JPH04159435A - Fuel injection controller of two-cycle diesel engine - Google Patents
Fuel injection controller of two-cycle diesel engineInfo
- Publication number
- JPH04159435A JPH04159435A JP28044890A JP28044890A JPH04159435A JP H04159435 A JPH04159435 A JP H04159435A JP 28044890 A JP28044890 A JP 28044890A JP 28044890 A JP28044890 A JP 28044890A JP H04159435 A JPH04159435 A JP H04159435A
- Authority
- JP
- Japan
- Prior art keywords
- fuel injection
- injection amount
- intake
- intake air
- maximum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/025—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、2サイクルディーゼルエンジンの燃料噴射制
御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection control device for a two-stroke diesel engine.
従来よりディーゼルエンジンにおいて、燃料噴射量をエ
ンジン回転数や、エンジン負荷例えばスロットル開度等
に応じて電子制御することか行なわれている。BACKGROUND OF THE INVENTION Conventionally, in diesel engines, the amount of fuel injection has been electronically controlled in accordance with engine speed, engine load, such as throttle opening, etc.
例えば、特開昭63−18252号公報に記載のものは
、最大燃料噴射量を吸入空気温度が高いほど少なくする
よう補正する際に、上記最大噴射量の補正の割合をエン
ジン回転数によって異ならせ、吸気温上昇時のスモーク
の発生を防止している。For example, in the method described in Japanese Patent Application Laid-open No. 63-18252, when correcting the maximum fuel injection amount so that it decreases as the intake air temperature increases, the ratio of correction of the maximum injection amount is varied depending on the engine speed. , which prevents smoke from occurring when the intake temperature rises.
しかし、2サイクルエンジンでは吹き抜は空気が存在し
、また燃焼室内の掃気による空気の流れの強さが変化す
る。このため、燃料と空気のミキシングが変化しスモー
クのレベルが変化する。従来装置ではエンジン回転数と
スロットル開度及び吸入温度で最大燃料噴射量を決め、
燃料噴射量を制限しているため、そのまま2サイクルデ
ィーゼルエンジンに適用するとスモークか発生してしま
うという問題があった。However, in a two-stroke engine, air exists in the atrium, and the strength of the air flow due to scavenging air in the combustion chamber changes. This changes the mixing of fuel and air and changes the level of smoke. Conventional equipment determines the maximum fuel injection amount based on engine speed, throttle opening, and intake temperature.
Since the fuel injection amount is limited, there is a problem in that if it is directly applied to a 2-stroke diesel engine, smoke will occur.
本発明は上記の点に鑑みなされたちのて、運転状態にて
定まる吸入空気量と吸気効率とミキシング効率から最大
燃料噴射量を求めて実際の燃料噴射量を規制することに
より、スモークの発生を防止する2サイクルディーゼル
エンジンの燃料噴射制御装置を提供することを目的とす
る。The present invention was developed in view of the above points, and the present invention suppresses the occurrence of smoke by determining the maximum fuel injection amount from the intake air amount, intake efficiency, and mixing efficiency determined by the operating condition and regulating the actual fuel injection amount. An object of the present invention is to provide a fuel injection control device for a two-stroke diesel engine that prevents the above.
第1図は本発明の原理図を示す。同図中、検出手段M2
は2サイクルデイ一ゼルエンジンMlの運転状態を検出
する。FIG. 1 shows a diagram of the principle of the present invention. In the figure, detection means M2
detects the operating state of the two-stroke diesel engine Ml.
噴射量演算手段M3は、検出手段M2の検出信号に応じ
て基本燃料噴射量を演算する。The injection amount calculation means M3 calculates the basic fuel injection amount according to the detection signal of the detection means M2.
