JPH04138332A - Optical pulse tester - Google Patents
Optical pulse testerInfo
- Publication number
- JPH04138332A JPH04138332A JP26262790A JP26262790A JPH04138332A JP H04138332 A JPH04138332 A JP H04138332A JP 26262790 A JP26262790 A JP 26262790A JP 26262790 A JP26262790 A JP 26262790A JP H04138332 A JPH04138332 A JP H04138332A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light source
- optical
- light
- photodetector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光ファイバ等の光伝送路の特性を測定する光
パルス試験器に関し、特に可変波長光源を用いた光パル
ス試験器に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical pulse tester for measuring the characteristics of an optical transmission line such as an optical fiber, and particularly relates to an optical pulse tester using a variable wavelength light source. be.
光ファイバは、その大容量性を生かした光LANシステ
ム(Local Area Network Syst
em)やその低損失性を生かした海底ケーブル等の長距
離伝送などに広く応用されている。近年、通信容量の増
大を目的とした波長多重化や伝送距離の拡大を目的とし
た光フアイバ増幅器が研究されている。Optical fibers are used in optical LAN systems (Local Area Network System) that take advantage of their large capacity.
It is widely applied to long-distance transmission such as em) and submarine cables that take advantage of its low loss property. In recent years, research has been conducted on wavelength multiplexing to increase communication capacity and optical fiber amplifiers to extend transmission distance.
波長多重通信の回線には、合分波器が挿入されており、
一つの入力ポートからある1つの出力ポートに対して伝
送波長が定まっている。また、光フアイバ増幅器も中心
波長に対する帯域が数nmと狭く、該光フアイバ増幅器
の入った伝送系にはおのずと波長の制約が課せられるこ
とになる。A multiplexer/demultiplexer is inserted in the wavelength division multiplexing communication line.
The transmission wavelength is determined from one input port to one output port. Furthermore, optical fiber amplifiers also have a narrow band with respect to the center wavelength of several nanometers, and wavelength restrictions are naturally imposed on transmission systems that include optical fiber amplifiers.
通常、光通信系では伝送損失、障害点等の測定が行われ
ている。この測定には、光パルス試験器(Optica
l Time Domain Reflectomet
er、以下、0TDRと称する。)が使用されるが、現
状のこれらの測定器の多くは発振波長が固定されたファ
プリーペロー型半導体レーザを使用しており、上述した
ような波長に制約のある伝送系には適していない。これ
を解決する手段として複数の波長の異なる光源を内蔵す
る0TDRや、特開昭62−21035号「光ファイバ
の試験装置」に示された、ファイバにラマン散乱を発生
させて離散的に波長が選択できる光源を用いた0TDR
や、特開平2−151742号「光スィッチを含む光線
路の損失分布測定装置」に示された、半導体レーザの温
度を変化させることにより連続的に波長が可変できる光
源を用いた0TDRなどがある。Normally, transmission loss, failure points, etc. are measured in optical communication systems. For this measurement, an optical pulse tester (Optica
l Time Domain Reflectomet
er, hereinafter referred to as 0TDR. ), but most of these current measuring instruments use Fapley-Perot semiconductor lasers with a fixed oscillation wavelength, making them unsuitable for transmission systems with wavelength restrictions such as those mentioned above. . As a means to solve this problem, there is the 0TDR, which has a built-in light source with multiple different wavelengths, and the method that generates Raman scattering in the fiber, which is shown in Japanese Patent Application Laid-Open No. 62-21035, "Optical Fiber Testing Device," to discretely change wavelengths. 0TDR with selectable light sources
and 0TDR using a light source whose wavelength can be continuously varied by changing the temperature of a semiconductor laser, as shown in Japanese Patent Application Laid-Open No. 2-151742 "Loss distribution measurement device for optical line including optical switch". .
離散的に波長を可変できる0TDRは所望の波長でのデ
ータが得られるとは限らないため測定に制約が多い。特
に複数の波長の異なる光源を内蔵する方式は非常に高価
となる。連続的に波長を可変できる0TDRにはこのよ
うな制約がないが、従来の連続可変波長型0TDRは一
定波長における損失特性は測定できても、各波長間での
損失特性の比較ができないという欠点があった。たとえ
ば一定位置における損失の波長依存性を測定できない。0TDR, which allows wavelengths to be varied discretely, has many restrictions on measurement because it is not always possible to obtain data at a desired wavelength. In particular, a system that incorporates a plurality of light sources with different wavelengths is extremely expensive. 0TDR, which can continuously vary wavelength, does not have such restrictions, but conventional continuously variable wavelength 0TDR has the disadvantage that although it can measure loss characteristics at a fixed wavelength, it is not possible to compare loss characteristics between each wavelength. was there. For example, it is not possible to measure the wavelength dependence of loss at a fixed position.
これは可変波長光源では波長を変えると発振出力が変動
するためである。This is because in a variable wavelength light source, when the wavelength is changed, the oscillation output changes.
本発明は、上述のような事情に鑑み、光伝送路の所望の
波長2位置における損失特性を測定できる光パルス試験
器を提供することを目的とするものである。SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, it is an object of the present invention to provide an optical pulse tester that can measure loss characteristics at two desired wavelength positions of an optical transmission line.
この目的を達成するために、本発明では、可変波長光源
で発振された光パルス出力の値を得、そのデータによっ
て被測定光ファイバからの反射光のデータを補正するこ
とにより、各波長間のレベル補正を行う。光パルス出力
の値を得る一つの方法として、可変波長光源の出力を光
分岐手段を用いて分岐し、その分岐した出力を光検出器
に加えてそれを得る方法がある。また、別の方法として
可変波長光源の出力の値を波長対出力特性としてメモリ
に保存しておき、発振波長に応じて読み出してもよい。In order to achieve this objective, the present invention obtains the value of the optical pulse output oscillated by the variable wavelength light source, and corrects the data of the reflected light from the optical fiber under test using that data, thereby making it possible to Perform level correction. One method for obtaining the value of the optical pulse output is to branch the output of the variable wavelength light source using an optical branching means, and to obtain it by applying the branched output to a photodetector. Alternatively, the value of the output of the variable wavelength light source may be stored in a memory as a wavelength versus output characteristic, and read out according to the oscillation wavelength.
以下、図面に従い本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図に本発明の第1の実施例を示す。可変波長光源に
は、回折格子を用いた外部共振器型半導体レーザを用い
る。この半導体レーザの原理図を第2図(a)、 (b
)に示す。回折格子からなる外部共振器3Aによって発
振波長を制御する。回折格子の角度θを変えることによ
り発振波長を変えることができる。光パルスの大きさの
値を得る方法としては、可変波長光源3の出力部に第2
の光分岐手段4と第2の光検出器5を設けた。FIG. 1 shows a first embodiment of the present invention. An external cavity semiconductor laser using a diffraction grating is used as the variable wavelength light source. The principle diagram of this semiconductor laser is shown in Figures 2(a) and 2(b).
). The oscillation wavelength is controlled by an external resonator 3A consisting of a diffraction grating. The oscillation wavelength can be changed by changing the angle θ of the diffraction grating. As a method of obtaining the value of the magnitude of the optical pulse, a second
A light branching means 4 and a second photodetector 5 were provided.
次にこの実施例での動作を説明する。キーボード15か
らのキー人力、または演算手段13に内蔵されたプログ
ラムによって発振すべき所望の波長が決定される。光源
制御用メモリlには、可変波長光源3の種類に応じた該
可変波長光源3の発振波長を制御するデータが記憶され
ている。例えば、可変波長光源3が本例のような回折格
子を用いた外部共振器型の半導体レーザー3Bの場合に
は、発振波長に対する該回折格子の角度θと該半導体レ
ーザ3Bのパルス電流ILが記憶されている(例、13
頁第1表)。光源制御手段2は光源制御用メモリ1から
所望の波長に対する該回折格子の角度θと該半導体レー
ザ3Bのパルス電流ILを読出す。Next, the operation in this embodiment will be explained. The desired wavelength to be oscillated is determined by keystrokes from the keyboard 15 or by a program built into the calculation means 13. The light source control memory 1 stores data for controlling the oscillation wavelength of the variable wavelength light source 3 according to the type of the variable wavelength light source 3. For example, if the variable wavelength light source 3 is an external cavity type semiconductor laser 3B using a diffraction grating as in this example, the angle θ of the diffraction grating with respect to the oscillation wavelength and the pulse current IL of the semiconductor laser 3B are stored. (e.g. 13
(Table 1, page). The light source control means 2 reads out the angle θ of the diffraction grating for a desired wavelength and the pulse current IL of the semiconductor laser 3B from the light source control memory 1.
θは外部共振器(回折格子) 3Aの駆動用モータ(図
示せず)の電流に変換され、回折格子を所定の角度に動
かす。パルス電流ILは半導体レーザ3Bに流れ、可変
波長光源3ば所定の波長の光パルスを発振させる。可変
波長光源・3より出力された光パルスは、第2の光分岐
手段4でそのエネルギの一部を分岐する。この第2の光
分岐手段4ば例えば光カプラなどで構成される。分岐さ
れた光は第2の光検出器5で電気信号に変換され、レベ
ル補正用信号となる。第2の光分岐手段4を通って第1
の光分岐手段6側に出た光パルスは、該第1の光分岐手
段6のポートAからポー)Bを通り、接続端7に接続さ
れた被測定光ファイバ8に出力される。第1の光分岐手
段6の例としては光カプラまたは光スィッチなどがある
。被測定光ファイバ8からの反射光は第1の光分岐手段
6のポートBからポートCを経て第1の光検出器9に導
かれ、電気信号に変換される。この信号は増幅器10で
増幅された後、レベル補正手段11において第2の光検
出器5からの信号によって補正される。補正された信号
は測定データとして発振波長毎に測定データ用メモリ1
2に記憶される。所望の波長域での測定が終了すると、
演算手段13によって計算処理され、例えば第3図に示
すように通常の0TDRで測定される距離対損失特性が
表示器14に表示される。キーボード15からの指示に
より、演算手段13によって測定データを所望の形態に
することができ、例えば第3図に示すような特定位置に
おける損失対波長特性を表示器14に表示させることも
できる。特に距離、波長、損失による3次元表示を行え
ば光伝送路の異常な曲がりや不整合により発生する波長
依存性の損失なども一目で発見でき保守には好都合であ
る。θ is converted into a current of a 3A driving motor (not shown) for an external resonator (diffraction grating), and moves the diffraction grating to a predetermined angle. The pulse current IL flows through the semiconductor laser 3B, causing the variable wavelength light source 3 to oscillate a light pulse of a predetermined wavelength. A part of the energy of the optical pulse outputted from the variable wavelength light source 3 is branched by the second optical branching means 4 . This second optical branching means 4 is composed of, for example, an optical coupler. The branched light is converted into an electrical signal by the second photodetector 5, and becomes a level correction signal. The first light passes through the second light branching means 4.
The optical pulses outputted to the optical branching means 6 side pass from port A to port B of the first optical branching means 6 and are output to the optical fiber to be measured 8 connected to the connection end 7. Examples of the first optical branching means 6 include an optical coupler or an optical switch. The reflected light from the optical fiber 8 to be measured is guided from port B to port C of the first optical branching means 6 to the first photodetector 9, where it is converted into an electrical signal. This signal is amplified by the amplifier 10 and then corrected by the signal from the second photodetector 5 in the level correction means 11. The corrected signal is stored as measurement data in measurement data memory 1 for each oscillation wavelength.
2 is stored. Once the measurement in the desired wavelength range is completed,
The calculation process is performed by the calculation means 13, and the distance vs. loss characteristic measured in a normal 0TDR is displayed on the display 14, for example, as shown in FIG. In response to instructions from the keyboard 15, the measurement data can be converted into a desired form by the calculation means 13, and the loss versus wavelength characteristic at a specific position as shown in FIG. 3 can be displayed on the display 14, for example. In particular, if a three-dimensional display of distance, wavelength, and loss is performed, wavelength-dependent losses caused by abnormal bends or misalignment of the optical transmission line can be detected at a glance, which is convenient for maintenance.
第4図に第2の実施例を示す。可変波長光源3は第1の
実施例と同じく、回折格子を用いた外部共振器型半導体
レーザを用いる。光パルス出力の値を得る方法として光
源制御用メモリ1に発振波長とともに予め光パルスの出
力レベルを記憶させておく。FIG. 4 shows a second embodiment. As in the first embodiment, the variable wavelength light source 3 uses an external cavity type semiconductor laser using a diffraction grating. As a method for obtaining the value of the optical pulse output, the output level of the optical pulse is stored in advance in the light source control memory 1 along with the oscillation wavelength.
次に本実施例での動作を説明する。発振すべき波長の決
定は第1の実施例と同様である。光源制御用メモリ1に
は第1の実施例と同じく回折格子の角度θと半導体レー
ザ3Bのパルス電流IL、さらにその時の発振出力P0
が記憶されている。光源制御手段2は光源制御用メギリ
1から、所望の波長における該回折格子の角度θと半導
体レーザ3Bのパルス電流ILとを読出し、可変波長光
源3を発振させる。この光パルスは第1の光分岐手段6
のポートAからポートBを通り接続端7につながれた被
測定光ファイバ8に出力される。被測定光ファイバ8か
らの反射光は第1の光分岐手段6のポートBからポート
Cを経て第1の光検出器9に導かれ、電気信号に変換さ
れる。この信号は増幅器10で増幅される。Next, the operation in this embodiment will be explained. The determination of the wavelength to oscillate is the same as in the first embodiment. The light source control memory 1 stores the angle θ of the diffraction grating, the pulse current IL of the semiconductor laser 3B, and the oscillation output P0 at that time, as in the first embodiment.
is memorized. The light source control means 2 reads out the angle θ of the diffraction grating at a desired wavelength and the pulse current IL of the semiconductor laser 3B from the light source control scale 1, and causes the variable wavelength light source 3 to oscillate. This light pulse is sent to the first light branching means 6
The signal is output from port A to port B to the optical fiber to be measured 8 connected to the connection end 7. The reflected light from the optical fiber 8 to be measured is guided from port B to port C of the first optical branching means 6 to the first photodetector 9, where it is converted into an electrical signal. This signal is amplified by amplifier 10.
一方、光源出力データ読み込み手段16は可変波長光源
3の光パルスの出力値を光源制御用メモリ1から読み込
んで、レベル補正手段11に送る。On the other hand, the light source output data reading means 16 reads the output value of the optical pulse of the variable wavelength light source 3 from the light source control memory 1 and sends it to the level correction means 11.
レベル補正手段11はこの信号に従って第1の光検出器
9からの出力信号の補正を行う。以後の動作は第1の実
施例と同じである。The level correction means 11 corrects the output signal from the first photodetector 9 according to this signal. The subsequent operations are the same as in the first embodiment.
このように、光源制御用メモリ1に光パルスの出力レヘ
ルまで予め記憶させると、第1図に示す第1の実施例に
おける第2の光分岐手段4と第2の光検出器5とは不用
になり、構造が簡便となる特徴がある。In this way, if the light source control memory 1 stores the output level of the optical pulse in advance, the second optical branching means 4 and the second photodetector 5 in the first embodiment shown in FIG. 1 are unnecessary. It is characterized by a simple structure.
一方、第1の実施例は実際のパルス光を検出しているの
でより高精度となる特徴がある。On the other hand, since the first embodiment detects actual pulsed light, it is characterized by higher accuracy.
第3の実施例を第5図に示す。可変波長光源3には第6
図に示す2電極型D F B半導体レーザを用いる。こ
の半導体レーザは2つの電極に流れる電流1+、Itを
適切に決めることにより発振波長を連続的に可変できる
。光パルス出力の値を得る方法としてこの半導体レーザ
が後方へも光が出る事を利用して、第2の光検出器5を
レーザの後方へ配置し、第1の実施例における第2の光
分岐手段を省略した。また、この第3の実施例では第1
の光分岐手段として、音響光学効果型光スイッチ(以下
、AO光スイッチと称す。)を使用した。A third embodiment is shown in FIG. The variable wavelength light source 3 has a sixth
A two-electrode type D F B semiconductor laser shown in the figure is used. This semiconductor laser can continuously vary the oscillation wavelength by appropriately determining the currents 1+ and It flowing through the two electrodes. As a method of obtaining the value of the optical pulse output, the second photodetector 5 is placed behind the laser, taking advantage of the fact that this semiconductor laser also emits light backwards, and the second light detector 5 is placed behind the laser. The branching means was omitted. Furthermore, in this third embodiment, the first
As the optical branching means, an acousto-optic effect optical switch (hereinafter referred to as AO optical switch) was used.
この第3の実施例での動作を説明する。発振すべき波長
の決定は第1の実施例と同様である。The operation in this third embodiment will be explained. The determination of the wavelength to oscillate is the same as in the first embodiment.
光源制御用メモリ1には第2表(14頁に掲載)に示す
ような発振波長に対する2つの電極に流れる電流1+、
Itの関係が記憶されている。The light source control memory 1 has currents 1+ flowing through the two electrodes corresponding to the oscillation wavelengths as shown in Table 2 (listed on page 14);
The relationship of It is stored.
光源制御手段2は光源制御用メモリ1から記憶されてい
る電流1+、Igを読出し、可変波長光源3に所定の波
長の光パルスを発振させる。The light source control means 2 reads the stored current 1+, Ig from the light source control memory 1, and causes the variable wavelength light source 3 to oscillate a light pulse of a predetermined wavelength.
光源制御用メモリ1には・以上の波長制御データととも
に、後に述べる発振波長に対応したAO光スイッチ6a
の駆動周波数を記憶させておく。The light source control memory 1 includes the above-mentioned wavelength control data as well as an AO optical switch 6a corresponding to the oscillation wavelength described later.
The drive frequency of is memorized.
可変波長光源3からの光パルスは、AO光スイッチ6a
のポートAにはいる。The optical pulse from the variable wavelength light source 3 is transmitted to the AO optical switch 6a.
It enters port A of.
ここで、AO光スイッチについて述べる。このAO光ス
イッチは媒質に超音波を加えると媒質の屈折率が周期的
に変化し、回折が生じることを利用している。AO光ス
イッチにおける回折角θと波長λの関係は、音響光学効
果を有する媒質の屈折率をn、音響光学効果を有する媒
質内の超音波の伝搬速度を■、駆動周波数をfとして、
次式(1)のように表すことができる。Here, the AO optical switch will be described. This AO optical switch utilizes the fact that when ultrasonic waves are applied to a medium, the refractive index of the medium changes periodically, causing diffraction. The relationship between the diffraction angle θ and the wavelength λ in an AO optical switch is as follows: where n is the refractive index of the medium that has an acousto-optic effect, ■ is the propagation speed of the ultrasonic wave in the medium that has an acousto-optic effect, and is the driving frequency f.
It can be expressed as the following equation (1).
θ−5in−’(fλ/2nV) (1)こ
こで、可変波長光源の発振可能波長全域に渡って、音響
光学効果を有する媒質の屈折率が同じであると仮定する
と、式(1)から明かなように、回折角θを一定に保つ
ために、波長λに従って波長λと駆動周波数fとの積λ
fが一定となるように駆動周波数fを変化させれば良い
ことが判る。θ-5in-'(fλ/2nV) (1) Here, assuming that the refractive index of the medium having an acousto-optic effect is the same over the entire range of wavelengths that can be oscillated by the variable wavelength light source, from equation (1), As is clear, in order to keep the diffraction angle θ constant, the product λ of the wavelength λ and the driving frequency f is adjusted according to the wavelength λ.
It can be seen that it is sufficient to change the drive frequency f so that f remains constant.
本実施例では、光パルスが発生する時間帯はAO光スイ
ッチのポートAとポートBを接続し、被測定光ファイバ
からの反射光が帰って来る時間帯はポートBとポートC
を接続するよう制御し、その時の駆動周波数fは発振可
能波長域から式(1)を用いて求め、光源制御用メモリ
lに記憶しておく。この駆動周波数データはAO光スイ
ッチ制御手段17によって、該AO光スイッチ制御手段
17に内蔵された信号発生手段(図示せず)で所定の周
波数のAO光スイッチ駆動信号が作られ、AO光スイッ
チ6aの動作を上記のように制御する。In this example, port A and port B of the AO optical switch are connected during the time period when optical pulses are generated, and port B and port C are connected during the time period when the reflected light from the optical fiber under test returns.
The drive frequency f at that time is determined using equation (1) from the oscillation possible wavelength range and stored in the light source control memory l. This drive frequency data is used by the AO optical switch control means 17 to generate an AO optical switch drive signal of a predetermined frequency by a signal generating means (not shown) built in the AO optical switch control means 17, and then generates an AO optical switch drive signal of a predetermined frequency. The operation of is controlled as described above.
被測定光ファイバ8からの反射光はAO光スイッチ6a
の切替えによって第1の光検出器9に入り、電気信号に
変換される。以後の動作は第1の実施例と同じである。The reflected light from the optical fiber 8 to be measured is transmitted through the AO optical switch 6a.
The signal enters the first photodetector 9 by switching, and is converted into an electrical signal. The subsequent operations are the same as in the first embodiment.
この実施例においても、光源制御用メモリに発振波長、
AO光スイッチの駆動周波数データの他に光パルスの出
力レベルを記憶させることも可能である。In this embodiment as well, the oscillation wavelength is stored in the light source control memory.
In addition to the driving frequency data of the AO optical switch, it is also possible to store the output level of the optical pulse.
本発明の光パルス試験器は可変波長光源を光源とし、そ
の光源の出力パルスのレベルを測定し、あるいはそのレ
ベルを記録し、必要な補正や光学系の制御に用いること
としたから、この光パルス試験器を使用することによっ
て、従来の距離対損失特性の他に、回線途中に設置され
た光部品の損失の波長に対する損失特性の測定が光部品
を外すという操作をすることなくできる。The optical pulse tester of the present invention uses a variable wavelength light source as a light source, measures the level of the output pulse of the light source, or records the level, and uses it for necessary correction and control of the optical system. By using a pulse tester, in addition to the conventional distance vs. loss characteristics, it is possible to measure the loss characteristics of optical components installed in the middle of the line versus the wavelength without removing the optical components.
特に距離、波長、損失の3次元表示を行なえば光伝送路
の異常な曲がりや不整合により発生する波長依存性の損
失が一目で発見でき、保守には好都合である。合分波器
によって枝別れする光伝送路でも分波する波長を指定す
ることにより所望の路線のみの特性を得ることができる
。In particular, if distance, wavelength, and loss are displayed three-dimensionally, wavelength-dependent losses caused by abnormal bends or misalignment of the optical transmission line can be discovered at a glance, which is convenient for maintenance. Even if the optical transmission line is branched by a multiplexer/demultiplexer, the characteristics of only the desired line can be obtained by specifying the wavelength to be branched.
第 表 第 表 =14No. table No. table =14
第1図は本発明の第1の実施例を、第2図は外部共振器
型半導体レーザの例を、第3図は測定結果の例を、第4
図は本発明の第2の実施例を、第5図は本発明の第3の
実施例を、第6図は2電極型DFB半導体レーザの構造
と特性例を、第1表は外部共振器型半導体レーザを用い
たときの光源制御用メモリのデータの一例を、第2表は
2電極型半導体レーザを用いたときの光源制御用メモリ
のデータの一例をそれぞれ示す。
図において、1は光源制御用メモリ、2は光源制御手段
、3は可変波長光源、4は第2の光分岐手段、5は第2
の光検出器、6は第1の光分岐手段、7は接続端、8は
被測定光ファイバ、9は第1の光検出器、10は増幅器
、11はレベル補正手段、12は測定データ用メモリ、
13は演算手段、14は表示器をそれぞれ示す。
特許出願人 アンリツ株式会社
代理人 弁理士 小 池 龍太部
第6
図Figure 1 shows the first embodiment of the present invention, Figure 2 shows an example of an external cavity type semiconductor laser, Figure 3 shows an example of measurement results, and Figure 4 shows an example of the measurement results.
The figure shows the second embodiment of the present invention, Figure 5 shows the third embodiment of the present invention, Figure 6 shows the structure and characteristic example of a two-electrode DFB semiconductor laser, and Table 1 shows the external cavity. Table 2 shows an example of the data in the light source control memory when a type semiconductor laser is used, and Table 2 shows an example of the data in the light source control memory when a two-electrode type semiconductor laser is used. In the figure, 1 is a light source control memory, 2 is a light source control means, 3 is a variable wavelength light source, 4 is a second light branching means, and 5 is a second light source control means.
, 6 is a first optical branching means, 7 is a connection end, 8 is an optical fiber to be measured, 9 is a first photodetector, 10 is an amplifier, 11 is a level correction means, 12 is for measurement data memory,
Reference numeral 13 indicates a calculation means, and reference numeral 14 indicates a display device. Patent applicant: Anritsu Corporation Representative: Patent attorney: Ryutabe Koike Figure 6
Claims (1)
特性を測定する光パルス試験器において、 可変波長光源(3)と、該可変波長光源の光パルス出力
の値を得る手段(4、5)と、その値を用いて被測定光
ファイバ(8)からの反射光レベルを補正する手段(1
1)とを備えたことを特徴とする光パルス試験器。[Scope of Claims] An optical pulse tester for measuring characteristics of an optical transmission line, which includes a light source, an optical branching means, and a photodetector, comprising: a variable wavelength light source (3); and an optical pulse of the variable wavelength light source. Means (4, 5) for obtaining the output value, and means (1) for correcting the level of reflected light from the optical fiber to be measured (8) using the value.
1) An optical pulse tester characterized by comprising:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2262627A JP3017263B2 (en) | 1990-09-28 | 1990-09-28 | Optical pulse tester |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2262627A JP3017263B2 (en) | 1990-09-28 | 1990-09-28 | Optical pulse tester |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH04138332A true JPH04138332A (en) | 1992-05-12 |
| JP3017263B2 JP3017263B2 (en) | 2000-03-06 |
Family
ID=17378426
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2262627A Expired - Fee Related JP3017263B2 (en) | 1990-09-28 | 1990-09-28 | Optical pulse tester |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3017263B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000330082A (en) * | 1999-05-19 | 2000-11-30 | Advantest Corp | Optical pulse generator |
| WO2020250782A1 (en) * | 2019-06-11 | 2020-12-17 | 住友電工オプティフロンティア株式会社 | Optical transmission path inspecting system, and optical transmission path inspecting device |
-
1990
- 1990-09-28 JP JP2262627A patent/JP3017263B2/en not_active Expired - Fee Related
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000330082A (en) * | 1999-05-19 | 2000-11-30 | Advantest Corp | Optical pulse generator |
| WO2020250782A1 (en) * | 2019-06-11 | 2020-12-17 | 住友電工オプティフロンティア株式会社 | Optical transmission path inspecting system, and optical transmission path inspecting device |
| JPWO2020250782A1 (en) * | 2019-06-11 | 2020-12-17 | ||
| US12111224B2 (en) | 2019-06-11 | 2024-10-08 | Sumitomo Electric Optifrontier Co., Ltd. | Optical transmission path inspecting system, and optical transmission path inspecting device |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3017263B2 (en) | 2000-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2994531B2 (en) | Optical wavelength dispersion measurement method and apparatus | |
| JP3989627B2 (en) | Optical gate device, method of manufacturing the device, and system including the device | |
| EP0553460B1 (en) | Method and apparatus for measuring polarization mode dispersion in optical devices | |
| US6141090A (en) | Fiber optic cable having a specified path average dispersion | |
| JPS6252426A (en) | Multi-wavelength fiber optic reflectometer | |
| JPH109961A (en) | Optical wavelength monitoring device | |
| JP3306819B2 (en) | Optical pulse tester | |
| GB2096762A (en) | Optical fibre sensor device | |
| JP2003322588A (en) | Reflection type method and instrument for measuring brillouin spectrum distribution | |
| US5557694A (en) | Method of determining the zero dispersion wavelength of an optical waveguide | |
| US6643603B2 (en) | Chromatic dispersion distribution measurement apparatus and method for the same | |
| JPH04138332A (en) | Optical pulse tester | |
| JPH05248996A (en) | Optical fiber wavelength dispersion measuring device | |
| JP2002168733A (en) | Optical fiber wavelength dispersion distribution measuring instrument and measuring method | |
| JPS62207927A (en) | Optical fiber measuring instrument | |
| US5426502A (en) | Optical fiber interference wavelength/frequency detection apparatus which eliminates a movable element | |
| JP2002168732A (en) | Optical fiber wavelength dispersion distribution measuring instrument and measuring method | |
| US6580500B2 (en) | Chromatic dispersion distribution measurement apparatus and method for the same | |
| JPH04285836A (en) | Measuring apparatus for transmission characteristic of optical fiber | |
| JP2002236077A (en) | Device for measuring distribution of wavelength dispersion, and measuring method thereof | |
| EP0685722A2 (en) | Method of measuring the nonlinear refractive index in a single-mode optical fibre | |
| EP0998662B1 (en) | Wavelength measuring system | |
| JP2657018B2 (en) | Optical Connector Return Loss Measurement System | |
| JPH03175333A (en) | Light transmission line measuring device | |
| CN114061637A (en) | A laser detection signal splicing and its extension method based on optical fiber Rayleigh scattering spectral correlation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |