[go: up one dir, main page]

JPH04131833A - Nonlinear optical elements and optical signal processing devices - Google Patents

Nonlinear optical elements and optical signal processing devices

Info

Publication number
JPH04131833A
JPH04131833A JP25193590A JP25193590A JPH04131833A JP H04131833 A JPH04131833 A JP H04131833A JP 25193590 A JP25193590 A JP 25193590A JP 25193590 A JP25193590 A JP 25193590A JP H04131833 A JPH04131833 A JP H04131833A
Authority
JP
Japan
Prior art keywords
light
nonlinear optical
optical element
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25193590A
Other languages
Japanese (ja)
Other versions
JP2785468B2 (en
Inventor
Hidetomo Ashitaka
芦高 秀知
Yoshihiro Yokozawa
伊裕 横沢
Kazuhiro Morita
一弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2251935A priority Critical patent/JP2785468B2/en
Publication of JPH04131833A publication Critical patent/JPH04131833A/en
Priority to US08/144,215 priority patent/US5403520A/en
Application granted granted Critical
Publication of JP2785468B2 publication Critical patent/JP2785468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To apply various signal processing methods to read variation in refractive index by using a cubic nonlinear optical material which has neither thermal nor optical damage due to a laser by providing a nonlinear optical element made of a chiral compound having cubic nonlinearity. CONSTITUTION:The nonlinear optical element 16 made of the chiral compound which has the cubic nonlinearity is provided. Linear polarized light emitted by the laser 11 is split by a beam splitter 13 and light which is transmitted through it has its intensity modulated by a light intensity modulator 15 to become exciting light 21, which is made incident on the nonlinear optical element 16. Signal light 22 which is reflected and changes its optical path by a mirror 14, on the other hand, is made incident on the nonlinear optical element 16 and guided out as light 23 whose polarizing direction is rotated through the operation of the element according to the signal intensity of the exciting light 21. Consequently, signal processes such as signal conversion, optical arithmetic, optical amplification, etc., are easily performed without any special process such as the circular polarization of polarized light and deviation of the angle of polarization.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オプトエレクトロニクス、光情報処理、光通
信等の分野において用いられる非線形光学素子及び光信
号処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a nonlinear optical element and an optical signal processing device used in fields such as optoelectronics, optical information processing, and optical communication.

(従来技術およびその問題点) 非線形光学材料は、レーザー光の強電界下、二次以上の
非線形応答を示す材料であって、周波数変換、発振、ス
イッチング等の光信号処理において重要な素材である。
(Prior art and its problems) Nonlinear optical materials are materials that exhibit nonlinear response of second order or higher under the strong electric field of laser light, and are important materials in optical signal processing such as frequency conversion, oscillation, and switching. .

特に、三次非線形光学材料は、光が有する高速性、並列
性という優れた特性を十分に発揮させた次世代の光通信
、情報処理における基幹素材として注目されている。
In particular, tertiary nonlinear optical materials are attracting attention as key materials for next-generation optical communication and information processing, which fully utilize the excellent characteristics of light, such as high speed and parallelism.

この非線形光学材料のうち、有機非線形光学材料は、従
来の無機非線形光学材料に比べて高速応答性で非線形光
学定数の大きいものが存在するため、特に重要である。
Among these nonlinear optical materials, organic nonlinear optical materials are particularly important because they have faster response times and larger nonlinear optical constants than conventional inorganic nonlinear optical materials.

三次の非線形光学効果の発現機構は、未だ解明されてい
ないが、例えば、大きな非局在化π電子系を有するもの
が、三次の非線形特性を示すことが知られている。
Although the mechanism by which third-order nonlinear optical effects occur has not yet been elucidated, it is known that, for example, materials with large delocalized π-electron systems exhibit third-order nonlinear characteristics.

非局在化π電子系を有するものとして、芳香環を直鎖状
に繋げた芳香族化合物が知られている。
Aromatic compounds in which aromatic rings are connected in a linear chain are known as having a delocalized π-electron system.

しかしながら、このような芳香族化合物は、芳香環が多
くなると熱的に不安定になってしまい、また、光の吸収
波長が長波長側にシフトしてしまうという問題かあ。た
However, such aromatic compounds become thermally unstable when the number of aromatic rings increases, and the absorption wavelength of light shifts to the longer wavelength side. Ta.

一方、三次非線形光学材料を用いた非線形光学素子は、
光の照射に対して屈折率が変化することを利用しようと
するものである。
On the other hand, nonlinear optical elements using third-order nonlinear optical materials are
It attempts to utilize the fact that the refractive index changes in response to light irradiation.

この屈−折率変化を読み取る方法として、例えば、Fa
bry−Perrot共振器を用いて微小な屈折率変化
を増幅する方法が提案されているが、この方法では光源
の僅かな不安定性が敏感に共振安定性に影響するので、
システム全体が極めてデリケートなものとなり、これを
安定に作動させるための高度な寸法品質精度がコスト、
量産面での障害となっている。また、屈折率変化を増大
させるために極めて高いエネルギーを注入せざるを得す
、材料の耐熱性、熱の壁、サーマル効果、高い注入エネ
ルギーに情報を載せるための技術的障壁などの問題があ
った。
As a method of reading this refractive index change, for example, Fa
A method has been proposed to amplify minute changes in refractive index using a Bry-Perrot resonator, but in this method, slight instability of the light source sensitively affects resonance stability.
The entire system is extremely delicate, and a high degree of dimensional quality accuracy is required to ensure stable operation, which can lead to high costs and
This is an obstacle to mass production. Additionally, there are issues such as material heat resistance, thermal walls, thermal effects, and technical barriers to attaching information to high implant energies, which necessitate implanting extremely high energies to increase the refractive index change. Ta.

これを改善する方法として、弱いプローブ光の楕円偏光
測定により、極めて高い感度で検出する方法が提案され
ている。
As a method to improve this, a method has been proposed in which detection is performed with extremely high sensitivity by measuring the ellipsoidal polarization of weak probe light.

この方法は、強い励起光により物質に光学的異方性を誘
起して直線偏光信号光に偏光の変化を発生させるもので
ある。
In this method, optical anisotropy is induced in a substance using strong excitation light to cause a polarization change in linearly polarized signal light.

この方法では、光誘起された光学的異方性を利用するた
めに励起光を円偏光としたり、励起光の偏光方向を信号
光の偏光方向から傾ける等の工夫が必要であるため、信
号処理方法に制限があった。
This method requires measures such as making the excitation light circularly polarized or tilting the polarization direction of the excitation light from the polarization direction of the signal light in order to utilize photo-induced optical anisotropy, so signal processing is required. There were limitations to the method.

(問題点を解決するための技術的手段)本発明の目的は
、前記問題点を解決し、大きな三次非線形性を示し、か
つレーザーによる熱的、光学的損傷がない三次非線形光
学材料を用いて、屈折率変化を読み取るために種々の信
号処理方法を適用できる非線形光学素子及び光信号処理
装置を提供することである。
(Technical Means for Solving the Problems) The object of the present invention is to solve the above-mentioned problems by using a third-order nonlinear optical material that exhibits large third-order nonlinearity and is free from thermal and optical damage caused by laser. Another object of the present invention is to provide a nonlinear optical element and an optical signal processing device to which various signal processing methods can be applied to read changes in refractive index.

本発明は、三次非線形性を有するキラル化合物からなる
非線形光学要素を具えてなる非線形光学素子、及び レーザー光源、三次非線形性を有するキラル化合物から
なる非線形光学要素を具えてなる非線形光学素子及び光
検出器から構成されてなる光信号処理装置に関する。
The present invention relates to a nonlinear optical element including a nonlinear optical element made of a chiral compound having third-order nonlinearity, a laser light source, a nonlinear optical element including a nonlinear optical element made of a chiral compound having third-order nonlinearity, and a photodetector. The present invention relates to an optical signal processing device comprised of a device.

本発明におけるキラル化合物は、大きな非局在化π電子
系を有するもので、かつ、大きな旋光性を有するものが
望ましい。
The chiral compound in the present invention preferably has a large delocalized π electron system and a large optical rotation.

このようなキラル化合物としては、縮合芳香環を有する
キラル化合物が好適であり、例えば、光学活性ヘリセン
類が挙げられる。
As such a chiral compound, a chiral compound having a condensed aromatic ring is suitable, and examples thereof include optically active helicenes.

光学活性ヘリセン類としては、カルボヘリセン及びヘテ
ロヘリセンが挙げられる。
Optically active helicenes include carbohelicene and heterohelicene.

カルボヘリセンは、芳香環が5個以上、好ましくは6個
〜20個繋がった螺旋状構造を有する化合物である。
Carbohelicene is a compound having a helical structure in which 5 or more, preferably 6 to 20 aromatic rings are connected.

また、ヘテロヘリセンは、ヘンゼンとチオフェン、フラ
ン、ピリジン、ビロール等のへテロ環との共縮合環から
なる化合物である。
Further, heterohelicene is a compound consisting of a co-condensed ring of henzene and a heterocycle such as thiophene, furan, pyridine, virol, etc.

さらに、カルボヘリセン又はヘテロヘリセンは、その芳
香環又は複素環に種々の置換基が付いたものでもよい。
Furthermore, the carbohelicene or heterohelicene may have various substituents attached to its aromatic ring or heterocycle.

このようなカルボヘリセン及びペテロヘリセンは、例え
ば、Top、Curr、Chen+、125(Ster
eochemistry) 、 63−130 (19
84)に記載されている。
Such carbohelicenes and peterohelicenes include, for example, Top, Curr, Chen+, 125 (Ster
eochemistry), 63-130 (19
84).

カルボヘリセン及びヘテロヘリセンの合成方法としては
、特に制限はないが、例えば、Wi ttig反応やS
iegrist反応により合成した1+ 2−diar
ylethylenes 、 bis(arylvin
yl)arenes等を光環化することにより得られる
There are no particular restrictions on the method of synthesizing carbohelicene and heterohelicene, but examples include Wittig reaction and S
1+ 2-diar synthesized by iegrist reaction
ylethylenes, bis(arylvin
yl) arenes and the like by photocyclization.

このヘリセン類は、大きな非局在化π電子系を有するの
で、大きな三次非線形性を示し、がっレーザーによる熱
的、光学的損傷がないため、三次非線形光学材料として
優れている。
These helicenes have large delocalized π-electron systems, exhibit large third-order nonlinearity, and are not thermally or optically damaged by lasers, making them excellent as third-order nonlinear optical materials.

本発明の非線形光学素子は、三次非線形性を有するキラ
ル化合物からなる非線形光学要素を具えてなる。
The nonlinear optical element of the present invention includes a nonlinear optical element made of a chiral compound having cubic nonlinearity.

三次非線形性を有するキラル化合物からなる非線形光学
要素の形態としては、例えば、キラル化合物の溶液、結
晶、薄膜、あるいは樹脂等にドープしても良い。
The form of the nonlinear optical element made of a chiral compound having third-order nonlinearity may be, for example, a solution, crystal, thin film, or doped resin of the chiral compound.

本発明における三次非線形性を有するキラル化合物は、
直線偏光に対し光の強度に依存して偏光面を回転させる
特性を有する。このキラル非線形効果を利用することに
より、種々の光信号処理が可能となる。
The chiral compound having third-order nonlinearity in the present invention is
It has the property of rotating the plane of polarization depending on the intensity of linearly polarized light. By utilizing this chiral nonlinear effect, various optical signal processing becomes possible.

以下に、直線偏光に対して偏光面が回転する発現原理を
説明する。
The principle of rotation of the plane of polarization with respect to linearly polarized light will be explained below.

三次非線形性を有するキラル化合物である(+)−へキ
サヘリセンのCDスペクトルを第1図に、ORDスペク
トルを第2図に示す。
FIG. 1 shows the CD spectrum of (+)-hexahelicene, which is a chiral compound having third-order nonlinearity, and FIG. 2 shows the ORD spectrum.

CDスペクトルにおいて、330 nm付近に正のピー
クが見られ、左回り円偏光(L)の強い吸収があり、2
4Onm付近に負のピークが見られ、右回り円偏光(R
)の強い吸収がある。また、ORDスペクトルではこれ
らの波長付近で符号が反転している。
In the CD spectrum, a positive peak is seen around 330 nm, strong absorption of left-handed circularly polarized light (L), and 2
A negative peak is seen near 4 Onm, and right-handed circularly polarized light (R
) has strong absorption. Furthermore, in the ORD spectrum, the signs are reversed near these wavelengths.

このことから、キラル化合物を極めて単純化したモデル
で表すと、第3図に示すようにL偏光とR偏光に対して
異なったエネルギー単位を持つと考えられる。
From this, if a chiral compound is expressed in an extremely simplified model, it is considered to have different energy units for L-polarized light and R-polarized light, as shown in FIG.

この場合、吸収スペクトル及び屈折率分散は第4図(a
)、(b)(実線)に示すようにL偏光とR偏光に対し
て周波数のずれを生じる。L偏光に対する屈折率をn、
、、R偏光に対する屈折率をn8とすると、旋光性は第
4図(C)(実線)に示すように(nL −nR)によ
って引き起こされ、偏光回転角は、サンプル長を2、波
長をλとしてπl/λ (nL −nR) となる。
In this case, the absorption spectrum and refractive index dispersion are shown in Figure 4 (a
), (b) (solid line), a frequency shift occurs between the L polarized light and the R polarized light. The refractive index for L polarized light is n,
,, If the refractive index for R-polarized light is n8, the optical rotation is caused by (nL - nR) as shown in Figure 4 (C) (solid line), and the polarization rotation angle is given by 2 for the sample length and λ for the wavelength. πl/λ (nL - nR).

次に、強い直線偏光励起により非線形な屈折率変化が引
き起こされる場合、直線偏光は左右の円偏光の合成と考
えられるので、nLsnlの両方に作用して、屈折率は
第4図(b)(点線)に示すように変化する。
Next, when a nonlinear refractive index change is caused by strong linearly polarized excitation, linearly polarized light is considered to be a combination of left and right circularly polarized light, so it acts on both nLsnl, and the refractive index changes as shown in Figure 4 (b). (dotted line).

この非線形な屈折率変化をΔnl、Δnuとすると、非
線形効果による偏光回転角は、zll/λ((nL−n
、) ((nt+Δnt)   (nu+Δn−)))=πl
/λ(Δn、−Δn1I) となる。即ち、L偏光とR偏光に対する非線形な屈折率
変化の差に応じた偏光回転が起こると考えられる。また
、この効果は、旋光性が大きいほど大きくなると期待さ
れる。
Letting this nonlinear refractive index change be Δnl and Δnu, the polarization rotation angle due to the nonlinear effect is zll/λ((nL−n
,) ((nt+Δnt) (nu+Δn-)))=πl
/λ(Δn, -Δn1I). That is, it is considered that polarization rotation occurs according to the difference in nonlinear refractive index changes for L-polarized light and R-polarized light. Furthermore, this effect is expected to increase as the optical rotation increases.

したがって、三次非線形性を有するキラル化合物に直線
偏光を照射する場合に、光の強度を変化させることによ
り、偏光面の回転角の変化として検出することができる
Therefore, when a chiral compound having cubic nonlinearity is irradiated with linearly polarized light, changing the intensity of the light can be detected as a change in the rotation angle of the plane of polarization.

この特性を利用することにより、前述の楕円偏光解析の
手法を用いれば、励起光として偏光に工夫を凝らすこと
なく、信号と同一方向の直線偏光でも同様の測定が行え
るので、より複雑な光信号処理が可能になる。
By utilizing this characteristic, if you use the elliptical polarization analysis method described above, you can perform similar measurements using linearly polarized light in the same direction as the signal, without having to make any special efforts to polarize the excitation light, allowing you to analyze more complex optical signals. processing becomes possible.

また、励起光と信号光を一本の直線偏光とし、光の強度
による自己回転により信号波形の制御が可詣である。
Furthermore, the excitation light and the signal light are made into one linearly polarized light beam, and the signal waveform can be controlled by self-rotation depending on the intensity of the light.

さらに、高繰り返しパルス光源を用いることにより、高
周波偏光変調素子と組み合わせてより高い感度と精度が
確保できる。
Furthermore, by using a high repetition pulse light source, higher sensitivity and accuracy can be ensured in combination with a high frequency polarization modulation element.

本発明においては、この三次非線形性を有するキラル化
合物からなる非線形光学要素を具えてなる非線形光学素
子をレーザー光源及び光検出器と組合せることにより、
種々の光信号処理が可能な光信号処理装置が構成される
In the present invention, by combining a nonlinear optical element comprising a nonlinear optical element made of a chiral compound having third-order nonlinearity with a laser light source and a photodetector,
An optical signal processing device capable of various types of optical signal processing is constructed.

この光信号処理装置は、前記非線形光学素子を使用する
ことにより、信号変換、光演算、光増巾等の信号処理が
、偏光に円偏光や偏光角をずらす等の特別の処理を行な
わなくとも簡単に行うことができ、光情報素子として、
光通信、光情報処理等に好適に使用できる。
By using the nonlinear optical element, this optical signal processing device can perform signal processing such as signal conversion, optical calculation, and optical amplification without performing special processing such as circularly polarizing polarized light or shifting the polarization angle. It can be easily performed and used as an optical information device.
It can be suitably used for optical communication, optical information processing, etc.

なお、本発明について、キラル非線形光学材料の屈折率
変化の実成分変化に従って説明してきたが、屈折率変化
の虚成分に対しても、旋光が偏光の楕円化に変わるだけ
で同様の効果が得られることはいうまでもない。
Although the present invention has been explained according to the change in the real component of the refractive index change of a chiral nonlinear optical material, the same effect can be obtained for the imaginary component of the refractive index change simply by changing the optical rotation to elliptical polarization. Needless to say, it will happen.

(実施例) 以下に、実施例を示して本発明を具体的に説明する。(Example) EXAMPLES The present invention will be specifically described below with reference to Examples.

実施例1 第5図に信号光の強度を偏光角に変換する光信号処理装
置を示す。
Embodiment 1 FIG. 5 shows an optical signal processing device that converts the intensity of signal light into a polarization angle.

11は光源のレーザー 12は直線偏光とするための偏
光子、13は、レーザー光を分けるためのビームスプリ
ッタ−114はミラー、15は光強度変調器、16は本
発明の非線形光学素子である。
11 is a laser as a light source; 12 is a polarizer for linearly polarizing light; 13 is a beam splitter for splitting laser light; 114 is a mirror; 15 is a light intensity modulator; and 16 is a nonlinear optical element of the present invention.

レーザー11を出射した光は偏光子12により直線偏光
とされる。なお、レーザー11の出射光が十分な直線偏
光になっている場合は、偏光子12はなくても良い。直
線偏光はビームスプリッタ−13により、2本の光線に
分けられる。ビームスプリッタ−13を透過した光は光
強度変調器15により強度変調された励起光21となり
、非線形光学素子16に入射する。
The light emitted from the laser 11 is converted into linearly polarized light by the polarizer 12 . Note that if the emitted light from the laser 11 is sufficiently linearly polarized, the polarizer 12 may be omitted. The linearly polarized light is split into two beams by a beam splitter 13. The light transmitted through the beam splitter 13 becomes excitation light 21 whose intensity is modulated by the light intensity modulator 15, and enters the nonlinear optical element 16.

一方、ビームスプリッタ−13で反射され、ミラー14
で光路を変向した信号光22は、非線形光学素子16に
入射する。この時、信号光22は、励起光に対して強度
が十分弱いことが望ましい。
On the other hand, it is reflected by the beam splitter 13 and is reflected by the mirror 14.
The signal light 22 whose optical path has been changed at is incident on the nonlinear optical element 16. At this time, it is desirable that the intensity of the signal light 22 is sufficiently weaker than that of the excitation light.

信号光22は非線形光学素子160作用により励起光2
1の信号強度に従って、偏光方向の回転した光23とな
って取り出すことができる。
The signal light 22 is converted into excitation light 2 by the action of the nonlinear optical element 160.
According to the signal strength of 1, the light 23 with a rotated polarization direction can be extracted.

実施例2 第6図に論理積の演算処理を行う光信号処理装置を示す
Embodiment 2 FIG. 6 shows an optical signal processing device that performs logical product calculation processing.

信号光A31、信号光B32及び参照光33は、すべて
同一偏光方向の直線偏光であり信号光A及び信号光Bは
デジタル的に変化する。
The signal light A31, the signal light B32, and the reference light 33 are all linearly polarized light having the same polarization direction, and the signal light A and the signal light B change digitally.

40は、非線形光学素子、41は検光子で信号光A及び
信号光Bが無い状態で参照光33を消光する方向にセッ
トしである。
40 is a nonlinear optical element, and 41 is an analyzer, which is set in a direction to extinguish the reference light 33 in the absence of signal light A and signal light B.

出力光34は検光子41を通過した光で、信号光A及び
信号光Bが0の場合にほぼOと考えて良い。出力光34
の強度をI。。1、信号光Aの強度をIA、信号光Bの
強度を工6、参照光の強度を1、とすると 1oot ”stn” (IA + Im )  ・I
Fとなり消光角の近くでは Iout ” (In + I++ ) 2・IFとな
る。
The output light 34 is light that has passed through the analyzer 41, and can be considered to be approximately O when the signal light A and the signal light B are 0. Output light 34
The intensity of I. . 1. If the intensity of signal light A is IA, the intensity of signal light B is 6, and the intensity of reference light is 1, then 1oot "stn" (IA + Im) ・I
F, and near the extinction angle it becomes Iout'' (In + I++) 2.IF.

従って、A−BともONの時の出力光は一方だけONの
時の4倍となる。
Therefore, the output light when both A and B are ON is four times as much as when only one is ON.

このように、■4、I□ともに1の時に極めて大きいI
。、が得られ適切なスレッシュホールド値を設定するこ
とにより論理積の演算が可能になる。
In this way, when ■4 and I□ are both 1, I is extremely large.
. , is obtained, and by setting an appropriate threshold value, logical product operation becomes possible.

更に、第7図に示す自己回転効果を利用した波形制御装
置と組み合わせることにより更にデジタル信号を明確化
することも可能である。
Furthermore, it is also possible to further clarify the digital signal by combining it with a waveform control device that utilizes the self-rotation effect shown in FIG.

実施例3 第7図に波形を制御する光信号処理装置を示す。Example 3 FIG. 7 shows an optical signal processing device that controls waveforms.

51は、レーザー光源、52はこれを直線偏光とするた
めの偏光子であり、レーザー光源51が十分な直線偏光
になっている場合は不要である。
51 is a laser light source, and 52 is a polarizer for converting the laser light into linearly polarized light, which is not necessary if the laser light source 51 is sufficiently linearly polarized.

53は非線形光学素子であり、54は入射光61が十分
に弱い時に消光となるようにセットされた検光子である
53 is a nonlinear optical element, and 54 is an analyzer that is set so that the incident light 61 is quenched when it is sufficiently weak.

レーザー51を出た光は、偏光子52により、直線偏光
入射光61となり、非線形光学素子53に入射する。こ
れを透過した光は、入射光の強度I inに比例した偏
光回転を起こす。従って、検光子54を透過後に検出さ
れ出力光63の強度I。utは、 I Out cc I in ・5in2θ(但し、θ
は偏光回転角で光強度に比例する。) 消光角の近くでは、 I oat ocr、、・fin” ””Ii++とな
り、微小な変化を大きな変化として検出することができ
、波形を制御することが可能である。
The light emitted from the laser 51 becomes linearly polarized incident light 61 by the polarizer 52 and enters the nonlinear optical element 53 . The light transmitted through this undergoes polarization rotation proportional to the intensity I in of the incident light. Therefore, the intensity I of the output light 63 detected after passing through the analyzer 54. ut is I Out cc I in ・5in2θ (however, θ
is the polarization rotation angle and is proportional to the light intensity. ) Near the extinction angle, I oat ocr, .fin""Ii++, and a minute change can be detected as a large change, making it possible to control the waveform.

例えば、正弦波5in2ωt(ω(ω0.ω0 :光の
角周波数)の信号を入れれば、出力光は5in6ωtに
比例した信号となり極めて急な立上りを示す。
For example, if a signal of a sine wave 5in2ωt (ω (ω0.ω0: angular frequency of light)) is input, the output light becomes a signal proportional to 5in6ωt and shows an extremely steep rise.

また、実施例2の演算処理装置と組合せることによりデ
ジタル演算を更に明確なものとすることができる。
Further, by combining the present invention with the arithmetic processing device of the second embodiment, digital computation can be made even clearer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ、(+)−へキサヘリセ
ンのCDスペクトル及びORDスペクトルを示す図であ
り、第3図は、キラル化合物の単純化モデルのし偏光と
R偏光に対する工ふルギー単位を示す図であり、第4回
は、キラル化合物の左右円偏光に対する吸収スペクトル
、屈折率分散、旋光、非線形な偏光回転を表す図であり
、第5図は、信号光の強度を偏光角に変換する光信号処
理装置の概略図であり、第6図は、論理積の演算処理を
行う光信号処理装置の概略図であり、第7図は、波形を
制御する光信号処理装置の概略図である。 特許出願人  宇部興産株式会社 第 図 λ(nm) 第 図 第 図 入(nm) 第 図 第 図 第 図 第 図
Figures 1 and 2 are diagrams showing the CD spectrum and ORD spectrum of (+)-hexahelicene, respectively, and Figure 3 is a diagram showing the mechanics of a simplified model of a chiral compound for R-polarized light and R-polarized light. Figure 4 shows the absorption spectrum, refractive index dispersion, optical rotation, and nonlinear polarization rotation of chiral compounds for left-right circularly polarized light, and Figure 5 shows the intensity of signal light as a function of polarization angle. FIG. 6 is a schematic diagram of an optical signal processing device that performs logical product calculation processing, and FIG. 7 is a schematic diagram of an optical signal processing device that controls waveforms. It is a diagram. Patent Applicant: Ube Industries, Ltd. Figure λ (nm) Figure Figure Input (nm) Figure Figure Figure Figure

Claims (2)

【特許請求の範囲】[Claims] (1)三次非線形性を有するキラル化合物からなる非線
形光学要素を具えてなる非線形光学素子。
(1) A nonlinear optical element comprising a nonlinear optical element made of a chiral compound having third-order nonlinearity.
(2)レーザー光源、三次非線形性を有するキラル化合
物からなる非線形光学要素を具えてなる非線形光学素子
及び光検出器から構成されてなる光信号処理装置。
(2) An optical signal processing device comprising a laser light source, a nonlinear optical element including a nonlinear optical element made of a chiral compound having third-order nonlinearity, and a photodetector.
JP2251935A 1990-09-25 1990-09-25 Nonlinear optical element and optical signal processing device Expired - Fee Related JP2785468B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2251935A JP2785468B2 (en) 1990-09-25 1990-09-25 Nonlinear optical element and optical signal processing device
US08/144,215 US5403520A (en) 1990-09-25 1993-10-27 Nonlinear optical device and optical signal processing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2251935A JP2785468B2 (en) 1990-09-25 1990-09-25 Nonlinear optical element and optical signal processing device

Publications (2)

Publication Number Publication Date
JPH04131833A true JPH04131833A (en) 1992-05-06
JP2785468B2 JP2785468B2 (en) 1998-08-13

Family

ID=17230164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2251935A Expired - Fee Related JP2785468B2 (en) 1990-09-25 1990-09-25 Nonlinear optical element and optical signal processing device

Country Status (1)

Country Link
JP (1) JP2785468B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678297B2 (en) * 2000-03-20 2004-01-13 Chiral Photonics, Inc. Chiral laser utilizing a quarter wave plate
US10361846B2 (en) * 2014-05-12 2019-07-23 University Of Kwazulu-Natal System and method for identifying and/or measuring orientation mismatches between stations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341833A (en) * 1986-08-07 1988-02-23 Toray Ind Inc Organic nonlinear optical compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389269A (en) 1966-12-27 1968-06-18 Bell Telephone Labor Inc Optical liquid parametric devices with increased coherence length using dye

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341833A (en) * 1986-08-07 1988-02-23 Toray Ind Inc Organic nonlinear optical compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678297B2 (en) * 2000-03-20 2004-01-13 Chiral Photonics, Inc. Chiral laser utilizing a quarter wave plate
US10361846B2 (en) * 2014-05-12 2019-07-23 University Of Kwazulu-Natal System and method for identifying and/or measuring orientation mismatches between stations

Also Published As

Publication number Publication date
JP2785468B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
Carter et al. Time and wavelength resolved nonlinear optical spectroscopy of a polydiacetylene in the solid state using picosecond dye laser pulses
Wu Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared
US5076658A (en) Non-linear optical polymeric fiber waveguides
JPH11511246A (en) Natural frequency tracker for fiber optic sensing coils
JPH01142538A (en) Light logical apparatus
JPH04131833A (en) Nonlinear optical elements and optical signal processing devices
Mircea et al. Tuning NLO susceptibility in functionalized DNA
Tatam et al. Opto-electronic processing schemes for the measurement of circular birefringence
JPH04251830A (en) Organic optical logic element
US3982136A (en) Ternary ferroelectric fluoride nonlinear devices
JP3003819B2 (en) Nonlinear optical element and optical signal processing device
JP2861531B2 (en) Chiral nonlinear effect material
Chen et al. Time-dependent all-optical logic gates based on two coupled waves in bacteriorhodopsin film
JP2963418B2 (en) Optical switch device
JPH05249509A (en) Nonlinear optical element and optical signal processor
JP3014978B2 (en) Optical heterodyne time division demultiplexer
Yu et al. Controllable coupled-resonator-induced transparency in a dual-recycled Michelson interferometer
JPH03105310A (en) Optical delay device
JP2988574B2 (en) Wavelength selection method for optical signal processor
Becker Optical-guided-wave Modulators
Lim et al. Highly Efficient Degenerate Four-Wave Mixing with an Epsilon-Near-Zero-Based Low-Q Cavity
JP2729673B2 (en) Novel organic nonlinear optical material and method of converting light wavelength using the same
Altman et al. Picosecond Nolinear Optics of Organic Materials
SU1013999A1 (en) Turn angle to electrical signal optoelectronic converter
Mao et al. Low power, high speed optical phase conjugation using chiral smectic optically addressed spatial light modulators

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees