyl groups in the carbon material are not sufficiently substituted with alkali metals, and therefore the activity of these functional groups cannot be reduced. On the other hand, in a carbon material having a high pH value, there is a large amount of unreacted alkali metal salt attached to the carbon material, which is thought to cause decomposition of the electrolytic solution and deteriorate the characteristics.

また更に、前記作製例3についても同様の理由で、炭素
材料とリチウム塩の重量比が0.05:99.95.8
:92の間がよいものと考えられる。
Furthermore, for the same reason, the weight ratio of the carbon material and the lithium salt was 0.05:99.95.8 in Preparation Example 3.
:92 is considered good.

尚、本実施例においては、扁平形電池を例示したが、円
筒形電池においても同様な効果が得られることは言うま
でもない。
In this example, a flat battery was used as an example, but it goes without saying that similar effects can be obtained with a cylindrical battery.

更に、本実施例では、炭素材料として、石炭系ピッチコ
ークスや石炭系ニードルコークスを例示したが、他の炭
素材料、例えば石油系コークス、活性炭、黒鉛、膨張黒
鉛、カーボンブラック、及び種々有機化合物の熱分解生
成物、炭素繊維等の炭素材料であればよい。
Further, in this example, coal-based pitch coke and coal-based needle coke are exemplified as carbon materials, but other carbon materials such as petroleum-based coke, activated carbon, graphite, expanded graphite, carbon black, and various organic compounds may also be used. Any carbon material such as a thermal decomposition product or carbon fiber may be used.

(ト) 発明の効果 以上、詳述した如く、本発明によれば、自己放電による
容量減少が小さく、また電解液の分解が少なくガス発生
が抑制され、サイクル特性にも優れた二次電池が提供で
き、その工業的価値は極めて大きい。
(G) Effects of the Invention As detailed above, according to the present invention, a secondary battery is provided which has a small capacity loss due to self-discharge, less electrolyte decomposition, suppresses gas generation, and has excellent cycle characteristics. The industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の縦断面図、第2図は本発明電池A
1−八6と比較電池X1、X2のサイクル特性と保存後
の容量残存率の比較を示す図、第3図は本発明電池B1
〜B5と比較電池Y1、Y2のサイクル特性と保存後の
容量残存率の比較を示す図、第4図は本発明電池01〜
C5と比較電池Z1、z2のサイクル特性と保存後の容
量残存率の比較を示す図である。 1・・・・負極、2・・・・負極針、3・・・・負極集
電体、4・・・・正極、5・・・・正極缶、6・・・・
セパレータ、7・・・・絶縁バッキング。
FIG. 1 is a longitudinal cross-sectional view of a battery of the present invention, and FIG. 2 is a battery A of the present invention.
Figure 3 is a diagram showing a comparison of the cycle characteristics and capacity remaining rate after storage of the battery B1 of the present invention and the comparative batteries X1 and X2.
Figure 4 shows a comparison of the cycle characteristics and capacity remaining rate after storage of ~B5 and comparative batteries Y1 and Y2.
FIG. 3 is a diagram showing a comparison of cycle characteristics and capacity remaining rate after storage of C5 and comparative batteries Z1 and z2. 1... Negative electrode, 2... Negative electrode needle, 3... Negative electrode current collector, 4... Positive electrode, 5... Positive electrode can, 6...
Separator, 7...Insulating backing.

Claims (3)

【特許請求の範囲】[Claims] (1)負極材料が、電気化学的にアルカリ金属イオン、
或るいはアルカリ土類金属イオンを、吸蔵、放出する炭
素材料を主成分としてなり、 前記炭素材料は、アルカリ処理、或るいは熱処理を施し
たものであることを特徴とする二次電池。
(1) The negative electrode material electrochemically contains alkali metal ions,
Alternatively, a secondary battery comprising as a main component a carbon material that absorbs and releases alkaline earth metal ions, the carbon material being subjected to alkali treatment or heat treatment.
(2)前記炭素材料は、アルカリ金属、アルカリ土類金
属、或るいはそれらの金属の塩と共に熱処理を施された
ものであることを特徴とする請求項1記載の二次電池。
(2) The secondary battery according to claim 1, wherein the carbon material is heat-treated with an alkali metal, an alkaline earth metal, or a salt of these metals.
(3)前記炭素材料が、カーボンブラック、コークス、
グラファイト等であることを特徴とする請求項1記載の
二次電池。
(3) The carbon material is carbon black, coke,
The secondary battery according to claim 1, wherein the secondary battery is made of graphite or the like.
JP2231690A 1990-08-31 1990-08-31 Rechargeable battery Expired - Fee Related JP3070936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231690A JP3070936B2 (en) 1990-08-31 1990-08-31 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231690A JP3070936B2 (en) 1990-08-31 1990-08-31 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH04112455A true JPH04112455A (en) 1992-04-14
JP3070936B2 JP3070936B2 (en) 2000-07-31

Family

ID=16927474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231690A Expired - Fee Related JP3070936B2 (en) 1990-08-31 1990-08-31 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP3070936B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
JP2003532988A (en) * 2000-05-01 2003-11-05 ザ ジレット カンパニー Battery
JP2006310100A (en) * 2005-04-28 2006-11-09 Showa Denko Kk Graphite material for negative electrode of non-aqueous electrolyte secondary battery
JP2008198568A (en) * 2007-02-15 2008-08-28 China Steel Chemical Corp Manufacturing method of negative electrode material for lithium secondary battery, negative electrode material for lithium secondary battery manufactured by manufacturing method, and lithium secondary battery using negative electrode material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432029A (en) * 1993-05-14 1995-07-11 Sharp Kabushiki Kaisha Lithium secondary battery
EP0698934A2 (en) 1994-07-29 1996-02-28 SHARP Corporation A method of manufacturing a negative electrode for lithium secondary battery
WO1996013873A1 (en) * 1994-10-27 1996-05-09 Fuji Photo Film Co., Ltd. Nonaqueous secondary cell and its manufacturing method
EP0713256A1 (en) 1994-10-27 1996-05-22 Sharp Kabushiki Kaisha Lithium secondary battery and process for preparing negative-electrode active material for use in the same
CN1085898C (en) * 1994-10-27 2002-05-29 富士胶片公司 Non-aqueous storage battery and its preparation method
JP2003532988A (en) * 2000-05-01 2003-11-05 ザ ジレット カンパニー Battery
JP2006310100A (en) * 2005-04-28 2006-11-09 Showa Denko Kk Graphite material for negative electrode of non-aqueous electrolyte secondary battery
JP2008198568A (en) * 2007-02-15 2008-08-28 China Steel Chemical Corp Manufacturing method of negative electrode material for lithium secondary battery, negative electrode material for lithium secondary battery manufactured by manufacturing method, and lithium secondary battery using negative electrode material

Also Published As

Publication number Publication date
JP3070936B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
JP5515211B2 (en) Method for producing positive electrode active material
JP4873000B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US5531920A (en) Method of synthesizing alkaline metal intercalation materials for electrochemical cells
CN112952062B (en) Positive active material for lithium secondary battery and lithium secondary battery including the same
JP2010055778A (en) Method for manufacturing positive active material and positive active material
JP3033175B2 (en) Non-aqueous electrolyte secondary battery
CN108878801A (en) Non-aqueous secondary batteries negative electrode active material and non-aqueous secondary batteries
CN116130615A (en) Positive electrode active material for sulfide-based all-solid-state battery, method for producing same, positive electrode composite, and method for producing same
JP4967321B2 (en) Lithium ion secondary battery
JP3070936B2 (en) Rechargeable battery
KR100385700B1 (en) Non-aqueous secondary battery with superior high-temperature cycle life
JPH10321228A (en) Positive active material for lithium battery, method for producing the same, and lithium battery using the same
JP2627314B2 (en) Non-aqueous secondary battery and method for producing its positive electrode active material
JP2001068113A (en) Positive active material for lithium battery, method for producing the same, and lithium battery
CN108878800B (en) Negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JPH03241675A (en) Nonaqueous electrolyte secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
KR102733683B1 (en) Electrolyte for manganese ion battery and manganese ion battery using the same
JP2975727B2 (en) Non-aqueous electrolyte battery
CN108878882A (en) Non-aqueous secondary batteries negative electrode active material and non-aqueous secondary batteries
JP2000268858A (en) Nonaqueous electrolyte secondary battery
JPH0831406A (en) Non-aqueous solvent luthium secondary battery
JPH0787098B2 (en) Non-aqueous secondary battery
JPH04264370A (en) Nonaqueous electrolyte secondary battery
JP3021478B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees