JPH04154148A - Forming of substrate for soi - Google Patents
Forming of substrate for soiInfo
- Publication number
- JPH04154148A JPH04154148A JP27992890A JP27992890A JPH04154148A JP H04154148 A JPH04154148 A JP H04154148A JP 27992890 A JP27992890 A JP 27992890A JP 27992890 A JP27992890 A JP 27992890A JP H04154148 A JPH04154148 A JP H04154148A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- etching
- recess
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 63
- 239000010409 thin film Substances 0.000 claims abstract description 69
- 238000005530 etching Methods 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims description 25
- 239000013078 crystal Substances 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 16
- 238000005498 polishing Methods 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000003475 lamination Methods 0.000 claims description 2
- 238000009413 insulation Methods 0.000 abstract 2
- 238000005299 abrasion Methods 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 20
- 238000005516 engineering process Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、絶縁性基板上に半導体単結晶薄膜を形成す
るための凹凸を有して成る基板いわゆるS○I (Se
miconductor on In5ulator)
用基板の形成方法、特に前記凹凸の形成方法に間するも
のである。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a substrate having irregularities for forming a semiconductor single crystal thin film on an insulating substrate, so-called S○I (Se
(microconductor on inductor)
The present invention relates to a method for forming a substrate, particularly a method for forming the above-mentioned unevenness.
(従来の技術)
高速・高密度な2次元IC1またデイスプレィ等のよう
な大面積デバイス、さらには3次元IC蔓1&寅現する
ために、絶縁性基板上に半導体結晶を成長させる技術い
わゆるSOI技術の研究か精力的に行われている。(Conventional technology) SOI technology is a technology for growing semiconductor crystals on an insulating substrate in order to realize high-speed, high-density two-dimensional ICs, large-area devices such as displays, and even three-dimensional ICs. Research is being carried out energetically.
例えば、文献(アプライド フィジックス レターズ(
Appl、Phys、Let t、)35(1)、19
79.7.1.p、71)には、SOI技術の一種であ
るグラホエどタキシ法が開示されている。For example, the literature (Applied Physics Letters)
Appl, Phys, Let t,) 35(1), 19
79.7.1. p. 71) discloses a graphite taxi method, which is a type of SOI technology.
この方法では、M2図(A)又は(8)に示すように、
絶縁性絶Ia性基板11に微細な凹凸13(文献記載の
第2図(A)相当の基板の例でいえば、凹凸のと・ンチ
Pが3.8umで凹部の深ざDが0.1um程度の凹凸
)を有して成るSOI用基板]5が用いられる。そして
、このSOI用基板15上に、気相成長法により半導体
薄膜を堆積させると、堆積させようとする半導体の結晶
核の、凹凸13の角13a部分での表面エネルギーと、
凹凸13の平面部分13bての表面エネルギーとの差に
よって、結晶核が一定方向を向き、よって、絶縁性基板
11上に半導体単結晶か形成されるという。この方法に
より半導体単結晶形成か可能なことが、寅験的にも確認
されている。In this method, as shown in M2 diagram (A) or (8),
Fine irregularities 13 are formed on an insulating insulating substrate 11 (in the example of a substrate corresponding to FIG. 2 (A) described in the literature, the depth P of the irregularities is 3.8 um and the depth D of the recesses is 0.8 μm). An SOI substrate] 5 having irregularities of about 1 um is used. When a semiconductor thin film is deposited on this SOI substrate 15 by vapor phase growth, the surface energy of the semiconductor crystal nucleus to be deposited at the corner 13a of the unevenness 13,
Due to the difference in surface energy between the unevenness 13 and the flat portion 13b, the crystal nuclei are oriented in a certain direction, and thus a semiconductor single crystal is formed on the insulating substrate 11. It has been experimentally confirmed that semiconductor single crystals can be formed using this method.
(発明が解決しようとする課題)
しかしながら、S○■用基板基板する凹凸を現状のホト
リソグラフィ技術及びエツチング技術により形成する場
合、凹凸のピッチはIum程度か限界である。(Problem to be Solved by the Invention) However, when forming the unevenness on the S○■ substrate using the current photolithography technology and etching technology, the pitch of the unevenness is at the limit of approximately Ium.
SOI用基板基板ける凹凸の平面部分か広いと結晶核が
不規則に発生し、成長させた薄膜か多結晶化してしまう
ことを考えると、凹凸のピッチをより細かく出来る技術
が望まれる。Considering that if the planar surface of the unevenness of the SOI substrate is wide, crystal nuclei will occur irregularly and the grown thin film will become polycrystalline, so a technology that can make the pitch of the unevenness finer is desired.
また、SOI用基板基板ける凹凸のどツチが広いとこの
凹凸が成長層にも反映され成長層にも凹凸が生しでしま
う。この点からも、凹凸のどツチをより細かく出来る技
術が望まれる。Furthermore, if the uneven edges of the SOI substrate are wide, the unevenness will be reflected on the growth layer, resulting in unevenness in the growth layer. From this point of view as well, a technology that can make the edges of the unevenness more finely is desired.
この発明はこのような点に鑑みなされたものであり、従
ってこの発明の目的は、絶縁性基板に半導体単結晶薄膜
を成長させるための凹凸を有して成るS○■用基板基板
記凹凸を、従来より微細に形成出来る方法を提供するこ
とにある。The present invention has been made in view of the above points, and therefore, an object of the present invention is to provide a substrate for S○■ having an uneven structure for growing a semiconductor single crystal thin film on an insulating substrate. The object of the present invention is to provide a method that enables finer formation than conventional methods.
(課題を解決するための手段)
この目的の達成を図るため、この発明によれば、絶縁性
基板に半導体単結晶!I膜を成長させるための凹凸を有
して成るSOI用基板の、前述の凹凸を形成するに当り
、
絶m牲基板に凹部を形成し、
該凹部形成済み絶縁性基板上に、所定のエツチング手段
に対しエツチングレートが異なる少なくとも2橿頚の!
l膜を、順次にかつこれら薄膜によって少なくとも前述
の凹部が埋め込まれるまで積層し、
該積層により得られた薄膜積層体を、該積層体を構成す
る簿膜の少なくとも一部のm震の前述の凹部側!に積層
された部分の断面が露出するまで研磨し、
該研磨済み薄層積層体を前述のエツチング手段により所
定量エツチングして、該エツチング手段に対しエツチン
グレートが速い薄膜のエッチジグ跡で凹部が構成され、
該エツチング手段に対しエツチングレートが遅い薄膜部
分て凸部が構成された当該凹凸を形成することを特徴と
する。(Means for Solving the Problems) In order to achieve this object, according to the present invention, a semiconductor single crystal on an insulating substrate! To form the above-mentioned irregularities on the SOI substrate having irregularities for growing an I film, a recess is formed in the insulating substrate, and a predetermined etching process is performed on the insulating substrate on which the recess has been formed. At least two radial necks with different etching rates for the means!
l membranes are laminated one after another until at least the above-mentioned recesses are filled with these thin films, and the thin film laminate obtained by the lamination is subjected to the above-mentioned earthquake of at least a part of the membranes constituting the laminated body. Concave side! The polished thin layer laminate is etched by a predetermined amount using the etching means described above, and the recess is formed by the etching jig traces of the thin film whose etching rate is faster than that of the etching means. is,
The present invention is characterized in that the unevenness is formed by forming convex portions in a thin film portion whose etching rate is slow with respect to the etching means.
なお、ここで、絶縁性基板とは、例えばガラス基板、溶
融石英基板等の非晶質基板、半導体基板上にシリコン酸
化膜が形成されでいるような基板、これら基板に素子等
が作り込まれでいる基板等であることが出来る。Note that the insulating substrate here refers to, for example, an amorphous substrate such as a glass substrate or a fused quartz substrate, a substrate on which a silicon oxide film is formed on a semiconductor substrate, or a substrate on which an element or the like is fabricated. It can be a substrate etc.
また、凹部は、その深さや平面及び断面形状を設計に応
し任意に決定出来、また凹部側壁の基板面に対する角度
も設計に応し任意に決定出来る。Furthermore, the depth, plane, and cross-sectional shape of the recess can be arbitrarily determined according to the design, and the angle of the side wall of the recess with respect to the substrate surface can also be arbitrarily determined according to the design.
また、所定のエツチング手段に対して異なるエツチング
レートを示す2種類以上の薄膜の構成材料は、従来公知
の種々の材料の中から、形成される半導体単結晶との整
合性等も加味して決定すれば良い、より好ましくは、同
一の成膜装置で連続的に成膜出来るものが良い、また、
各薄膜の膜厚は、この膜厚が凹部の幅や凸部の幅すなわ
ち凹凸のピッチを決定する大きな要因になるので、この
点を考慮して決定する。具体的には、凹凸のピッチを微
細にする意味から、各薄膜の膜厚は数]O人〜数100
人とするのが好適である。In addition, the constituent materials of the two or more thin films that exhibit different etching rates for a given etching method are determined from among various conventionally known materials, taking into consideration their compatibility with the semiconductor single crystal to be formed. It is preferable to use a film that can be continuously formed using the same film forming apparatus.
The thickness of each thin film is determined with this point in mind, since this film thickness is a major factor in determining the width of the recesses and the widths of the projections, that is, the pitch of the unevenness. Specifically, in order to make the pitch of the unevenness finer, the thickness of each thin film is from several [0] to several 100.
Preferably, it is a person.
また、上述の所定のエツチング手段とは、エツチングレ
ートの異なる2種類以上の薄膜の材質との関係において
決定される手段であり、薄膜を選択的にエツチング出来
る手段であれば、ドライ、ウェットを問わないことは明
らかである。In addition, the above-mentioned predetermined etching means is a means determined in relation to two or more types of thin film materials having different etching rates, and any means capable of selectively etching thin films can be used regardless of dry or wet etching. It is clear that there is no such thing.
また、上述の研磨とは、例えば研磨材を用いる等の物理
的な方法による研磨、エツチングによる化学的な研磨、
またこれらを併用した研磨であることか出来る。In addition, the above-mentioned polishing includes, for example, physical polishing using an abrasive, chemical polishing by etching,
It is also possible to perform polishing using a combination of these.
(作用)
この発明の構成によれば、凹部を有する絶縁性基板上に
エツチングレートの異なる2種類以上の薄膜が順次に積
層されて薄膜積層体が形成される。従って、該薄膜積層
体の、前述の凹部上の部分は、凹部の段差の影響により
、見かけ上、各薄膜が凹部の側!に平行な方向に順次に
積層されたような構造になる。(Function) According to the configuration of the present invention, two or more types of thin films having different etching rates are sequentially laminated on an insulating substrate having a recessed portion to form a thin film laminate. Therefore, in the portion of the thin film laminate above the above-mentioned recess, each thin film appears to be on the side of the recess due to the influence of the step of the recess. The structure has a structure in which the layers are sequentially stacked in a direction parallel to .
ざらにこの発明の構成によれば、この薄膜積層体が所定
量研磨される。従って、研磨済みの薄膜積層体の前述の
凹部上の部分には、エツチングレートの異なる2種類以
上の薄膜が凹部の側!に平行な方向に並ぶ断面が現われ
る。Roughly speaking, according to the configuration of the present invention, this thin film laminate is polished by a predetermined amount. Therefore, on the above-mentioned concave portion of the polished thin film laminate, there are two or more types of thin films with different etching rates on the side of the concave portion! Cross sections aligned in a direction parallel to appear.
さらにこの発明の構成によれば、このような断面を有す
る薄膜積層体に対しエツチングが施される。この際、各
薄膜はそのエッチグレートに応しエツチングされるので
、エツチングレートの遅い薄膜部分は凸部になり、エツ
チングレートの速い薄膜部分は凹部となり、よって、薄
膜積層体上には薄膜積層体を構成する各*Sの膜厚レベ
ルの凹凸が形成される。Further, according to the configuration of the present invention, etching is performed on the thin film stack having such a cross section. At this time, each thin film is etched according to its etching rate, so parts of the thin film with a slow etching rate become convex parts, and parts of the thin film with a fast etching rate become concave parts. The unevenness of the film thickness level of each *S constituting is formed.
また、この発明の構成によれば、上記凹凸のピッチは、
エツチングレートの異なる2種類以上の薄膜の膜厚及び
薄膜構造体の研磨具合によって主に決定されるので、基
板に凹凸をi!i接形酸形成いた従来方法に比べ、その
制御が容易になる。Further, according to the configuration of the present invention, the pitch of the unevenness is
Since it is mainly determined by the thickness of two or more types of thin films with different etching rates and the polishing condition of the thin film structure, it is possible to create unevenness on the substrate with i! Compared to the conventional method in which i-tangular acid formation is performed, it is easier to control it.
また、絶縁性基板に最初に形成する凹部は任意の形状で
かつ任意の位置に形成することが可能であるため、例え
ば絶縁性基板の、能動素子のチャネル形成予定領域のみ
に半導体単結晶形成用凹凸を具えるSO工用基板の形成
も可能になる。然もこの凹部は、基板に凹凸を直接形成
していた従来方法に比べ大きくて良いので、その形成が
容易である。In addition, since the recess that is first formed in the insulating substrate can be formed in any shape and in any position, for example, it is possible to form a semiconductor single crystal only in the area of the insulating substrate where the channel of the active element is planned to be formed. It is also possible to form a substrate for SO processing with unevenness. However, since the recesses can be larger than in the conventional method in which the recesses and recesses are directly formed on the substrate, it is easy to form them.
(実施例)
以下、篤1図(A)〜(D)を参照して、この発明のS
OI用基板の形成方法の実施例について説明する。なあ
、これら図は、実施例の形成工程中の主な工程における
SOI用基板基板子をその断面図により示した工程図で
ある。しかしながら、これらの図はこの発明を理解出来
る程度に各構成成分の寸法、形状を概略的に示しである
にすぎない。(Example) Hereinafter, with reference to Atsushi 1 Figures (A) to (D), S
An example of a method for forming an OI substrate will be described. Incidentally, these figures are process diagrams showing the SOI substrate element in cross-sectional view at the main steps in the forming process of the embodiment. However, these drawings only schematically show the dimensions and shapes of each component to the extent that the present invention can be understood.
先ず、絶縁性基板2]を用意する。絶縁性基板2]とし
ては、例えば溶融石英等の非晶質基板等を用いることが
出来る。First, an insulating substrate 2] is prepared. As the insulating substrate 2], for example, an amorphous substrate such as fused silica can be used.
次に、絶縁性基板21の任意の領域例えば能動素子(例
えば薄膜トランジスタ)のチャネル形成予定領域に、従
来公知のホトリソグラフィ技術及びエツチング技術によ
り、凹部23を形成する(第1図(A))、この実施例
の凹部23は、その平面形状が略四角形状であって、深
さがd、方の辺の長さがS、図示しない他方の辺の長さ
がTのものとしである。Next, a recess 23 is formed in an arbitrary region of the insulating substrate 21, for example, a region where a channel of an active element (for example, a thin film transistor) is to be formed, by conventionally known photolithography and etching techniques (FIG. 1(A)). The concave portion 23 of this embodiment has a substantially rectangular planar shape, a depth of d, a length of one side of S, and a length of the other side (not shown) of T.
次に、凹部23形成済み絶縁性基板21上に、所定のエ
ツチング手段に対し工・ンチングレートか異なる2種類
以上の*Sとして、この実施例の場合第1の簿1125
及び第2の薄1127を、交互にかつこれら第1及び第
2の薄膜25.27によって少なくとも凹部23が埋め
込まれるまで積層して、薄膜積層体29を形成する(第
1図(B)”)、薄膜積層体29により凹部23を埋め
込むためには、薄膜積層体の総厚t ′IJ< t≧s
/ 2を満足するように第1及び第2の薄膜25.2
7を交互に積層すれば良い、より好ましくは、t=dで
かつt=s/2を満足するように第1及び蔦2の薄11
25,27を交互1こ積層すれば良い、このようにする
と、薄膜積層体29の最上層の膿の底部(第1図(8)
中Btで示す部分)が絶縁性基板21上面の高さと一致
する。Next, on the insulating substrate 21 in which the recesses 23 have been formed, two or more types of *S with different etching rates for a predetermined etching means are placed in the first register 1125 in this embodiment.
and second thin films 1127 are laminated alternately until at least the recess 23 is filled with these first and second thin films 25, 27 to form a thin film laminate 29 (FIG. 1(B)"). , in order to fill the recess 23 with the thin film laminate 29, the total thickness of the thin film laminate t'IJ< t≧s
The first and second thin films 25.2
7 may be alternately laminated, and more preferably, the first and the thin layers 11 of the vines 2 may be laminated so that t=d and t=s/2 are satisfied.
25 and 27 should be stacked alternately. In this way, the bottom of the pus in the top layer of the thin film stack 29 (Fig. 1 (8)
The middle portion (indicated by Bt) corresponds to the height of the upper surface of the insulating substrate 21.
ここで、笥1及び蔦2の薄1!25.27の構成材料は
所定のエツチング手段に対して異なるエツチングし−ト
を示すものであれば良く、より好ましくは、同一の成膜
装置で連続的に成膜出来るものが良い、但し、半導体単
結晶形成時の成層温度等に耐えられないようなもの、半
導体単結晶の特性を悪化させるようなもの(これらを整
合性が悪いと称することにする。)等は除外される。藁
1及び第2のill!25.27として用いて好適な材
料の組み合わせとしては、SiO2膜とS I N x
膜、SiO2膜とSi膜、絶縁膜と金属膜等を挙げるこ
とが出来る。Here, the constituent materials of the thin 1!25.27 of the tray 1 and the vine 2 may be those that exhibit different etching rates with respect to a predetermined etching means, and more preferably, they can be etched continuously using the same film forming apparatus. However, those that cannot withstand the deposition temperature during semiconductor single crystal formation, and those that deteriorate the characteristics of the semiconductor single crystal (these are referred to as having poor consistency) ) etc. are excluded. Straw 1 and 2 ill! A combination of materials suitable for use as 25.27 is SiO2 film and S I N x
Examples include a film, an SiO2 film and a Si film, an insulating film and a metal film, and the like.
なお、所定のエツチング手段は、第1の薄膜25及び第
2の薄膜27の構成材料を考慮して相対的に決定される
ものでありドライエツチング、ウェットエツチングいず
れでも良い0例えば、第1の薄膜25を5i021i!
で構成し、篤2の薄膜27をSiN、膜または5itl
で構成した場合であれば、エツチング手段は、例えば、
フッ化炭素系ガス(例えば、CF、ガスと02ガスとの
混合ガス)を用いるドライエツチングであることが出来
る。これによれば、S I N X膜及びS1膜を選択
的にエツチング出来る。Note that the predetermined etching method is determined relatively considering the constituent materials of the first thin film 25 and the second thin film 27, and may be either dry etching or wet etching. 25 to 5i021i!
The thin film 27 of Atsushi 2 is made of SiN, film or 5itl.
In this case, the etching means is, for example,
Dry etching using a fluorocarbon gas (for example, a mixed gas of CF gas and 02 gas) can be used. According to this, the SINX film and the S1 film can be selectively etched.
また、第1及び第2の薄膜25.27の成長方法として
は、蒸着法、スパッタ法、CVD法等のfl々の方法を
用いることが出来るが、いずれの方法を用いる場合も、
ステップカバレージの良い条件で成膜することが必要で
ある。In addition, as a method for growing the first and second thin films 25 and 27, various methods such as evaporation, sputtering, and CVD can be used, but no matter which method is used,
It is necessary to form the film under conditions with good step coverage.
また、第1及び第2の薄膜25.27各々の膜厚は、こ
れが半導体単結晶形成用凹凸のピッチを決定する大きな
要素になることから、設計に応した適正な値とするのが
良い、具体的には、これら薄膜を形成する下地(ここで
下地とは、第1層目形成の場合は凹部23を有するP!
縁牲基板2]のことであり、第2層目以後は、第1の薄
膜25又は第2の11127のことである。)表面に吸
着したラジカルの該表面における平均自由行程以下の値
とするのが望ましく、従って数1o〜数100人とする
のが良い。In addition, since the thickness of each of the first and second thin films 25 and 27 is a major factor in determining the pitch of the unevenness for semiconductor single crystal formation, it is preferable to set the thickness to an appropriate value according to the design. Specifically, the base on which these thin films are formed (here, the base is P! having the recesses 23 in the case of forming the first layer).
The second and subsequent layers are the first thin film 25 or the second 11127. ) It is desirable that the value be less than or equal to the mean free path on the surface of radicals adsorbed on the surface, and therefore it is preferably from several 10 to several 100.
次に、薄膜積層体29を、該積層体29を構成する薄膜
の少なくとも一部の薄膜の凹部23の側壁に積層された
部分の断面が露出するまで研磨する。この実施例では、
凹部23形成済み絶縁性基板21上に最初に積層した第
1の薄膜25の基板21上に在る部分の表面が露出され
るまで薄膜積層体を研磨している(第1図(C))。こ
れにより、この場合は、第2、第3、及び第4層目の薄
膜の凹部23の側壁と平行な部分夫々の、基板面と平行
な断面31a、31b、31cが露出される。なお、研
磨は機械的若しくは化学的または両者を併用した方法で
行えるが、研磨面の平坦化が図れる方法が好ましい、ま
た、研磨代Uをどの程度にするかは設計に応じ決定すれ
ば良いが、薄膜積層体29を構成する各層のより多くの
層の断面(31a〜31cに相当する断面)W出される
ように設定するのが好適である。Next, the thin film laminate 29 is polished until the cross section of at least some of the thin films constituting the laminate 29 laminated on the side wall of the recess 23 is exposed. In this example,
The thin film laminate is polished until the surface of the portion of the first thin film 25, which is first laminated on the insulating substrate 21 on which the recess 23 has been formed, is exposed (FIG. 1(C)). . As a result, in this case, cross sections 31a, 31b, and 31c of the second, third, and fourth layer thin films parallel to the substrate surface are exposed, respectively, in portions parallel to the side walls of the recessed portions 23. Note that polishing can be done mechanically, chemically, or by a combination of both methods, but a method that can flatten the polished surface is preferable, and the amount of polishing allowance U can be determined depending on the design. , it is preferable to set the cross section W of each layer constituting the thin film laminate 29 (cross section corresponding to 31a to 31c) to be exposed.
次に、研磨済みの薄膜積層体を所定のエツチング手段に
より所定量エツチングする。このエツチング手段は、先
に説明したように、第一の薄膜25及び第二の薄膜27
の構成材料との関係において決定されている。このエツ
チング手段により、研磨済み薄膜積層体の第−及び第二
の薄膜のうちのエツチングレートの速い側を当該薄膜の
膜厚程度の深さエツチングすると、研磨済み薄膜積層体
表面には、膜厚レベルの即ち数10〜数100大のピッ
チの凹凸33が形成され、よって、実施例のSOI用基
板基板35られる(第1図(D))。Next, the polished thin film stack is etched by a predetermined amount using a predetermined etching means. This etching means, as explained above, etches the first thin film 25 and the second thin film 27.
It is determined in relation to the constituent materials. By using this etching means, when the side of the first and second thin films of the polished thin film laminate having a higher etching rate is etched to a depth approximately equal to the film thickness of the thin film, the surface of the polished thin film laminate will have a film thickness. The unevenness 33 with a pitch of several 10 to several 100 levels is formed, and thus the SOI substrate 35 of the embodiment is formed (FIG. 1(D)).
(発明の効果)
上述した説明からも明らかなように、この発明のSOI
用基板の形成方法によれば、現在使用されでいる成膜技
術及び加工技術により、従来より微細なピッチの凹凸を
有するSOI用基板の形成が可能になる。然も、凹凸は
、絶縁性基板の任意の領域例えばTFTアレイ用ガタガ
ラス基板TPTのチャネル形成予定領域に相当する領域
に形成することが可能になる。(Effect of the invention) As is clear from the above explanation, the SOI of this invention
According to the method for forming a substrate for SOI, it is possible to form a substrate for SOI having unevenness at a finer pitch than before using currently used film forming techniques and processing techniques. Of course, the unevenness can be formed in any region of the insulating substrate, for example, in the region corresponding to the region where the channel is to be formed in the glass substrate TPT for the TFT array.
従って、SOI技術を用いて半導体薄膜結晶をw!締性
基板の任意の領域に然も良好に成長させ得ることが期待
出来る。Therefore, SOI technology is used to make semiconductor thin film crystals w! It can be expected that it can be grown well in any region of a rigid substrate.
【図面の簡単な説明】
第1図(A)〜(D)は、実施例の説明に供する工程図
、
笥2図(A)及び(B)は、従来技術の説明に供する図
である。
]・・・絶縁性基板、 23・・・凹部5・・・第1の
薄膜、 27・・・第2の薄膜9・・・薄膜積層体
]a〜31c・・・研磨により露出された断面3・・・
この発明に係る凹凸
5・・・実施例のSOI用基板。
特
許出願人 沖電気工業株式会社
従来技術の説明に供する図
第2図[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(A) to (D) are process diagrams for explaining the embodiment, and FIGS. 2(A) and (B) are diagrams for explaining the prior art. ]... Insulating substrate, 23... Concavity 5... First thin film, 27... Second thin film 9... Thin film laminate] a to 31c... Cross section exposed by polishing 3...
Irregularities 5 according to the present invention: SOI substrate of the embodiment. Patent applicant: Oki Electric Industry Co., Ltd. Figure 2 for explanation of the prior art
Claims (2)
の凹凸を有して成るSOI用基板の、前記凹凸を形成す
るに当り、 絶縁性基板に凹部を形成し、 該凹部形成済み絶縁性基板上に、所定のエッチング手段
に対しエッチングレートが異なる少なくとも2種類の薄
膜を、順次にかつこれら薄膜によって少なくとも前記凹
部が埋め込まれるまで積層し、 該積層により得られた薄膜積層体を、該積層体を構成す
る薄膜の少なくとも一部の薄膜の前記凹部側壁に積層さ
れた部分の断面が露出するまで研磨し、 該研磨済み薄膜積層体を前記エッチング手段により所定
量エッチングして、該エッチング手段に対しエッチング
レートが速い薄膜のエッチング跡で凹部が構成され、該
エッチング手段に対しエッチングレートが遅い薄膜部分
で凸部が構成された当該凹凸を形成すること を特徴とするSOI用基板の形成方法。(1) In forming the unevenness of an SOI substrate having an unevenness for growing a semiconductor single crystal thin film on an insulating substrate, forming a recess in the insulating substrate, At least two types of thin films having different etching rates for a predetermined etching means are sequentially laminated on the substrate until at least the recess is filled with these thin films, and the thin film laminate obtained by the lamination is polishing at least some of the thin films constituting the body until a cross section of the portion laminated on the side wall of the recess is exposed; etching the polished thin film laminate by a predetermined amount by the etching means; A method for forming a substrate for SOI, characterized in that concavities are formed by etching traces of a thin film having a high etching rate, and convex portions are formed by thin film parts having a slow etching rate with respect to the etching means.
て、 絶縁性基板に形成する前記凹部の形成領域を、該絶縁性
基板の、能動素子のチャネル形成予定領域としたことを
特徴とするSOI用基板の形成方法。(2) The method for forming an SOI substrate according to claim 1, wherein the formation region of the recess formed in the insulating substrate is a region of the insulating substrate where a channel of an active element is planned to be formed. Method for forming a substrate for SOI.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27992890A JPH04154148A (en) | 1990-10-18 | 1990-10-18 | Forming of substrate for soi |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP27992890A JPH04154148A (en) | 1990-10-18 | 1990-10-18 | Forming of substrate for soi |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04154148A true JPH04154148A (en) | 1992-05-27 |
Family
ID=17617867
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP27992890A Pending JPH04154148A (en) | 1990-10-18 | 1990-10-18 | Forming of substrate for soi |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04154148A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007041411A3 (en) * | 2005-09-30 | 2007-08-23 | Ikonics Corp | Image making laminates |
-
1990
- 1990-10-18 JP JP27992890A patent/JPH04154148A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007041411A3 (en) * | 2005-09-30 | 2007-08-23 | Ikonics Corp | Image making laminates |
| US8361330B2 (en) | 2005-09-30 | 2013-01-29 | Ikonics Corporation | Image making laminates |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8470712B2 (en) | Process for the transfer of a thin film comprising an inclusion creation step | |
| JP5231460B2 (en) | Patterned thin SOI | |
| JPS6052016A (en) | Manufacture of semiconductor element | |
| TWI493608B (en) | Method of manufacturing wafers | |
| JP2000315807A (en) | Manufacturing method of planar heterostructure | |
| Chen et al. | Seeded lateral solid-phase crystallization of the perovskite oxide SrTiO3 | |
| JP2840434B2 (en) | Crystal formation method | |
| JP2660064B2 (en) | Crystal article and method for forming the same | |
| JP2699359B2 (en) | Semiconductor substrate manufacturing method | |
| JPH04154148A (en) | Forming of substrate for soi | |
| CN101558486A (en) | Method for manufacturing compound materialn wafer and corresponding compound material wafer | |
| US8303745B2 (en) | Process for transferring films | |
| US8598566B2 (en) | Controlled quantum dot growth | |
| JPH0488657A (en) | Semiconductor device and manufacture thereof | |
| JPH04181719A (en) | Method of forming crystalline articles | |
| JPH03125458A (en) | Method of forming single crystal region, and single crystal article using same | |
| JPS62119914A (en) | Method for solid-phase epitaxy of semiconductor layer | |
| JPH02205339A (en) | Manufacturing method of semiconductor device | |
| JPH03292723A (en) | Manufacture of silicon singe crystal thin film | |
| JPH04307735A (en) | Manufacturing method of semiconductor device | |
| JPH0368137A (en) | Method for forming crystalline semiconductor film | |
| JP2786534B2 (en) | Crystal formation method | |
| JPH04206925A (en) | Manufacture of stuck wafer | |
| JPH03159257A (en) | Manufacture of semiconductor substrate | |
| JPH098125A (en) | Insulation separation substrate and its manufacturing method |