[go: up one dir, main page]

JPH04120701A - Manufacture of ntc thermistor - Google Patents

Manufacture of ntc thermistor

Info

Publication number
JPH04120701A
JPH04120701A JP24185990A JP24185990A JPH04120701A JP H04120701 A JPH04120701 A JP H04120701A JP 24185990 A JP24185990 A JP 24185990A JP 24185990 A JP24185990 A JP 24185990A JP H04120701 A JPH04120701 A JP H04120701A
Authority
JP
Japan
Prior art keywords
film
conductive material
electrodes
batio3
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24185990A
Other languages
Japanese (ja)
Inventor
Masahiko Kinoshita
昌彦 木下
Masaaki Deguchi
雅明 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP24185990A priority Critical patent/JPH04120701A/en
Publication of JPH04120701A publication Critical patent/JPH04120701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To manufacture NTC thermistors at low cost and of high reliability with a simple process by providing the steps to form a film consisting mainly of barium titanate on a substrate of conductive material by plasma spraying, and to form a film of conductive material over this film, or other process. CONSTITUTION:An Al substrate electrode 2 of an arbitrary shape is sprayed with BaTiO3 powder by a plasma spray gun which discharges strong reductive plasma spray flames using Ar-H2 plasma gas which contains 5-50% of H2 to form a BaTiO3 film 3, whereby this film is made semiconductive by reduction. Next, leads 5a, 5b are connected to Al electrodes 2, 4 by heat-resistant binding conductive material 6a, 6b, respectively. Then, the BaTiO3 film 3, Al electrodes 2, 4 and junctions 6a, 6b of the Al electrodes 2, 4 and the leads 5a, 5b are hermetically sealed by hot-welding glass 7. This method of manufacturing NTC thermistors facilitates production and suppresses cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は温度センサや温度補償素子として用いられるN
TCサーミスタの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to N
The present invention relates to a method of manufacturing a TC thermistor.

[従来の技術] NTCサーミスタは、その抵抗値が温度の上昇にともな
って減少する負の抵抗温度係数を持つ感温半導体として
、温度センサーや温度補償素子などに広く用いられてい
る。これらのうちMn、Niなとの遷移金属の酸化物を
主体としたものは低温測定用に使用され、SiC系、コ
ランダム、ジルコニア系酸化物を主体としたものは高温
測定用に使用されている。
[Prior Art] NTC thermistors are widely used in temperature sensors, temperature compensation elements, and the like as temperature-sensitive semiconductors whose resistance value decreases as the temperature rises and has a negative temperature coefficient of resistance. Among these, those mainly composed of oxides of transition metals such as Mn and Ni are used for low-temperature measurements, and those mainly composed of SiC-based, corundum, and zirconia-based oxides are used for high-temperature measurements. .

これらのサーミスタを製造する方法としては、サーミス
タ材料をプレス成形方法または押出成形方法で成形し、
焼成する方法や、サーミスタペーストをスクリーン印刷
により設置し、焼き付ける方法、あるいはサーミスタ材
料をスパッタリングにより薄膜状に形成する方法がある
The method of manufacturing these thermistors is to mold the thermistor material using a press molding method or an extrusion method,
There is a method of baking, a method of installing the thermistor paste by screen printing and baking it, or a method of forming the thermistor material into a thin film by sputtering.

[発明が解決しようとする課題] しかしながら、プレス成形方法または押出成形方法を用
いる方法においては高温焼成が必要であり、スクリーン
印刷を用いる方法においては、電極及びサーミスタをス
クリーン印刷により作製するための印刷及び焼成の工程
か各々必要であって、製造工程が煩雑になり、スパッタ
リングを用いる方法においては高真空中にて行わなけれ
ばならない。従って、上記の従来の方法では製造に要す
るコストが高くなってしまうという欠点があった。
[Problems to be Solved by the Invention] However, methods using press molding or extrusion molding require high-temperature firing, and methods using screen printing require printing for producing electrodes and thermistors by screen printing. and firing steps are required, making the manufacturing process complicated, and in the method using sputtering, it must be performed in a high vacuum. Therefore, the above-mentioned conventional method has the disadvantage that the manufacturing cost is high.

本発明は上述した問題点を解決するためになされたもの
であり、簡単な製造工程で安価で、信頼性の高いNTC
サーミスタの製造方法を提供することを目的としている
The present invention has been made to solve the above-mentioned problems, and is an inexpensive and highly reliable NTC with a simple manufacturing process.
The purpose of the present invention is to provide a method for manufacturing a thermistor.

[課題を解決するための手段] この目的を達成するために本発明のNTCサーミスタの
製造方法はAr−H,ガスを用いたプラズマ溶射により
、チタン酸バリウムを主成分とする皮膜を導電性材料製
の基材上に形成する工程と、前記皮膜の上方に導電性材
料の皮膜を形成する工程と、前記導電性材料製の基材と
、前記導電性材料の皮膜に各々リード線を接続する工程
と、前記チタン酸バリウムを主成分とする皮膜と、前記
導電性材料の基材と前記導電性材料の皮膜と、リード線
と各導電製材料との接続部とを、ガラスを加熱溶着させ
ることにより封止する工程とからなる。
[Means for Solving the Problems] In order to achieve this object, the method for manufacturing an NTC thermistor of the present invention is to apply a film containing barium titanate as a main component to a conductive material by plasma spraying using Ar-H gas. a step of forming a film of a conductive material above the film; and a step of connecting lead wires to the base material of the conductive material and the film of the conductive material, respectively. step, heating and welding glass to the film containing barium titanate as a main component, the base material of the conductive material, the film of the conductive material, and the connection portion between the lead wire and each conductive material. and a step of sealing.

[実施例] 以下、本発明を具体化した一実施例を図面を参照して説
明する。
[Example] Hereinafter, an example embodying the present invention will be described with reference to the drawings.

第1図に示すように任意形状のAI基板電極2上に、造
粒もしくは粉砕により、粒径が5〜125μmになるよ
うに調整された、BaとTiの比が1:1であるB a
 T iOs粉末を、H2を5〜50%含むArH2プ
ラズマガスを用いた強還元性を示すプラズマ溶射炎を発
生するプラズマ溶射ガン1により溶射し、300μmの
膜厚でBaTiO3皮膜3を作製することによりB a
 T iO3皮膜3を還元して半導体化する。この時の
プラズマ溶射条件を第5図に示す。この時H2が5%以
下では還元性が弱く半導体化が低下し、50%以上では
プラズマ溶射ガン1のノズルの消耗が激しくなってしま
う虞れかある。従って、H2を5〜50%含むArH2
プラズマガスを用いたブラスマ溶射により作製するのか
良い。
As shown in FIG. 1, Ba with a Ba to Ti ratio of 1:1, whose particle size is adjusted to 5 to 125 μm by granulation or pulverization, is placed on an AI substrate electrode 2 of an arbitrary shape as shown in FIG.
By spraying TiOs powder with a plasma spray gun 1 that generates a strongly reducing plasma spray flame using ArH2 plasma gas containing 5 to 50% H2, a BaTiO3 film 3 with a film thickness of 300 μm is produced. B a
The TiO3 film 3 is reduced to become a semiconductor. The plasma spraying conditions at this time are shown in FIG. At this time, if the H2 content is less than 5%, the reducing property will be weak and the semiconductor formation will deteriorate, and if it is more than 50%, there is a risk that the nozzle of the plasma spray gun 1 will be severely worn out. Therefore, ArH2 containing 5-50% H2
It is best to make it by blast spraying using plasma gas.

更に第2図に示すようにBaTi0.皮膜3の上方より
電極としてのAIを50〜100μm程度の膜厚で溶射
する。この時のAl溶射の粉末及び溶射条件は一般的に
用いられている溶射粉末及び溶射条件でよい。
Furthermore, as shown in FIG. 2, BaTi0. AI as an electrode is thermally sprayed from above the film 3 to a thickness of about 50 to 100 μm. The powder and spraying conditions for Al thermal spraying at this time may be the commonly used thermal spraying powder and thermal spraying conditions.

次に第3図に示すようにB a T i Oa溶射皮膜
3をはさんでいるAI電極2,4に、耐熱接合導電材6
a、6bを用いて各々リード線5a、!5bを接続する
。このリード線5a、5bとしては、ジュメット線、C
u合金線、Fe−Ni系合金線。
Next, as shown in FIG.
A, 6b are used to connect the lead wires 5a, ! Connect 5b. The lead wires 5a, 5b are Dumet wire, C
u alloy wire, Fe-Ni alloy wire.

F e −N i −Co系合金線、Ni−Cr合金線
などを芯線とし、その表面にCr−Ni系やNi系のメ
ツキが被着されているものを用いればよく、耐熱性を高
める目的でPtなどの貴金属線を用いても良い。
It is sufficient to use a core wire made of Fe-Ni-Co alloy wire, Ni-Cr alloy wire, etc., and a Cr-Ni or Ni-based plating coated on the surface.The purpose is to increase heat resistance. A noble metal wire such as Pt may also be used.

次に第4図に示すようにB a T i 03皮膜3、
AI電極2,4、及びAI電極2,4とリード線5a、
5bとの接続部6a、6bとをガラス7を加熱溶着して
気密封止する。このことにより皮膜が酸化されるのを防
止することかできるため、耐候性が高くなり、従って、
信頼性の高いサーミスタとなる。
Next, as shown in FIG. 4, B a T i 03 film 3,
AI electrodes 2, 4, and AI electrodes 2, 4 and lead wire 5a,
The connecting portions 6a and 6b with the connecting portion 5b are hermetically sealed by heating and welding the glass 7. This prevents the film from being oxidized, resulting in higher weather resistance.
Becomes a highly reliable thermistor.

以上のように作製されたサーミスタは、室温における比
抵抗が2600にΩ、B定数が1576Kを示した。比
抵抗を低下させたい場合はI−12の割合を増加させて
BaTiO3皮膜の還元性を高めてやればよく、B定数
を変化させる場合はBaT i 03のBaとTiの比
を変化させるか、微量添加物として遷移金属の酸化物を
用いればよい。
The thermistor manufactured as described above had a specific resistance of 2600Ω and a B constant of 1576K at room temperature. If you want to lower the specific resistance, you can increase the proportion of I-12 to increase the reducibility of the BaTiO3 film, and if you want to change the B constant, you can change the ratio of Ba and Ti in BaTi03, or A transition metal oxide may be used as a trace additive.

以上、詳述したことから明らかなように本実施例のNT
Cサーミスタの製造方法においては、高温焼成を行った
り、高真空中での処理を必要とせず、従って、製造か容
易となり、またコストも低く抑えることが可能となる。
As is clear from the detailed description above, the NT of this example
The method for manufacturing a C thermistor does not require high-temperature firing or processing in a high vacuum, making it easy to manufacture and keeping costs low.

そしてまた、ブラスマ溶射により任意形状の導電性部材
にサーミスタを作製することが可能であるために、サー
ミスタの形状すなわち面積や厚みか自由に設定できる。
Furthermore, since it is possible to produce a thermistor on a conductive member having an arbitrary shape by plasma spraying, the shape of the thermistor, that is, the area and thickness can be freely set.

尚、本実施例においては電極材料にAIを用いたが、そ
の他、Niなどのオーム性接触か得られる材料ならすべ
てよい。
In this embodiment, AI was used as the electrode material, but any other material that can provide ohmic contact, such as Ni, may be used.

[発明の効果コ 以上、詳述したことから明らかなように本発明のNTC
サーミスタの製造方法においては、高温焼成を行ったり
、高真空中での処理を必要とせす、従って、製造が容易
となり、またコストも低く抑えることが可能となる。そ
してまた、プラズマ溶射により任意形状の導電性部材に
サーミスタを作製することが可能であるために、サーミ
スタの形状すなわち面積や厚みが自由に設定できる。
[Effects of the Invention] As is clear from the above detailed description, the NTC of the present invention
The thermistor manufacturing method does not require high-temperature firing or processing in a high vacuum, so manufacturing is easy and costs can be kept low. Furthermore, since it is possible to fabricate a thermistor on a conductive member of any shape by plasma spraying, the shape of the thermistor, that is, the area and thickness, can be freely set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図までは本発明を具体化した実施例を示
すもので、第1図はAI電極基材にプラズマ溶射により
BaTi0a皮膜を形成している状態の斜視図、第2図
はB a T i Oa皮膜の上方にAI主電極形成し
た状態の断面図、第3図はAI主電極リード線を取り付
けた状態の断面図、第4図はガラス封止した状態の断面
図、第5図はプラズマ溶射の条件を示す表である。 図中、1はプラズマ溶射ガン、2はA1電極基材、3は
BaTiO3皮膜、4はAl溶射電極、!5a、5bは
リード線、6a、6bは耐熱接合導電材、7はガラスで
ある。
1 to 5 show embodiments embodying the present invention. FIG. 1 is a perspective view of a BaTi0a film being formed on an AI electrode base material by plasma spraying, and FIG. A cross-sectional view of the AI main electrode formed above the B a Ti Oa film, Figure 3 is a cross-sectional view of the AI main electrode lead wire attached, Figure 4 is a cross-sectional view of the state sealed with glass, Figure 5 is a table showing the conditions for plasma spraying. In the figure, 1 is a plasma spray gun, 2 is an A1 electrode base material, 3 is a BaTiO3 film, and 4 is an Al spray electrode. 5a and 5b are lead wires, 6a and 6b are heat-resistant bonding conductive materials, and 7 is glass.

Claims (1)

【特許請求の範囲】[Claims] 1.Ar−H_2ガスを用いたプラズマ溶射により、チ
タン酸バリウムを主成分とする皮膜を導電性材料製の基
材上に形成する工程と、 前記皮膜の上方に導電性材料の皮膜を形成する工程と、 前記導電性材料製の基材と、前記導電性材料の皮膜に各
々リード線を接続する工程と、 前記チタン酸バリウムを主成分とする皮膜と、前記導電
性材料の基材と前記導電性材料の皮膜と、リード線と各
導電製材料との接続部とを、ガラスを加熱溶着させるこ
とにより封止する工程とからなることを特徴とするNT
Cサーミスタの製造方法。
1. A step of forming a film containing barium titanate as a main component on a base material made of a conductive material by plasma spraying using Ar-H_2 gas, and a step of forming a film of a conductive material above the film. , connecting lead wires to the base material made of the conductive material and the film made of the conductive material, respectively; the film containing barium titanate as a main component, the base material made of the conductive material, and the conductive material; NT characterized by comprising a step of sealing a film of the material and a connecting portion between the lead wire and each conductive material by heating and welding glass.
A method for manufacturing a C thermistor.
JP24185990A 1990-09-12 1990-09-12 Manufacture of ntc thermistor Pending JPH04120701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24185990A JPH04120701A (en) 1990-09-12 1990-09-12 Manufacture of ntc thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24185990A JPH04120701A (en) 1990-09-12 1990-09-12 Manufacture of ntc thermistor

Publications (1)

Publication Number Publication Date
JPH04120701A true JPH04120701A (en) 1992-04-21

Family

ID=17080579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24185990A Pending JPH04120701A (en) 1990-09-12 1990-09-12 Manufacture of ntc thermistor

Country Status (1)

Country Link
JP (1) JPH04120701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044370A1 (en) 2008-10-31 2010-05-12 Suzuki Motor Corporation Resin composition, resin molding and resin composition manufacturing method
DE102010017254A1 (en) 2009-06-25 2011-01-13 Suzuki Motor Corporation, Hamamatsu-Shi Mold for injection molding and process for producing an injection molded product
US20130256945A1 (en) * 2012-03-30 2013-10-03 Nike, Inc. Method Of Making A Golf Ball

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009044370A1 (en) 2008-10-31 2010-05-12 Suzuki Motor Corporation Resin composition, resin molding and resin composition manufacturing method
DE102010017254A1 (en) 2009-06-25 2011-01-13 Suzuki Motor Corporation, Hamamatsu-Shi Mold for injection molding and process for producing an injection molded product
DE102010017254B4 (en) * 2009-06-25 2019-09-12 Suzuki Motor Corporation Mold for injection molding
US20130256945A1 (en) * 2012-03-30 2013-10-03 Nike, Inc. Method Of Making A Golf Ball

Similar Documents

Publication Publication Date Title
TW535172B (en) Thermistor and method of manufacture
EP3109868B1 (en) Preparation method for electronic components with an alloy electrode layer
US3023390A (en) Applying electrodes to ceramic members
JPH04120701A (en) Manufacture of ntc thermistor
CA2368337C (en) Thermistor and method of manufacture
US4835508A (en) Zinc oxide type lightning-conducting element
JPH10199708A (en) Temperature sensor
KR100369895B1 (en) Thermistor for Middle-High Temperature and Manufacturing Method thereof
JP2009059755A (en) NTC thermistor electrode
JP2791890B2 (en) Spark plug for internal combustion engine
JPS61105804A (en) Thermistor element and manufacuture thereof
KR920004034B1 (en) Semiconducting PTC Ceramic Heating Element and Manufacturing Method Thereof
JPS6333282B2 (en)
JPS6322444B2 (en)
US3414861A (en) Thermistor and method of manufacture
JPH04192302A (en) Thin film thermistor element
KR0183558B1 (en) Method of manufacturing thick film type ntc thermister
JPH01253205A (en) thin film thermistor
JPH10312903A (en) Temperature sensor
JPH01278001A (en) Thermistor temperature transducer structure
JPH10303004A (en) Thermistor element and its manufacture
JPH04106893A (en) Manufacturing method of PTC sheet heating element
JPS5923082B2 (en) Thermistor and its manufacturing method
JPS5821801B2 (en) Temperature sensing element for high temperature and its manufacturing method
JPH04192303A (en) Chip type thermister