[go: up one dir, main page]

JPH04141219A - Exhaust gas purifying apparatus of engine - Google Patents

Exhaust gas purifying apparatus of engine

Info

Publication number
JPH04141219A
JPH04141219A JP2261100A JP26110090A JPH04141219A JP H04141219 A JPH04141219 A JP H04141219A JP 2261100 A JP2261100 A JP 2261100A JP 26110090 A JP26110090 A JP 26110090A JP H04141219 A JPH04141219 A JP H04141219A
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
reduction catalyst
temp
adsorption member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2261100A
Other languages
Japanese (ja)
Other versions
JP3046051B2 (en
Inventor
Takashi Takemoto
崇 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2261100A priority Critical patent/JP3046051B2/en
Publication of JPH04141219A publication Critical patent/JPH04141219A/en
Application granted granted Critical
Publication of JP3046051B2 publication Critical patent/JP3046051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To effectively reduce the concn. of NOX by alternately providing NOX adsorbing members adsorbing NOX at a predetermined temp. or less and reducing catalyst decomposing NOX in the vicinity of said temp. in this order from an upstream part as two or more sets. CONSTITUTION:An exhaust gas purifying apparatus S is equipped with the casing 2 integrally formed along with an exhaust pipe 1, the NOX adsorbing members 3 adsorbing NOX within a low temp. region of predetermined temp. or less provided in the casing 2 and the reducing catalysts 4 decomposing NOX within the high temp. region of the predetermined temp. or higher provided in the casing 2. The NOX adsorbing members 3 and the reducing catalysts 4 are alternately provided in this order in a laminar state in a close contact state from the upstream part in the casing 2. As the NOX adsorbing members 3, composite oxide represented by BaO-CuO is used and, as the reducing catalysts 4, it is proper to use zeolite ion-exchanged with a transition metal represented by a copper ion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの排気ガス浄化装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine exhaust gas purification device.

(従来の技術) 近年、環境問題かクローズアップされてきており、酸性
雨の原因となるNOxが規制化される兆しが高まりつつ
ある。その場合、特に、ディーゼルエンジン搭載車は、
酸素過剰雰囲気下で運転されているため、NOxの還元
除去が難しく、このNOxの規制強化が大きな命題とし
て与えられている。
(Prior Art) Environmental issues have been attracting attention in recent years, and there are increasing signs that NOx, which causes acid rain, will be regulated. In that case, especially cars equipped with diesel engines,
Because they are operated in an oxygen-rich atmosphere, it is difficult to reduce and remove NOx, and stricter regulations on NOx are a big priority.

そして、このような状況下で、NOxを直接N2および
02などに分解する銅イオン交換ゼオライトが発表され
、大きな話題を呼んでいる。この銅イオン交換ゼオライ
トは、ゼオライトに遷移金属をイオン交換担持してなり
NOx分解性能を白−する還元触媒として利用され、こ
の還元触媒と、アルミナに触媒成分を担持した酸化触媒
又は三元触媒とを排気流入側において上流側および下流
側に順に配置して、エンジンの排気ガス浄化装置として
用いられている(特開平01−139’145号公報参
照)。
Under these circumstances, a copper ion exchange zeolite that directly decomposes NOx into N2, 02, etc. has been announced and is attracting a lot of attention. This copper ion-exchanged zeolite is made by supporting transition metals on zeolite through ion exchange and is used as a reduction catalyst to improve NOx decomposition performance. are arranged in order on the upstream side and the downstream side on the exhaust inflow side, and are used as an exhaust gas purifying device for an engine (see Japanese Patent Laid-Open No. 01-139'145).

(発明が解決しようとする課題) ところが、上記の如きエンジンの排気ガス浄化装置では
、銅イオン交換ゼオライト(還元触媒)によりNOを分
解する活性温度が、第4図のAに示すように、350℃
付近と高いため、この温度に達するまでは還元触媒とし
ての浄化能力(NOx分解能力)が発揮されず、低温時
(350℃以下)にNOxが浄化(分解)されないまま
排出されて、排気ガス浄化装置出口のNOx濃度が高い
ものとなる。その場合、銅イオン交換ゼオライトは、活
性浄化能力自体を活発化させることはできても、活性温
度を低温側に移行させることが技術的に困難なものとな
る。
(Problem to be Solved by the Invention) However, in the engine exhaust gas purification device as described above, the activation temperature at which NO is decomposed by the copper ion exchange zeolite (reduction catalyst) is 350°C, as shown in A in Fig. 4. ℃
Because the temperature is high, the purification ability (NOx decomposition ability) as a reduction catalyst is not demonstrated until this temperature is reached, and NOx is emitted without being purified (decomposed) at low temperatures (below 350 degrees Celsius), resulting in exhaust gas purification. The NOx concentration at the outlet of the device becomes high. In that case, although the copper ion exchange zeolite can activate its active purification ability itself, it is technically difficult to shift the activation temperature to a lower temperature side.

そこで、第3図に示すように、公知の複合酸化物BaO
−CuOが特異的に350℃以下の低温側の温度域まで
NOxを吸着することに着目し、このBaO−CuOな
る吸着材を有するNOx吸着部材と、上述の銅イオン交
換ゼオライトとを併用、つまりNOx吸着部材と、還元
触媒とを上流側および下流側に順に配置した排気ガス浄
化装置を構成してNoを効果的に浄化することが考えら
れる。尚、第3図はCu−アルカリ土類金属系複合酸化
物のNo除去態を示す図である。
Therefore, as shown in FIG. 3, a known composite oxide BaO
Focusing on the fact that -CuO specifically adsorbs NOx up to a low temperature range of 350°C or less, we combined the NOx adsorption member having this BaO-CuO adsorbent with the above-mentioned copper ion exchange zeolite, that is, It is conceivable to effectively purify NO by configuring an exhaust gas purification device in which a NOx adsorption member and a reduction catalyst are arranged in order on the upstream side and the downstream side. Incidentally, FIG. 3 is a diagram showing the No removal state of the Cu-alkaline earth metal complex oxide.

しかしながら、排気流入側における排気ガス浄化装置内
では、その上流側と下流側とで温度格差が生じているた
め、上流側のNOx吸着部材が低温域から350℃以上
の温度域(高温域)に達してNOxが離脱し始めても、
下流側の銅イオン交換ゼオライトが未だ350℃付近の
温度域に達しないで還元触媒としての浄化能力が発揮さ
れず、低温時における排気ガス浄化装置出口のNOx濃
度を効果的に低減させることができない。
However, within the exhaust gas purification device on the exhaust inlet side, there is a temperature difference between the upstream and downstream sides, so the NOx adsorption member on the upstream side changes from a low temperature range to a temperature range of 350°C or higher (high temperature range). Even if NOx reaches that point and starts to leave,
The copper ion exchange zeolite on the downstream side has not yet reached the temperature range of around 350°C, and its purification ability as a reduction catalyst is not demonstrated, making it impossible to effectively reduce the NOx concentration at the exhaust gas purification device outlet at low temperatures. .

本発明はかかる諸点に鑑みてなされたもので、その目的
とするところは、上記排気ガス浄化装置内において低温
時における温度路Xが小さくなるよう、NOx吸着部材
および還元触媒に改良を加えて配置し、排気ガス浄化装
置出口のNOx8度を効果的に低減させようとするもの
である。
The present invention has been made in view of these points, and its purpose is to improve and arrange the NOx adsorption member and the reduction catalyst so that the temperature path X at low temperatures becomes small in the exhaust gas purification device. However, the aim is to effectively reduce NOx by 8 degrees at the exhaust gas purification device outlet.

(課題を解決するための手段及びその作用)上記目的を
達成するため、本発明の解決手段は、エンジンの排気ガ
ス浄化装置として、エンジンの排気系に、所定温度以下
でNOxを吸着する吸着材ををするNoxe着部材と、
ゼオライトに遷移金属をイオン交換担持してなり上記所
定温度付近でNOx分解性能を有する還元触媒とを上流
側からNOx吸着部材および還元触媒の順に交互に複数
組設ける構成としたものである。
(Means for Solving the Problems and Their Effects) In order to achieve the above object, the solving means of the present invention uses an adsorbent that adsorbs NOx at a predetermined temperature or lower in the exhaust system of the engine as an engine exhaust gas purification device. A Noxe attachment member that performs
A plurality of sets of reduction catalysts, which are made by ion-exchange supporting a transition metal on zeolite and have NOx decomposition performance near the above-mentioned predetermined temperature, are provided alternately in the order of NOx adsorption members and reduction catalysts from the upstream side.

この場合、吸着材(NOx吸着部材)としては、BaO
−CuOに代表される複合酸化物を用いるのが適切であ
る。
In this case, the adsorbent (NOx adsorption member) is BaO
It is appropriate to use a complex oxide represented by -CuO.

また、還元触媒としては、銅イオンに代表される遷移金
属をイオン交換したゼオライト(銅イオン交換ゼオライ
ト)を用いるのが適切である。このイオン交換する遷移
金属は、Cuをはじめ、co、NE、Cr、Fe、Mn
、Pt、Pd、Rh。
Further, as the reduction catalyst, it is appropriate to use zeolite (copper ion-exchanged zeolite) in which transition metals such as copper ions are ion-exchanged. The transition metals for this ion exchange include Cu, co, NE, Cr, Fe, and Mn.
, Pt, Pd, Rh.

Ru、Ir等も単一または複合の形で使用可能である。Ru, Ir, etc. can also be used singly or in combination.

したがって、エンジンの吸気系に設けられた複数組のN
oxe着部材および還元触媒は、該N。
Therefore, multiple sets of N are provided in the intake system of the engine.
The oxe attachment member and the reduction catalyst are the N.

X吸着部材および還元触媒が層状体に分割されて1組当
りのNOx吸着部材および還元触媒の厚みが薄いものと
なり、上流側から順に交互に配した複数組のNOx吸着
部材および還元触媒には、NOx吸着部材を介した還元
触媒への排気ガス温度の伝達が順次迅速になされる。
The X adsorption member and the reduction catalyst are divided into layered bodies, and the thickness of each set of the NOx adsorption member and the reduction catalyst is thin. The exhaust gas temperature is sequentially and rapidly transmitted to the reduction catalyst via the NOx adsorption member.

また、第2図に示すように、最上流側に位置するNOx
吸着部材の温度が350℃になると、このNOx吸着部
材に吸着されていたNOxの離脱が始まり、そのNOx
Ox吸材部材後Ox11度か図中αで示すような特性と
なるが、層状体に分割されたNOx吸着部材下流側の還
元触媒の温度が直ちに350℃になり、NOxをN2お
よび02などに分解する。しかも、最上流側に位置する
NOx吸着部材下流側の還元触媒によりN、および02
などに分解し切れなかったNOxは、その下流側におけ
るNOx吸着部材によって350℃まで吸着され、同様
に350℃になると下流側の還元触媒でN2およびO,
などに分解されることを繰り返す。これにより、排気ガ
ス浄化装置出口側のNOx濃度が図中βで示すような特
性となり、NOx吸着部材と還元触媒とが350℃に到
達するまでの温度差によりN2および02など分解し切
れなかったNOxの濃度は可及的に小さな値となる。
Additionally, as shown in Figure 2, NOx located on the most upstream side
When the temperature of the adsorption member reaches 350°C, the NOx adsorbed by this NOx adsorption member starts to be released, and the NOx
The temperature of the reduction catalyst on the downstream side of the NOx adsorption member, which is divided into layers, immediately reaches 350°C, and the temperature of the reduction catalyst on the downstream side of the NOx adsorption member, which is divided into layered bodies, becomes 350°C, and the NOx is converted into N2 and 02. Disassemble. Moreover, due to the reduction catalyst downstream of the NOx adsorption member located on the most upstream side, N and 02
NOx that has not been completely decomposed into 350℃ is adsorbed by the NOx adsorption member on the downstream side, and when the temperature reaches 350℃, the reduction catalyst on the downstream side removes N2 and O,
It is repeatedly broken down into As a result, the NOx concentration on the exit side of the exhaust gas purification device took on the characteristics shown by β in the figure, and N2 and 02 were not completely decomposed due to the temperature difference between the NOx adsorption member and the reduction catalyst until they reached 350°C. The concentration of NOx becomes as small as possible.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例に係るディーゼルエンジンの排
気ガス浄化装置Sを示し、この排気ガス浄化装置Sは、
図示しないエンジンの排気流出側となる排気管1の途中
に設けられている。該排気ガス浄化装置Sは、排気管1
に一体的に形成されたケーシング2と、該ケーシング2
内に設けられ、350℃以下の低温域で排気ガス中に含
有されているNOxを吸着するNOx吸着部材3と、上
記ケーシング2内に設けられ、350℃付近からの高温
域で排気ガス中に含HされているNOxをN2および0
2などに分解するNOx分解性能を白゛する還元触媒4
とを備えている。
FIG. 1 shows an exhaust gas purification device S for a diesel engine according to an embodiment of the present invention.
It is provided in the middle of an exhaust pipe 1 that is the exhaust gas outflow side of an engine (not shown). The exhaust gas purification device S includes an exhaust pipe 1
a casing 2 integrally formed with the casing 2;
The NOx adsorption member 3 is installed inside the casing 2 and adsorbs NOx contained in the exhaust gas in a low temperature range of 350°C or lower. H-containing NOx is removed by N2 and 0
Reduction catalyst 4 that improves NOx decomposition performance
It is equipped with

上記NOx吸着部材3の製造方法としては、例えば13
.6g秤量したCuO粉末と、例えば34.6g秤量し
たBaCO3粉末とをボールミルに混合した後、100
0℃(600℃〜1000℃)で焼成して結晶化(酸化
物の形にする)する。
As a method for manufacturing the NOx adsorption member 3, for example, 13
.. After mixing 6 g of CuO powder and, for example, 34.6 g of BaCO3 powder in a ball mill,
It is fired at 0°C (600°C to 1000°C) to crystallize it (form it into an oxide).

その後、粉砕し、バインダー(アルミナスラリー)をL
og加えて850℃で5時間焼成してNOx吸着材3a
を有するNOx@着部材着色材3れる。
After that, it is crushed and binder (alumina slurry) is added to L.
og and baked at 850℃ for 5 hours to form NOx adsorbent 3a.
NOx with coloring material 3 is used.

この場合1完成品の複合酸化物CuO: BaOの比率
は1:1となるように調整する。
In this case, the ratio of composite oxide CuO:BaO in one finished product is adjusted to 1:1.

一方、還元触媒4の製造方法としては、Si/Al比が
40となるように混合されたシリカゾルとアルミナゾル
との混合物60部に、ゼオライト(Si/Al比は40
)粉末100部及び水60部を加えて充分撹拌し、硝酸
アルミニウム溶液でpHを3〜6とし、ウォッシュコー
ト用スラリーをバインダーとして調整しておく。そして
、コージェライト製モノリス状ハニカム担体を水に浸消
し、余分な水を吹き払った後、上記ウォッシュコート用
スラリー(バインダー)に浸漬し、取出した後余分なス
ラリーを圧縮空気で吹き払い、80℃で20分乾燥させ
、さらにこれを600℃で1時間電気炉中で焼成する。
On the other hand, as a method for producing the reduction catalyst 4, 60 parts of a mixture of silica sol and alumina sol mixed so that the Si/Al ratio was 40 was added with zeolite (Si/Al ratio was 40
) Add 100 parts of powder and 60 parts of water, stir thoroughly, adjust the pH to 3 to 6 with aluminum nitrate solution, and prepare a washcoat slurry as a binder. Then, the cordierite monolithic honeycomb carrier was immersed in water, the excess water was blown off, and then immersed in the above slurry for wash coating (binder), taken out, and the excess slurry was blown off with compressed air. It is dried at 600° C. for 20 minutes and then fired in an electric furnace at 600° C. for 1 hour.

これにより得られた焼成体を0.02mol/1程度の
低濃度酢酸調水溶液中に24時間浸漬し、イオン交換操
作を数回繰返して行って担持した後、150℃で2時間
乾燥してイオン交換率143%の銅イオン交換ゼオライ
ト(還元触媒4)が作られる。この場合、第4図に示す
ように、イオン交換率143%の銅イオン交換ゼオライ
トにより分解された図中Aで示すNoは、温度変化に応
じて、図中Bで示すN2、図中Cで示す02および図中
Cで示すN20にそれぞれ分解される。また、イオン交
換操作を数回繰返して行うことにより浄化率が高められ
る。尚、第4図は143%交換Cu−Z触媒上でのNO
の接触分解を示す図である。
The fired body thus obtained was immersed in a low concentration acetic acid aqueous solution of about 0.02 mol/1 for 24 hours, the ion exchange operation was repeated several times to support it, and then dried at 150°C for 2 hours to ionize it. A copper ion exchange zeolite (reduction catalyst 4) with an exchange rate of 143% is produced. In this case, as shown in Fig. 4, No. shown as A in the figure decomposed by the copper ion exchange zeolite with an ion exchange rate of 143% changes depending on the temperature change, N2 shown as B in the figure and C in the figure. It is decomposed into 02 shown in the figure and N20 shown in C in the figure. Furthermore, the purification rate can be increased by repeating the ion exchange operation several times. In addition, Figure 4 shows NO on a 143% exchanged Cu-Z catalyst.
FIG.

そして、上記NOx吸着部材3および還元触媒4は、該
両者3,4が1対で1組となるよう、それぞれ層状体に
分割形成されている。また、上記NOx吸着部材3およ
び還元触媒4は、上流側からNOx吸着部材3および還
元触媒4の順に交互に密接状態で3組設けられている。
The NOx adsorption member 3 and the reduction catalyst 4 are each formed into a layered body so that the two members 3 and 4 form a pair. Further, three sets of the NOx adsorption member 3 and the reduction catalyst 4 are provided in close contact with each other in the order of the NOx adsorption member 3 and the reduction catalyst 4 from the upstream side.

上記NOx吸着部材3(NOx吸着材3a)と還元触媒
4との比率は、1対1とし、 50ccのNOx@着部材着色材30ccの還元触媒4
とで総計100ccを2cm〜4cmの層状にして配置
する。
The ratio of the NOx adsorption member 3 (NOx adsorbent 3a) to the reduction catalyst 4 is 1:1, and 50 cc of NOx @ 30 cc of the reduction catalyst 4 of the coloring material
A total of 100 cc is arranged in a layer of 2 cm to 4 cm.

また、テスト条件は、 SV(テストガスの空間速度) −500〜1000(h−’) NO−500ppm     で行う。In addition, the test conditions are SV (space velocity of test gas) -500~1000 (h-') Perform at NO-500 ppm.

したがって、吸気管1の途中に設けられた開気ガス浄化
装置S内の複数組のN Ox @ g部材3および還元
触媒4は、該NOx吸着部材3および還元触媒4が層状
体に分割されて1組当りのNOx吸着部材3および還元
触媒3の厚みが2cll〜4cm程度の薄いものとなり
、上流側から順に交互に配した3組のNOx吸着部材3
および還元触媒4には、NOx吸着部材3を介した還元
触媒4への排気ガス温度の伝達が順次迅速になされる。
Therefore, in the plurality of sets of NOx@g members 3 and reduction catalysts 4 in the open air gas purification device S provided in the middle of the intake pipe 1, the NOx adsorption member 3 and the reduction catalyst 4 are divided into layered bodies. The thickness of the NOx adsorption member 3 and reduction catalyst 3 per set is thin, about 2 cll to 4 cm, and three sets of NOx adsorption members 3 are arranged alternately from the upstream side.
The exhaust gas temperature is sequentially and rapidly transmitted to the reduction catalyst 4 via the NOx adsorption member 3.

この結果、排気ガス浄化装置S内におけるNOx@?j
部材3と還元触媒4の温度格差を可及的に小さくするこ
とができる。
As a result, NOx@? j
The temperature difference between the member 3 and the reduction catalyst 4 can be made as small as possible.

また、第2図で説明したように、最上流側に位置、つま
り上流側1粗目のNOx吸着部材3の温度が350℃に
なると、このNOx吸着部材3に吸着されていたNOx
の離脱が始まり、その1粗目のNOx吸着部材3後のN
Ox711度が図中αで示すような特性となるが、層状
体に分割されたNOx吸着部材3下流側における1組目
の還元触媒4の温度が直ちに350℃になり、NOxを
Nコ。
Moreover, as explained in FIG. 2, when the temperature of the NOx adsorption member 3 located on the most upstream side, that is, the first coarse upstream side, reaches 350°C, the NOx adsorbed on this NOx adsorption member 3
begins to separate, and the N after the first coarse NOx adsorption member 3
At 711 degrees Ox, the characteristics are as shown by α in the figure, but the temperature of the first set of reduction catalysts 4 on the downstream side of the NOx adsorption member 3 divided into layered bodies immediately reaches 350 degrees Celsius, and the NOx is reduced to N.

02およびN!Oに分解する。しかも、1組目の還元触
媒4によりN!、0!およびN20に分解し切れなかっ
たNOxは、その下流側における2組目のNOx吸着部
材3によって350℃まで吸着され、同様に350℃に
なると下流側の2組目の還元触媒4でN、、O,および
N、0に分解されることを3組目まで繰り返す。これに
より、排気ガス浄化装置S出口側のNOx濃度が図中β
で示すような特性となり、NOx@着部材着色材3触媒
4とが350℃に到達するまでの温度差によりN、、0
.およびN、Oに分解し切れなかったNOxの濃度が可
及的に小さな値となり、よって排気ガス浄化装置Sの浄
化性能を向上させることができる。
02 and N! Decomposes into O. Moreover, the first set of reduction catalysts 4 allows N! , 0! The NOx that has not been completely decomposed into N20 is adsorbed up to 350°C by the second set of NOx adsorption members 3 on the downstream side, and when the temperature reaches 350°C, the second set of reducing catalysts 4 on the downstream side absorbs N,... The decomposition into O, N, and 0 is repeated until the third set. As a result, the NOx concentration on the exit side of the exhaust gas purification device S is reduced to β in the figure.
The characteristics are as shown by , and due to the temperature difference between NOx @ colored member coloring material 3 and catalyst 4 reaching 350°C, N,,0
.. Also, the concentration of NOx that has not been completely decomposed into N and O becomes as small as possible, so that the purification performance of the exhaust gas purification device S can be improved.

尚、本発明は上記実施例に限定されるものではなく、そ
の他種々の変形例を包含するものである。
It should be noted that the present invention is not limited to the above embodiments, but includes various other modifications.

例えば、上記実施例では、排気ガス浄化装置Sのケーシ
ング2内にNOx吸着部材3および還元触媒4を設けた
が、エンジンの排気系にNOx吸る゛部材および還元触
媒を設けることによって排気ガス浄化装置が構成される
ようにしても良い。
For example, in the above embodiment, the NOx adsorption member 3 and the reduction catalyst 4 are provided in the casing 2 of the exhaust gas purification device S, but the exhaust gas can be purified by providing the NOx absorption member and the reduction catalyst in the exhaust system of the engine. The device may be configured.

また、上記実施例では、ディーゼルエンジンの排気管1
に排気ガス浄化装置Sを設けたが、ガソリンエンジンの
排気系に排気ガス浄化装置を適用しても良いのは勿論で
ある。
Further, in the above embodiment, the exhaust pipe 1 of the diesel engine
Although the exhaust gas purification device S is provided in the above, it is of course possible to apply the exhaust gas purification device to the exhaust system of a gasoline engine.

(発明の効果) 以上の如く、本発明におけるエンジンの排気ガス浄化装
置によれば、複数組のNOx@着部材および還元触媒を
層状体に分割して1組当りのN。
(Effects of the Invention) As described above, according to the engine exhaust gas purification device of the present invention, multiple sets of NOx @ attachment members and reduction catalysts are divided into layered bodies to reduce the amount of N per set.

X吸着部材および還元触媒の厚みを薄いものとし、上流
側から順に交互に配した複数組のNOx吸る一部材を介
した還元触媒への排気ガス温度の伝達が順次迅速になさ
れ、排気ガス浄化装置内におけるNOx吸着部材と還元
触媒の温度格差を可及的に小さくすることができる。し
かも、最上流側に位置するNOx吸着部材下流側の還元
触媒によりN2および02などに分解し切れなかったN
Oxが、その下流側におけるNOx吸着部材による吸着
と、還元触媒でN2および02などに分解されることを
繰り返すことによって、NOx吸着部材と還元触媒との
温度差によるNOxの濃度が可及的に小さな値となり、
よって排気ガス浄化装置の浄化性能を向上させることが
できる。
The thickness of the X adsorption member and the reduction catalyst are made thin, and the exhaust gas temperature is sequentially and quickly transmitted to the reduction catalyst through multiple sets of NOx absorbing members arranged alternately from the upstream side, resulting in exhaust gas purification. The temperature difference between the NOx adsorption member and the reduction catalyst within the device can be made as small as possible. Moreover, the N that was not completely decomposed into N2 and 02 by the reduction catalyst downstream of the NOx adsorption member located on the most upstream side
By repeating the adsorption of Ox by the NOx adsorption member on the downstream side and decomposition into N2 and 02 by the reduction catalyst, the concentration of NOx due to the temperature difference between the NOx adsorption member and the reduction catalyst is reduced as much as possible. becomes a small value,
Therefore, the purification performance of the exhaust gas purification device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す、排気管途中の排気ガス
浄化装置の縦断側面図である。また、第2図ないし第4
図は変形例を示し、第2図はN。 X吸着材および還元触媒の所定温度到達時のN。 X濃度特性を示す説明図、第3図はBaO−CuOの温
度に対する吸着特性図、第4図はNoの温度に対する分
解特性図である。 3・・・NOx吸着部材 3a・・・NOx吸着材 4・・・還元触媒 S・・・排気ガス浄化装置 遍sの) 第 図 湿度(”C) 第 図 3・・・NOx吸着部材 3a・・−NOx吸着材 4・・・還元触媒 S・・・排気ガス浄化装置 350℃ 第 図
FIG. 1 is a longitudinal sectional side view of an exhaust gas purification device in the middle of an exhaust pipe, showing an embodiment of the present invention. Also, Figures 2 to 4
The figure shows a modified example, and FIG. 2 is N. N when the X adsorbent and reduction catalyst reach a predetermined temperature. An explanatory diagram showing X concentration characteristics, FIG. 3 is an adsorption characteristic diagram of BaO-CuO with respect to temperature, and FIG. 4 is a diagram of decomposition characteristics of No with respect to temperature. 3...NOx adsorption member 3a...NOx adsorption material 4...Reduction catalyst S...of the exhaust gas purification device) Fig. Humidity (''C) Fig. 3...NOx adsorption member 3a...・-NOx adsorbent 4...Reduction catalyst S...Exhaust gas purification device 350℃ Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの排気系に、所定温度以下でNOxを吸
着する吸着材を有するNOx吸着部材と、ゼオライトに
遷移金属をイオン交換担持してなり上記所定温度付近で
NOx分解性能を有する還元触媒とが上流側からNOx
吸着部材および還元触媒の順に交互に複数組設けられて
いることを特徴とするエンジンの排気ガス浄化装置。
(1) In the exhaust system of the engine, a NOx adsorption member having an adsorbent that adsorbs NOx at a temperature below a predetermined temperature, and a reduction catalyst made by ion-exchange supporting a transition metal on zeolite and having NOx decomposition performance near the predetermined temperature. is NOx from the upstream side
An exhaust gas purification device for an engine, characterized in that a plurality of sets of adsorption members and reduction catalysts are provided alternately in this order.
JP2261100A 1990-09-28 1990-09-28 Engine exhaust gas purifier Expired - Fee Related JP3046051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2261100A JP3046051B2 (en) 1990-09-28 1990-09-28 Engine exhaust gas purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2261100A JP3046051B2 (en) 1990-09-28 1990-09-28 Engine exhaust gas purifier

Publications (2)

Publication Number Publication Date
JPH04141219A true JPH04141219A (en) 1992-05-14
JP3046051B2 JP3046051B2 (en) 2000-05-29

Family

ID=17357083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2261100A Expired - Fee Related JP3046051B2 (en) 1990-09-28 1990-09-28 Engine exhaust gas purifier

Country Status (1)

Country Link
JP (1) JP3046051B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025806A1 (en) * 1992-06-12 1993-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
WO1993025805A1 (en) * 1992-06-12 1993-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
WO1994017291A1 (en) * 1993-01-19 1994-08-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device for an internal combustion engine
US5423181A (en) * 1992-09-02 1995-06-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of an engine
US5473887A (en) * 1991-10-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
EP0629771A3 (en) * 1993-06-11 1998-07-29 Toyota Jidosha Kabushiki Kaisha An engine exhaust gas purification device
EP0866218A1 (en) * 1997-03-22 1998-09-23 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Adsorber-catalytic converter combination for internal combustion engines
WO2000027508A1 (en) * 1998-11-05 2000-05-18 Toyota Jidosha Kabushiki Kaisha Method and system for purifying exhaust gases and exhaust gas purification catalyst for use therein and method for preparation thereof
US6161378A (en) * 1996-06-10 2000-12-19 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US6596247B1 (en) 1996-10-25 2003-07-22 Hitachi, Ltd. Method for purifying exhaust gas from internal combustion engines
JP2003536012A (en) * 2000-06-06 2003-12-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Diesel exhaust system including NOx trap
CN104907092A (en) * 2014-03-14 2015-09-16 丰田自动车株式会社 Exhaust gas purifying catalyst

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473887A (en) * 1991-10-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
EP0598917A4 (en) * 1992-06-12 1998-08-19 Toyota Motor Co Ltd Exhaust emission control system for internal combustion engine.
US5450722A (en) * 1992-06-12 1995-09-19 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
WO1993025805A1 (en) * 1992-06-12 1993-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
WO1993025806A1 (en) * 1992-06-12 1993-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
US5423181A (en) * 1992-09-02 1995-06-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of an engine
US5483795A (en) * 1993-01-19 1996-01-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
WO1994017291A1 (en) * 1993-01-19 1994-08-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas cleaning device for an internal combustion engine
EP0629771A3 (en) * 1993-06-11 1998-07-29 Toyota Jidosha Kabushiki Kaisha An engine exhaust gas purification device
US6161378A (en) * 1996-06-10 2000-12-19 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas internal combustion engine
US7093432B2 (en) 1996-06-10 2006-08-22 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6397582B1 (en) 1996-06-10 2002-06-04 Hitachi, Ltd. Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6596247B1 (en) 1996-10-25 2003-07-22 Hitachi, Ltd. Method for purifying exhaust gas from internal combustion engines
EP0866218A1 (en) * 1997-03-22 1998-09-23 Dr.Ing.h.c. F. Porsche Aktiengesellschaft Adsorber-catalytic converter combination for internal combustion engines
US6113864A (en) * 1997-03-22 2000-09-05 Dr. Ing. H.C.F. Porsche Ag Adsorber-catalyst combination for internal combustion engines
WO2000027508A1 (en) * 1998-11-05 2000-05-18 Toyota Jidosha Kabushiki Kaisha Method and system for purifying exhaust gases and exhaust gas purification catalyst for use therein and method for preparation thereof
JP2003536012A (en) * 2000-06-06 2003-12-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Diesel exhaust system including NOx trap
CN104907092A (en) * 2014-03-14 2015-09-16 丰田自动车株式会社 Exhaust gas purifying catalyst

Also Published As

Publication number Publication date
JP3046051B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
CN107262090B (en) Integrated SCR and AMOx catalyst system
EP2308596B1 (en) Cu/zeolite SCR catalyst for NOx reduction in exhaust gases and manufacture method thereof
JP5875586B2 (en) Catalyst for removing nitrogen oxides from diesel engine exhaust
EP0993861B1 (en) Catalyst for purifying exhaust gas from lean-burn engine
CN103316709A (en) Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
JPH04231616A (en) Double converter engine exhaust mechanism to reduce emission of hydrocarbon
JP7379155B2 (en) SCR catalytic device containing vanadium oxide and iron-containing molecular sieves
KR20080077163A (en) Exhaust Gas Purification System
JP2008002451A (en) Diesel engine exhaust gas purification device and diesel engine exhaust gas purification method
EP1166854B1 (en) Exhaust gas purifing catalyst and method for purifying exhaust gas
JP2020508843A (en) Exhaust gas purification catalyst for diesel engines
EP0707883B1 (en) Catalyst and method for purifying exhaust gases
JPH04141219A (en) Exhaust gas purifying apparatus of engine
US20190093530A1 (en) Oxidation catalyst device for exhaust gas purification
JPH0568877A (en) Hydrocarbon adsorbent
JP2529739B2 (en) Exhaust gas purification catalyst and method
JP3014733B2 (en) Engine exhaust gas purification apparatus and method of manufacturing the same
JPH0483516A (en) Removal of nitrogen oxide
EP4566710A1 (en) Selective catalytic reduction system for exhaust gas treatment, and exhaust gas purification device for lean-burn engine using same
JP7288555B1 (en) Gasoline engine exhaust gas purifying catalyst and exhaust gas purifying system using the same
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JP3325604B2 (en) Exhaust gas purification catalyst
JPH0859236A (en) High heat resistance copper-alumina composite oxide and exhaust gas purification method
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP3321831B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees