[go: up one dir, main page]

JPH04149519A - Optical modulation element and display device using the element - Google Patents

Optical modulation element and display device using the element

Info

Publication number
JPH04149519A
JPH04149519A JP27321690A JP27321690A JPH04149519A JP H04149519 A JPH04149519 A JP H04149519A JP 27321690 A JP27321690 A JP 27321690A JP 27321690 A JP27321690 A JP 27321690A JP H04149519 A JPH04149519 A JP H04149519A
Authority
JP
Japan
Prior art keywords
refractive index
liquid crystal
optical modulation
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27321690A
Other languages
Japanese (ja)
Inventor
Tomoko Maruyama
丸山 朋子
Hideaki Mitsutake
英明 光武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27321690A priority Critical patent/JPH04149519A/en
Publication of JPH04149519A publication Critical patent/JPH04149519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the optical modulating element which is prevented from decreasing in contrast while the reflection of light passing through films differing in refractive index is suppressed by minimizing the difference in refractive index between adjacent films to plural boundary surfaces. CONSTITUTION:On a border surface between layers which differ in refractive index, the reflective indexes become smaller as the difference in refractive index between the two adjacent layers grow smaller and when incident light is reflected by plural border surfaces, the refractive indexes of the respective layers are most preferably intermediate between the refractive indexes of the two adjacent layers so that the final refractive index is made small. Here, n1>n2>n3, and n2 is intermediate between n1 and n3, where n1, n2, and n3 are the refractive indexes of a transparent electrode layer 302, an insulating layer 303, and a ferroelectric liquid crystal layer 305 in the thin film laminate structure of the optical modulating element. Consequently, the reflection of light passing through the films differing in refractive index is evaded as much as possible and the decrease in contrast is greatly reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は屈折率異方性を有する材料を用いた光学変調素
子、特に強誘電性液晶を用いた光学変調素子、および該
光学変調素子を用いた表示装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical modulation element using a material having refractive index anisotropy, particularly an optical modulation element using a ferroelectric liquid crystal, and an optical modulation element using the optical modulation element. Regarding the display device used.

(従来の技術] 強誘電性液晶を用いた光学変調素子に於て、液晶層を互
いに平行でごく薄い間隙(例えば1〜2μm)を有する
2枚の板の間に形成し、該2枚の板の表面作用を用いて
双安定な状態を作り出す方式(5SFLC,^pp1.
Phys、Lett、3B (1980) 899)は
その高速応答性、メモリー性等により様々な応用が期待
されている。
(Prior art) In an optical modulation element using ferroelectric liquid crystal, a liquid crystal layer is formed between two parallel plates with a very thin gap (for example, 1 to 2 μm) between the two plates. A method of creating a bistable state using surface action (5SFLC, ^pp1.
Phys, Lett, 3B (1980) 899) is expected to find a variety of applications due to its high-speed response, memory performance, etc.

前記双安定型の強誘電性液晶素子は、液晶層を挟む両側
の板の液晶層側にラビング等により形成される配向作用
面の軸方向(ラビング方向等)に対し、ある一定角農具
なった方向に於て2つの安定状態を示す。この角とコー
ン角(以後θ。で表す)という。
The above-mentioned bistable ferroelectric liquid crystal element is an agricultural tool having a certain angle with respect to the axial direction (rubbing direction, etc.) of the alignment working surface formed by rubbing or the like on the liquid crystal layer side of the plates on both sides sandwiching the liquid crystal layer. It shows two stable states in the direction. This angle is called the cone angle (hereinafter expressed as θ).

前記素子の液晶層面に垂直な方向に電圧を印加すると、
強誘電性素子は一方の安定状態から他方の安定状態へ移
る。この変化は屈折率異方性を有する材料の光学軸を角
度2θ、たけ回転させることに対応している。従って弼
波長板の作用に相当する厚みを有する前記強誘電性液晶
素子に対し、偏光光が入射した場合、双安定の2つの状
態による入射偏光光に対する偏光回転作用は互いに4θ
Cだけ異なる。クロスニコル或いは平行ニコル配置の偏
光素子(偏光板等)で前記強話電性液晶素子を挟むと 4θo=90° (θ。=225°) の時、両双安定状態に於ける透過光量のオン・オフ比(
透過率比、コントラスト)は最も高くなる。
When a voltage is applied in a direction perpendicular to the liquid crystal layer surface of the element,
The ferroelectric element moves from one stable state to another. This change corresponds to rotating the optical axis of the material having refractive index anisotropy by an angle of 2θ. Therefore, when polarized light is incident on the ferroelectric liquid crystal element having a thickness corresponding to the effect of a narrow wavelength plate, the polarization rotation effect on the incident polarized light due to the two bistable states is 4θ with respect to each other.
Only C is different. When the strong electroconductive liquid crystal element is sandwiched between polarizing elements (polarizing plates, etc.) with crossed Nicols or parallel Nicols arrangement, when 4θo=90° (θ.=225°), the amount of transmitted light in both bistable states is turned on.・Off ratio (
(transmittance ratio, contrast) is the highest.

しかしながら、前記コーン角は液晶材料、配向作用面の
特性に強く依存しており、未た十分なコーン角を有する
強訪電性液晶素子は実現されておらず、光学変調素子と
して用いる場合、その変調度は不十分である。
However, the cone angle strongly depends on the characteristics of the liquid crystal material and the alignment surface, and a strong electrostatic liquid crystal element with a sufficient cone angle has not yet been realized. The degree of modulation is insufficient.

上記の問題点を解決する方式として光学変調可能な2枚
の強訪電性液晶素子と更に一枚の局波長板を組み合せた
方式が知られている。その概要を以下に示す。第4図は
その構成及び作用を示したものである。第4図(a)は
配向軸方向をそろえた同一の双安定強電性素子1.3と
局波長板2から成り上記2つの強誘電性素子1.3の片
方の安定状態に於ける液晶分子の長軸方向n I + 
13(厳密には液晶の屈折率楕円体の一生軸方向)と%
波長板2の屈折率楕円体の一生軸方向n2の3者は同じ
方向を向いている。3枚の板1,2.3は互いに平行で
あり、かつ各々は主波長に対して%波長板相当の作用を
成す。本構成の液晶素子に対しn1□ n2.n3 に
平行な振動電場をもつ電磁波E人か入射した場合、各板
1,2.3通過後の振動電場E、、E2.E3及び出射
光E出の振動電場の方向は変化しない(E人ムE1ムE
2ムE1出(=E3))。
As a method for solving the above-mentioned problems, a method is known in which two optically modulated strong liquid crystal elements and a local wavelength plate are combined. The outline is shown below. FIG. 4 shows its structure and operation. Figure 4(a) is composed of an identical bistable ferroelectric element 1.3 and a local wavelength plate 2 whose alignment axes are aligned, and the liquid crystal molecules in one of the two ferroelectric elements 1.3 in a stable state. Long axis direction n I +
13 (strictly speaking, the life axis direction of the refractive index ellipsoid of the liquid crystal) and %
The three life axis directions n2 of the refractive index ellipsoids of the wave plate 2 face the same direction. The three plates 1, 2.3 are parallel to each other, and each acts as a % wave plate with respect to the dominant wavelength. For the liquid crystal element of this configuration, n1□ n2. When an electromagnetic wave E with an oscillating electric field parallel to n3 is incident, the oscillating electric field E, , E2 . after passing through each plate 1, 2.3. The direction of the oscillating electric field of E3 and the output light E does not change (E person E1 E)
2mu E1 out (=E3)).

一方、第4図(b)は双安定強電性素子1゜3を他方の
安定状態に保った場合の構成を示しており、素子1,3
の液晶長軸方向は入射光E人の振動電場の方向に対して
2θCだけ同じ方向に回転している。まず、581の液
晶素子1を通過した光の電場E1は入射光に対して4θ
0たけ回転する。次に弼波長板2を通過した光の電場E
2は、屈折率の1主軸n2に対して−400だけ回転し
た方向となる。最後にE2に対して6θ、  (=40
c+2θC)だけ回転した方向に液晶分子長軸n3をも
つ第2の液晶素子3を通過した光の電場E、(=E出)
は液晶分子長軸n3に対して6θ。たけ回転した方向と
なる。従って出射光の電場方向は入射光の電場方向に対
して8θc (=20、+6θC)だけ回転することに
なり、現状の液晶素子技術の場合と比較して2倍の偏光
回転・が可能となることを示している。即ち、θ、=1
1.25’ ノコーン角で透過光量のオン・オフ比(透過率比、コン
トラスト)を最大にすることができる。
On the other hand, FIG. 4(b) shows the configuration when bistable ferroelectric element 1.3 is kept in the other stable state, and elements 1, 3
The long axis direction of the liquid crystal is rotated in the same direction by 2θC with respect to the direction of the oscillating electric field of the incident light E. First, the electric field E1 of the light that has passed through the liquid crystal element 1 of 581 is 4θ with respect to the incident light.
Rotates 0 times. Next, the electric field E of the light that has passed through the wavelength plate 2
2 is a direction rotated by -400 with respect to the 1 principal axis n2 of the refractive index. Finally, 6θ for E2, (=40
The electric field E of the light that has passed through the second liquid crystal element 3, which has the long axis n3 of the liquid crystal molecules in the direction rotated by c+2θC), (=E output)
is 6θ with respect to the liquid crystal molecule long axis n3. The direction is the direction of rotation. Therefore, the electric field direction of the emitted light will be rotated by 8θc (=20, +6θC) with respect to the electric field direction of the incident light, making it possible to rotate polarization twice as much as with the current liquid crystal element technology. It is shown that. That is, θ,=1
The on-off ratio (transmittance ratio, contrast) of the amount of transmitted light can be maximized at a no cone angle of 1.25'.

例えば本出願人の先頭に係る光学変調素子は、■光学変
調可能な双安定強訪電性液晶素子(%波長板相当の作用
をもつ)と、0図波長板と、■反射板と、偏光子、およ
び検光子から成り、光の入射側から■のうちの被変調部
(即ち液晶層)、■、■の順に並ぶことを特徴とする。
For example, the optical modulation element proposed by the present applicant includes: (1) a bistable ferroelectric liquid crystal element capable of optical modulation (having an action equivalent to a % wave plate), (2) a Figure 0 wavelength plate, (2) a reflector, and a polarized light It is characterized by being arranged in the following order from the light incident side: the modulated part (i.e., the liquid crystal layer), 2, and 2 from the light incident side.

これにより、液晶素子は反射面を介して光線が2回通過
し、またその間に電波長板は反射面を介して光線が2回
通過する為、%波長板相当の作用を成し、従って液晶素
子だけに比べ2倍の偏光回転が可能となる。そのため、
光学変調可能な液晶素子が1ケで済み、構成が簡単で、
さらに高精度のレジ合せが不要という効果がある。又、
電波長板として高分子液晶を用いることにより、屈折率
異方性が通常の異方性物質(水晶、雲母、延伸フィルム
等)に比べ大きいので、厚みを薄くでき、開口率低下、
画素間クロストークが緩和される、あるいは、流動性の
大きい高温状態に於て、配向させた後、配向の安定する
温度域で使用することができる為、同しく屈折率異方性
の大きい低分子液晶よりも扱いが容易となるといった利
点かある。
As a result, the light rays pass through the liquid crystal element twice through the reflective surface, and the light rays pass through the radio wave plate twice through the reflective surface during that time, so it functions as a % wave plate, and therefore the liquid crystal Twice as much polarization rotation is possible compared to the element alone. Therefore,
Only one optically modulated liquid crystal element is required, and the configuration is simple.
Another advantage is that highly accurate registration is not required. or,
By using polymeric liquid crystal as a radio wave plate, the refractive index anisotropy is greater than that of ordinary anisotropic materials (crystal, mica, stretched film, etc.), so the thickness can be made thinner, and the aperture ratio can be reduced.
It can be used in a temperature range where inter-pixel crosstalk is alleviated or alignment is stabilized after alignment in high-temperature conditions with high fluidity, so low It has the advantage of being easier to handle than molecular liquid crystals.

第5図は、従来構成の光学変調素子を投写型表示装置に
適用した場合の構成を示したものであり、第6図は光学
変調素子部の作用の概略説明図、第3図はその詳細構成
を示したものである。
Fig. 5 shows the configuration when a conventional optical modulation element is applied to a projection display device, Fig. 6 is a schematic explanatory diagram of the operation of the optical modulation element section, and Fig. 3 shows its details. This shows the configuration.

第5図に於て不定偏光光を発する光源6より発光した光
はりプリッタ7で反射されコンデンサレンズ8でコリメ
ートされた後、偏光ビームスプリッタ9に入射し、偏光
ビームスプリッタ9に対するP偏光成分は透過しS f
Ji光成分が垂直方向に反射される。上記S偏光成分は
%波長板相当の双安定強誘電状態晶1.属波長板4を通
過して反射板5によって反射され、再び図波長板4、双
安定強誘電状態晶1を通過する。
In FIG. 5, light emitted from a light source 6 that emits undefined polarized light is reflected by a beam splitter 7, collimated by a condenser lens 8, and then enters a polarizing beam splitter 9, and the P polarized light component is transmitted to the polarizing beam splitter 9. S f
The Ji light component is reflected in the vertical direction. The above S-polarized light component is a bistable ferroelectric state crystal equivalent to a % wave plate. The light passes through the wavelength plate 4, is reflected by the reflection plate 5, and passes through the wavelength plate 4 and the bistable ferroelectric state crystal 1 again.

上記S (j!光成分は液晶素子1の状態に応じてP偏
光成分を生じ、再び偏光ビームスプリッタ9に入射する
際、S (I4光成分は反射され、透過したP偏光成分
が投写レンズ10により、不図示の画像投影用スクリー
ン面上に結像投影される。偏光ビームスプリッタ9は該
構成に於ては偏光子、検光子両者を兼ねている。
The S(j! light component generates a P-polarized light component depending on the state of the liquid crystal element 1, and when it enters the polarization beam splitter 9 again, the S(I4 light component is reflected, and the transmitted P-polarized light component is reflected by the projection lens 10. As a result, an image is formed and projected onto an image projection screen (not shown).In this configuration, the polarizing beam splitter 9 serves as both a polarizer and an analyzer.

第6図に於て、入射光は振動電場E人をもつ直線偏光光
である。強誘電性液晶1の長軸n、が図波長板4の長軸
n4及びE人と平行な片方の安定状態に於ては偏光回転
は起こらない。一方、第6図に示した如く、液晶1の長
軸n、が2ecだけE人に対して回転した状態に於ては
まず、液晶素子1を通過した光の電場E1は入射光に対
して4θCだけ回転する。次に図波長板4を通過した光
の電場E2は円偏光となって、反射板5によって反対さ
れ、再び図波長板4に入射する。騎波長板4を通過した
電場E3は図波長板4の屈折率の1主軸n4に対して−
40,たけ回転した方向となる。最後にI3に対して6
0c (=400+2θC)だけ回転した方向に液晶分
子長軸に対して6θCだけ回転した方向となる。従って
出射光の電場方向は入射光の電場方向に対して800(
=20゜+6θC)だけ回転することになる。
In FIG. 6, the incident light is linearly polarized light with an oscillating electric field. In a stable state in which the long axis n of the ferroelectric liquid crystal 1 is parallel to the long axis n4 of the wave plate 4, no polarization rotation occurs. On the other hand, as shown in FIG. 6, when the long axis n of the liquid crystal 1 is rotated by 2ec with respect to the person E, the electric field E1 of the light passing through the liquid crystal element 1 is initially Rotates by 4θC. Next, the electric field E2 of the light that has passed through the wave plate 4 becomes circularly polarized light, is opposed by the reflection plate 5, and enters the wave plate 4 again. The electric field E3 that has passed through the wavelength plate 4 is −
40, the direction is rotated by 40 degrees. Finally 6 for I3
The direction rotated by 0c (=400+2θC) is the direction rotated by 6θC with respect to the long axis of the liquid crystal molecules. Therefore, the electric field direction of the emitted light is 800 (
= 20° + 6θC).

この様に反射型構成とすることにより1つの変調素子で
2倍の偏光回転角が得られることになりレジ合せが不要
、かつコスト面か有利という点で優れている。
With this reflective configuration, a polarization rotation angle twice as large can be obtained with one modulation element, which eliminates the need for registration and is advantageous in terms of cost.

第3図は、第6図に示した部分をより詳細に示したもの
であり、入射光側より透明なガラス基板301(/*み
約1mm)、電極作用を有する透明なITO膜302(
厚み約1500人)、対向電極との短絡を避ける為の絶
縁膜303(厚み約1200人)、液晶を配向させる為
のラビング処理を施したポリイミド膜304(厚み約2
00人)、不図示の経1〜2μmのビーズにより保持さ
れた間隙に注入された液晶層305、ポリイミド膜30
4と同様のポリイミド膜306(厚み約200人)、ポ
リイミド膜306の基板となる薄い透明層307(例え
ばガラス板)、屈折率異方性を持ち図波長板相当の作用
を行う高分子液晶層308(厚み1μm以下)、高分子
液晶の配向を容易にする為にラビング処理を施したポリ
イミド膜309(厚み約200人)、rTO膜302C
対する対向電極作用及び光の反射作用を兼ねたアルミニ
ウム蒸着@310(厚み数μm)、及びガラス基板31
1(厚み約1.mm)の各部から構成されている。
FIG. 3 shows the part shown in FIG. 6 in more detail, and shows, from the incident light side, a transparent glass substrate 301 (approx. 1 mm), a transparent ITO film 302 having an electrode function (
1,500 mm thick), an insulating film 303 (approximately 1200 mm thick) to avoid short circuit with the counter electrode, and a polyimide film 304 (approximately 2 mm thick) subjected to rubbing treatment to orient the liquid crystal.
00 persons), a liquid crystal layer 305 injected into a gap held by beads with a diameter of 1 to 2 μm (not shown), and a polyimide film 30.
A polyimide film 306 (thickness of approximately 200 mm) similar to 4, a thin transparent layer 307 (for example, a glass plate) that serves as a substrate for the polyimide film 306, and a polymer liquid crystal layer that has refractive index anisotropy and functions as a wave plate. 308 (thickness 1 μm or less), polyimide film 309 (thickness approx. 200) subjected to rubbing treatment to facilitate alignment of polymer liquid crystal, rTO film 302C
Aluminum vapor deposition @ 310 (thickness of several μm) that serves as a counter electrode and a light reflection function, and a glass substrate 31
1 (thickness approximately 1.mm).

ここで光学変調素子は、ガラス基板301.311上に
必要な層を順次形成した後、両者の隙間305に液晶材
料を注入し、更に熱処理等により双安定強誘電状態とす
る。出射光の偏光状態の変調は電極302,310への
印加信号により行う。該光学変調素子は複数画素を独立
に変調することにより容易に画像表示に適用可能である
。例えばITO電極302及びアルミニウム電極310
を各々短冊型の複数独立の電極とし、しかも両者を互い
に直交させて、マトリクス型の構成とした場合(いわゆ
る単純マトリクス駆動)である。この様にして、画像表
示を行う場合、同じ画面サイズに於て解像力を向上させ
る為には1画素当りのサイズを小さくする必要があり、
投写型表示装置の如く、小型の液晶表示素子を用いる場
合、例えは対角3インチに於て、1画素約ロ60μm 
(EDTV用)となる。
Here, in the optical modulation element, after necessary layers are sequentially formed on the glass substrates 301 and 311, a liquid crystal material is injected into the gap 305 between the two, and the layer is further brought into a bistable ferroelectric state by heat treatment or the like. Modulation of the polarization state of the emitted light is performed by applying signals to the electrodes 302 and 310. The optical modulation element can be easily applied to image display by independently modulating a plurality of pixels. For example, ITO electrode 302 and aluminum electrode 310
This is a case where a plurality of independent electrodes each having a strip shape are used, and both are orthogonal to each other to form a matrix type structure (so-called simple matrix drive). When displaying images in this way, it is necessary to reduce the size of each pixel in order to improve resolution at the same screen size.
When using a small liquid crystal display element such as a projection display device, for example, one pixel is approximately 60 μm wide on a 3-inch diagonal.
(for EDTV).

上記素子構成に於ては図波長板として、水晶、雲母、延
伸フィルム等に比べ屈折率異方性が格段に大きい(1〜
2桁)高分子液晶(Δn〜0.2)を用いることにより
、図波長板の厚みを1μm以下に抑えることができる。
In the above element configuration, as a wave plate, the refractive index anisotropy is much larger than that of quartz, mica, stretched film, etc.
By using a polymer liquid crystal (Δn~0.2) (2 digits), the thickness of the wave plate can be suppressed to 1 μm or less.

また、ポリイミド膜306の基板となるガラス板307
は、素子保持強度として十分な厚みをもつガラス基板3
11上に構成されるので、非常に薄いガラス材を用いる
ことができる。画素室8302. 310間の他の層は
、従来の技術レベルに於ても1画素サイズに比べて十分
に薄い為、高分子液晶による図波長板308、及び極薄
のガラス板307は実行開口率の向上、画素間のクロス
トークの防止に対して大きな力を発揮するものである。
In addition, a glass plate 307 serves as a substrate for the polyimide film 306.
is a glass substrate 3 with sufficient thickness to hold the element.
11, a very thin glass material can be used. Pixel chamber 8302. The other layers between 310 and 310 are sufficiently thin compared to the size of one pixel even at the conventional technology level, so the wavelength plate 308 made of polymer liquid crystal and the ultra-thin glass plate 307 improve the effective aperture ratio. It exerts great power in preventing crosstalk between pixels.

(発明が解決しようとする課題) しかしながら、上記光学変調素子構成において、薄膜積
層構造を有するため、異なる屈折率を有する2層の界面
において、入射光は、隣接する2層の屈折率差により反
射され、入射光量が減少し、コントラストの低下を生じ
てしまう。加えて、極めて薄い膜構造を有することから
くる干渉効果、さらに界面の表面荒さによる散乱光の影
響等も考えられるが、上記の如き屈折率差による反射光
量に比べ極めて小さい。
(Problem to be Solved by the Invention) However, since the above-mentioned optical modulation element configuration has a thin film laminated structure, the incident light is reflected at the interface between two layers having different refractive indexes due to the difference in refractive index between two adjacent layers. As a result, the amount of incident light decreases, resulting in a decrease in contrast. In addition, interference effects due to the extremely thin film structure and effects of scattered light due to the surface roughness of the interface are also considered, but these are extremely small compared to the amount of reflected light due to the difference in refractive index as described above.

従来の光学変調素子においては、その薄膜積層構造に於
て、ある界面では屈折率差が小さく、反射率を低くおさ
えられていながら他のある界面では、屈折率差が大きく
なり、反射光量が増大する等、屈折率差を複数界面に於
て小さくしてやることで反射光量を低減し、コントラス
ト低下を防ぐという点は考慮されていなかった。
In conventional optical modulation elements, in the thin film laminated structure, the refractive index difference is small at certain interfaces and the reflectance is kept low, but at other interfaces the refractive index difference becomes large and the amount of reflected light increases. No consideration was given to reducing the amount of reflected light and preventing a decrease in contrast by reducing the refractive index difference at multiple interfaces.

本発明は、上記従来技術の欠点に鑑みなされたものであ
って、屈折率の異なる膜を通過する光の反射を抑えコン
トラストの低下を防止した光学変調素子の提供を目的と
する。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide an optical modulation element that suppresses the reflection of light passing through films having different refractive indexes and prevents a decrease in contrast.

〔課題を解決するための手段及び作用)前記目的を達成
するため、本発明によれは、光学変調素子の少くとも3
層以上から成る薄膜積層構造に於て、隣り合う膜の屈折
率の差を複数界面に対し最も小さくすることにより、該
積層膜の各界面の反射率及び合計の反射率を低下させ、
コントラストの向上を実現した。
[Means and effects for solving the problem] In order to achieve the above object, the present invention provides at least three optical modulation elements.
In a thin film laminated structure consisting of more than one layer, the reflectance of each interface and the total reflectance of the laminated film are reduced by minimizing the difference in refractive index between adjacent films for multiple interfaces,
Achieved improved contrast.

(実施例) 第1図は、本発明の実施例の断面図である。図において
、301は透明ガラス基板(厚さ約1mm)、302は
透明電極ITO(厚さ約1500人)で屈折率r)、=
1.92.303は絶縁膜(厚さ約1200人)(例え
ば5io2/Ti02)で屈折率1.74.305は強
銹電液晶層(厚さ約2μm)(例えば(S)2−メチル
ブチル−p[(p−n−デシロキシベンジリデン)アミ
ノコシンナメート、通称DOBAMBC)で屈折率1.
58.306は強銹電液晶層305を配向させるための
ポリイミド膜(厚さ約200人)、307〜311は第
3図の構造と同じである。
(Example) FIG. 1 is a sectional view of an example of the present invention. In the figure, 301 is a transparent glass substrate (thickness approximately 1 mm), 302 is a transparent electrode ITO (thickness approximately 1500 mm), refractive index r), =
1.92.303 is an insulating film (thickness of about 1200 nm) (e.g. 5io2/Ti02), and refractive index 1.74.305 is a strongly galvanic liquid crystal layer (thickness of about 2 μm) (e.g. (S)2-methylbutyl- p[(p-n-decyloxybenzylidene)aminococinnamate, commonly known as DOBAMBC) with a refractive index of 1.
58. 306 is a polyimide film (about 200 mm thick) for orienting the strong electrolytic liquid crystal layer 305, and 307 to 311 have the same structure as that shown in FIG.

屈折率の異なる層の界面において、隣接する2層の屈折
率差が小さい程、反射率は低くなり、屈折率n1層から
屈折率nb層へ入射光が通過する際の反射率Rは、主に
は、 で表わすことができる。又、複数の界面で入射光が反射
作用を受ける場合に於ては、最終的な反射率を小さくす
るためには、各層の屈折率が隣接する二層の屈折率の中
間程度の大ぎさを有することが最も望ましい。
At the interface between layers with different refractive indexes, the smaller the difference in refractive index between two adjacent layers, the lower the reflectance, and the reflectance R when incident light passes from the refractive index n1 layer to the refractive index nb layer is mainly can be expressed as . In addition, when incident light is reflected at multiple interfaces, in order to reduce the final reflectance, the refractive index of each layer should be approximately midway between the refractive index of two adjacent layers. It is most desirable to have.

本実施例の構成に於て、n1=1.92.n2”1.7
4.ns =1.58から、まず透明電極層/絶縁膜層
での反射率は約2.42X10−’絶縁膜/強誘電液晶
層での反射率は、2.32x10弓となる。これにより
、入射光量は、99.5%に減少する。しかしながら、
n、をn、と03の中間程度のものとせず、例えばきわ
めて、nlに近いもの、例えばn、=1.9とすると入
射光量は99.2%とさらに減少する。
In the configuration of this embodiment, n1=1.92. n2”1.7
4. Since ns = 1.58, the reflectance at the transparent electrode layer/insulating film layer is approximately 2.42x10-' The reflectance at the insulating film/ferroelectric liquid crystal layer is 2.32x10. This reduces the amount of incident light to 99.5%. however,
If n is not set somewhere between n and 03, but is very close to nl, for example, n=1.9, the amount of incident light will further decrease to 99.2%.

又、中間層が存在しない場合においては、9905%と
大幅に低下する。
Furthermore, when there is no intermediate layer, the reduction is significantly reduced to 9905%.

第2図は本発明の別の実施例の図である。図において、
301は透明ガラス基板(厚さ約1mm>、302は透
明電極ITO(厚さ約1500人)で屈折率n、=1.
92.303は絶縁膜(厚さ約1200人)(例えばE
B蒸着によって形成されたT120s)n2=1.78
.304は、強誘電液晶層305を配向させるための配
向膜ポリイミド(厚さ約200人)屈折率n5=1.6
8.305は強誘電液晶層(厚さ約2μm)でn、=1
.58.306〜311は第3図の構造と同じである。
FIG. 2 is a diagram of another embodiment of the invention. In the figure,
301 is a transparent glass substrate (thickness about 1 mm>), 302 is a transparent electrode ITO (thickness about 1500 mm) with a refractive index n, = 1.
92.303 is an insulating film (approximately 1200 mm thick) (for example, E
T120s formed by B evaporation) n2 = 1.78
.. 304 is an alignment film of polyimide (about 200 layers thick) for aligning the ferroelectric liquid crystal layer 305, with a refractive index n5=1.6.
8.305 is a ferroelectric liquid crystal layer (approximately 2 μm thick) with n, = 1
.. 58. 306 to 311 have the same structure as in FIG.

本実施例では、強誘電液晶層を配向させるためのプロセ
スとして、図の構成のようにポリイミド配向膜をもうけ
ているが、本発明の意図することと反するものではない
(nl〉n2>ns)。
In this example, as a process for aligning the ferroelectric liquid crystal layer, a polyimide alignment film is formed as shown in the configuration in the figure, but this does not contradict the intention of the present invention (nl>n2>ns) .

本実施例構成では、透明電極層/絶縁膜層、絶縁膜層/
ポリイミド配向膜、ポリイミド配向@/強誘電液晶層と
3つの界面を通過すると、透明π極層での入射光は、9
97%となる。
In the configuration of this embodiment, transparent electrode layer/insulating film layer, insulating film layer/
When passing through the three interfaces of the polyimide alignment film and polyimide alignment @/ferroelectric liquid crystal layer, the incident light on the transparent π-pole layer becomes 9
It becomes 97%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、該光学変調素子の薄@積層構造に
於て、透明電極層、絶縁層、強誘電液晶層の各々の屈折
率をnl +  n2 、n3とするとき、n H> 
n 2 > n s とし、さらに望ましくは、n2は
、nlとn、の中間程度の値とすることにより、屈折率
の異なる膜を通過する光の反射を極力避け、コントラス
ト低下を大幅に低減するという効果が得られる。
As explained above, in the thin @laminated structure of the optical modulation element, when the refractive index of each of the transparent electrode layer, insulating layer, and ferroelectric liquid crystal layer is nl + n2 and n3, n H>
By setting n 2 > ns and more preferably setting n 2 to a value approximately between nl and n, reflection of light passing through films with different refractive indexes is avoided as much as possible, and contrast degradation is significantly reduced. This effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成説明図、第2図は本発明
の別の実施例の構成説明図、第3図は従来の光学変調素
子部の構成説明図、第4図(a)、(b)は各々従来例
の概略説明図、 第5図は従来技術の基本構成図、 第6図(a)、(b)は各々従来技術の作用説明図であ
る。 301:透明基板、302:透明!極、303=絶縁膜
、304:FLC配向膜、3o5:強誘電液晶(FLC
)、306 : FLC配向膜、307;透明基板、3
08:図波長板、309:PLC配向膜、310:対向
を極及び反射板、311ニガラス基板。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the configuration of another embodiment of the invention, FIG. 3 is an explanatory diagram of the configuration of a conventional optical modulation element section, and FIG. ) and (b) are schematic explanatory diagrams of the conventional examples, FIG. 5 is a basic configuration diagram of the conventional technology, and FIGS. 6(a) and (b) are diagrams of the operation of the prior art, respectively. 301: Transparent substrate, 302: Transparent! Pole, 303 = Insulating film, 304: FLC alignment film, 3o5: Ferroelectric liquid crystal (FLC
), 306: FLC alignment film, 307; transparent substrate, 3
08: Figure wavelength plate, 309: PLC alignment film, 310: Opposing pole and reflection plate, 311 Ni glass substrate.

Claims (4)

【特許請求の範囲】[Claims] (1)透明電極層と、絶縁層と、強誘電液晶層とを含む
3層以上の積層体からなり、隣接する3層の屈折率を順
番にn_1、n_2、n_3とするとき、n_1>n_
2>n_3またはn_1<n_2<n_3であることを
特徴とする光学変調素子。
(1) Consisting of a laminate of three or more layers including a transparent electrode layer, an insulating layer, and a ferroelectric liquid crystal layer, when the refractive index of the three adjacent layers is n_1, n_2, and n_3 in order, n_1>n_
An optical modulation element characterized in that 2>n_3 or n_1<n_2<n_3.
(2)透明電極層と、絶縁層と、強誘電液晶層の屈折率
をn_1、n_2、n_3とするとき、n_1>n_2
>n_3であることを特徴とする特許請求の範囲第1項
記載の光学変調素子。
(2) When the refractive indices of the transparent electrode layer, insulating layer, and ferroelectric liquid crystal layer are n_1, n_2, and n_3, n_1>n_2
The optical modulation element according to claim 1, wherein n_3.
(3)前記積層体は、さらに1/4波長板機能を有する
高分子液晶層と反射層とを含むことを特徴とする特許請
求の範囲第1項記載の光学変調素子。
(3) The optical modulation element according to claim 1, wherein the laminate further includes a polymer liquid crystal layer having a quarter-wave plate function and a reflective layer.
(4)複数の光学変調素子をマトリックス状に配置し選
択的に電圧印加して変調制御し画像表示を行うことを特
徴とする特許請求の範囲第1項記載の光学変調素子を用
いた表示装置。
(4) A display device using the optical modulation element according to claim 1, wherein a plurality of optical modulation elements are arranged in a matrix and a voltage is selectively applied to perform modulation control and image display. .
JP27321690A 1990-10-15 1990-10-15 Optical modulation element and display device using the element Pending JPH04149519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27321690A JPH04149519A (en) 1990-10-15 1990-10-15 Optical modulation element and display device using the element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27321690A JPH04149519A (en) 1990-10-15 1990-10-15 Optical modulation element and display device using the element

Publications (1)

Publication Number Publication Date
JPH04149519A true JPH04149519A (en) 1992-05-22

Family

ID=17524724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27321690A Pending JPH04149519A (en) 1990-10-15 1990-10-15 Optical modulation element and display device using the element

Country Status (1)

Country Link
JP (1) JPH04149519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109541B2 (en) 2001-12-13 2006-09-19 Stmicroelectronics, S.A. Integrated circuit component, protected against random logic events, and associated method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109541B2 (en) 2001-12-13 2006-09-19 Stmicroelectronics, S.A. Integrated circuit component, protected against random logic events, and associated method of manufacture

Similar Documents

Publication Publication Date Title
JP2851906B2 (en) Optical modulation element and display device
US6016178A (en) Reflective guest-host liquid-crystal display device
US5889570A (en) Reflection--type liquid crystal displaying device
KR0162262B1 (en) Liquid crystal display device and its production
JP2994814B2 (en) Liquid crystal device
JP5106754B2 (en) Transflective display device and method for forming the same.
JP3144607B2 (en) Optical switching element
CN101004523A (en) In-plane switching mode liquid crystal display device and its manufacture method
US5615025A (en) Optical modulation device having different pretilts in the compensation cell(s)
KR100486068B1 (en) Reflective ferroelectric liquid crystal display
JP2002169021A (en) Polarization reflection element, liquid crystal display element having the same, and method of manufacturing polarization reflection element
JPH08106087A (en) Reflection type liquid crystal display device
JPH04149519A (en) Optical modulation element and display device using the element
JP3267861B2 (en) Reflection type liquid crystal display element and manufacturing method thereof
JP2003029264A (en) Liquid crystal display
JP3534371B2 (en) Liquid crystal display device
JP2001051277A (en) Liquid crystal element, method of manufacturing the same, liquid crystal display element and method of driving the same
JPH04116515A (en) Reflective liquid crystal electro-optical device
JP2001100253A (en) Liquid crystal display
JP3591479B2 (en) Liquid crystal element
JP2000066191A (en) Liquid crystal display
JP3150827B2 (en) Optical switching element
JPH05297402A (en) Liquid crystal display device
JPH03276122A (en) Projection type liquid crystal display device
JPH11231807A (en) Reflection type liquid crystal display device