最大噴射量演算手段M4は、検出手段M2の検出信号に
応じてエンジンの吸入空気量及び吸入空気が燃料室に留
まる吸気効率及び吸入空気と燃料とのミキシング効率夫
々を求め、該吸入空気量と吸気効率とミキシング効率と
から最大燃料噴射量を演算する。The maximum injection amount calculating means M4 calculates the intake air amount of the engine, the intake efficiency in which the intake air remains in the fuel chamber, and the mixing efficiency of the intake air and fuel in accordance with the detection signal of the detection means M2, and calculates the intake air amount and the mixing efficiency of the intake air and fuel. The maximum fuel injection amount is calculated from the intake efficiency and mixing efficiency.
規制手段M5基本燃料噴射量と最大燃料噴射量との少な
る方をエンジンMlに供給する実際の燃料噴射量として
用い、実際の燃料噴射量を最大噴射量により規制する。Regulation means M5 uses the smaller of the basic fuel injection amount and the maximum fuel injection amount as the actual fuel injection amount supplied to the engine Ml, and regulates the actual fuel injection amount by the maximum injection amount.
本発明においては、エンジンの運転状態から2サイクル
ディーゼルエンジンの吸入空気量、吸気効率、ミキシン
グ効率を求め、これらの演算によって2サイクルディー
ゼルエンジンでスモーク発生のない最大燃料噴射量を得
ており、通常時に実際の燃料噴射量として用いる基本燃
料噴射量が上記最大燃料噴射量を越えたとき実際の燃料
噴射量を最大燃料噴射量で規制している。In the present invention, the intake air amount, intake efficiency, and mixing efficiency of a 2-stroke diesel engine are determined from the engine operating conditions, and by these calculations, the maximum fuel injection amount without smoke generation is obtained for the 2-stroke diesel engine. Sometimes, when the basic fuel injection amount used as the actual fuel injection amount exceeds the maximum fuel injection amount, the actual fuel injection amount is regulated by the maximum fuel injection amount.
第2図は本発明装置を適用した2サイクルデイーゼルエ
ンジンの構成図を示す。FIG. 2 shows a configuration diagram of a two-stroke diesel engine to which the device of the present invention is applied.
同図中、1はエンジン本体、2はピストン、3はシリン
ダヘッド、4は主燃焼室、5は燃料噴射弁、6は予燃焼
室、7は給気弁、8は給気ポート夫々示し、主燃料室4
と予燃焼室6との間は噴射口9て連通されている。In the figure, 1 is the engine body, 2 is the piston, 3 is the cylinder head, 4 is the main combustion chamber, 5 is the fuel injection valve, 6 is the pre-combustion chamber, 7 is the intake valve, and 8 is the intake port. Main fuel chamber 4
and the pre-combustion chamber 6 are communicated through an injection port 9.
給気ボート8は給気枝管11を介してサージタンク12
に連結される。サージタンク12は吸気通路21を介し
てエアクリーナ22に連結され、吸気通路21内にはス
ロットル弁23か配置される。吸気通路21内に機関駆
動の機械式過給機20が配置され、この機械式過給機2
0の上流と下流の吸気通路21を互いに連通せしめるバ
イパス通路24が設けられると共に、バイパス通路24
内にバイパス通路24を開閉制御するバイパス制御弁2
6が備えられる。The air supply boat 8 is connected to a surge tank 12 via an air supply branch pipe 11.
connected to. The surge tank 12 is connected to an air cleaner 22 via an intake passage 21, and a throttle valve 23 is disposed within the intake passage 21. An engine-driven mechanical supercharger 20 is disposed within the intake passage 21, and this mechanical supercharger 2
A bypass passage 24 is provided that connects the upstream and downstream intake passages 21 of 0 to each other, and the bypass passage 24
A bypass control valve 2 for controlling the opening and closing of the bypass passage 24 inside the
6 is provided.
電子制御ユニット40は、双方向性バス4工によって相
互に接続されたROM(リードオンメモリ)42.RA
M(ランダムアクセスメモリ)43、CPU(マイクロ
プロセッサ)44.バックアップRAM45.入力ポー
ト46及び出力ボート47を具備する。スロットル弁2
3にはスロットル弁開度に比例した出力電圧を発生する
スロットルセンサ35か連結され、このスロットルセン
サ35の出力電圧がAD変換機53を介して入力ポート
46に入力される。また吸気温センサ32の出力電圧か
AD変換器52を介して入力ポート46に入力される。The electronic control unit 40 includes ROM (read-on memory) 42. which are interconnected by four bidirectional buses. R.A.
M (random access memory) 43, CPU (microprocessor) 44. Backup RAM45. It has an input port 46 and an output port 47. Throttle valve 2
3 is connected to a throttle sensor 35 that generates an output voltage proportional to the opening of the throttle valve, and the output voltage of this throttle sensor 35 is input to the input port 46 via the AD converter 53. Further, the output voltage of the intake air temperature sensor 32 is inputted to the input port 46 via the AD converter 52.
更に入力ポート46は機関回転数NEを表わす出力信号
を発生する回転数センサ55と、クランクシャフト(図
示しない)が一定角度だけ回転する毎に出力パルスを発
生するクランク角センサ56とが接続される。−力出力
ポート47は駆動回路58を介し燃料噴射弁5に接続さ
れる。Further, the input port 46 is connected to a rotation speed sensor 55 that generates an output signal representing the engine rotation speed NE, and a crank angle sensor 56 that generates an output pulse every time a crankshaft (not shown) rotates by a certain angle. . - the force output port 47 is connected to the fuel injection valve 5 via a drive circuit 58;
第3図は燃料噴射制御処理の一実施例のフローチャート
を示す。この処理はメインルーチンの一部であり、数m
5ec毎に実行される。FIG. 3 shows a flowchart of one embodiment of the fuel injection control process. This process is part of the main routine, and several meters
Executed every 5ec.
同図中、ステップ61では回転数NEとスロットル開度
TAから基本燃料噴射量マツプを参照して回転数NEと
スロットル開度TAの関数である基本燃料噴射量Qac
cp (TA、NE)を求める。In the same figure, in step 61, a basic fuel injection amount map is referred to from the rotation speed NE and the throttle opening TA to calculate the basic fuel injection amount Qac, which is a function of the rotation speed NE and the throttle opening TA.
Find cp (TA, NE).
次にステップ62では回転数NEとスロットル開度TA
と吸入空気温度THAの関数である吸入空気量Q、(N
E、TA、THA)を求める。ここではQ、(NE、T
A、THA)=QA’ (NE、TA)XF (TH
A)て表わされる回転数NEとスロットル開度TAの関
数QA’ (NE、TA)と、吸気空気温度THAの
関数F (THA)との積で求める。関数QA’ (
NE、TA)はスロットル開度TAをパラメータとして
示す第4図の特性のマツプを参照して求め、関数F (
THA)は第5図に示す特性のマツプを参照して求める
。Next, in step 62, the rotation speed NE and the throttle opening TA are
and the intake air amount Q, which is a function of the intake air temperature THA, (N
E, TA, THA). Here Q, (NE, T
A, THA)=QA' (NE, TA)XF (TH
A) It is determined by multiplying the function QA' (NE, TA) of the rotational speed NE and throttle opening TA expressed by the function F (THA) of the intake air temperature THA. Function QA' (
NE, TA) are determined by referring to the characteristic map shown in Fig. 4, which shows the throttle opening TA as a parameter, and the function F (
THA) is determined by referring to the characteristic map shown in FIG.
吸入空気量Q、は低回転数の場合はスロットル開度TA
によって規制され、その影響は回転数NEが大なる程大
きくなる。また、スロットル全開(WOT)の高回転側
ではエンジンの吸入抵抗によって低下する。吸入空気温
度THAは空気密度に影響する他に、機械的過給機20
の温度による効率変化にも影響し、第5図に示す特性を
用いている。The intake air amount Q is equal to the throttle opening TA when the rotation speed is low.
The influence becomes greater as the rotational speed NE increases. Furthermore, on the high rotation side with the throttle fully open (WOT), it decreases due to the intake resistance of the engine. In addition to influencing the air density, the intake air temperature THA also affects the mechanical supercharger 20.
The characteristics shown in FIG. 5 are used because the efficiency changes due to temperature are also affected.
本実施例ではバイパス制御弁26を有しているのて、吸
入空気量Q、はこのバイパス制御弁26の開閉に応じて
求める。また、サブスロットルを有する場合には同様に
サブスロットルの開度に応じて吸入空気量Q、を求める
。Since this embodiment has a bypass control valve 26, the intake air amount Q is determined according to the opening and closing of this bypass control valve 26. Furthermore, when a sub-throttle is provided, the intake air amount Q is similarly determined according to the opening degree of the sub-throttle.
ステップ63ては流入した空気が燃料室4に留まる歩留
りを表わす回転数NEと吸入空気温度TAの関数である
吸気効率TR,の(NE、TA)を第6図に示す特性の
マツプを参照して求める。In step 63, the intake efficiency TR, which is a function of the rotational speed NE, which represents the yield rate at which the inflowing air remains in the fuel chamber 4, and the intake air temperature TA, (NE, TA) is determined by referring to the characteristic map shown in FIG. I ask.
吸気効率TR,は吸排気弁の開弁時間か高回転程短かく
なるため基本的に回転数か高くなる程1.0に近づく。The intake efficiency TR becomes shorter as the opening time of the intake and exhaust valves increases as the rotation speed increases, so basically the intake efficiency TR approaches 1.0 as the rotation speed increases.
またスロットル開度が小なる程、機械式過給機20前後
の圧力差か大きくなり、過給機下流の温度が上かり吸気
効率が下がる。Further, as the throttle opening becomes smaller, the pressure difference before and after the mechanical supercharger 20 becomes larger, the temperature downstream of the supercharger increases, and the intake efficiency decreases.
ステップ64では回転数NEと吸入空気温度TAの関数
であるミキシング効率Fm i x (NE。In step 64, the mixing efficiency Fm i x (NE) is a function of the rotational speed NE and the intake air temperature TA.
TA)を第7図に示す特性のマツプを参照して求める。TA) is determined by referring to the characteristic map shown in FIG.
ミキシング効率Fm1xは低回転数又は低スロツトル開
度のとき筒内掃気流か弱いので、小さくなり、高回転又
は高スロットル開度となる程大きくなる傾向があると共
に、高回転時にはミキシング時間が短かくなるため多少
下降する傾向かある。Mixing efficiency Fm1x decreases because the in-cylinder scavenging air flow is weak at low rotation speeds or low throttle openings, and tends to increase as the rotation speeds or throttle openings increase, and the mixing time becomes shorter at high rotations. Therefore, there is a tendency for it to decline somewhat.
ステップ65では上記の如く求めた吸入空気量Q、、(
NE、TA、THA)吸気効率T□、(NE、TA)、
ミキシング効率Fm1x (NE、TA)を用いて
次式により最大燃料噴射量Qmaxを求める。In step 65, the intake air amount Q, , (
NE, TA, THA) Intake efficiency T□, (NE, TA),
Using the mixing efficiency Fm1x (NE, TA), the maximum fuel injection amount Qmax is determined by the following formula.
Qmax=Q、XTR,XFm1x
この後、ステップ66で基本燃料噴射量Qaccpと最
大燃料噴射量Qmaxとを比較し、基本燃料噴射量Qa
ccpか最大燃料噴射量QmaX以下の場合はステップ
67て基本燃料噴射量Qaccpを実際の燃料噴射量Q
fにセットし、基本燃料噴射量Qaccpが最大噴射量
Qmaxを越える場合はステップ68で最大燃料噴射量
Qamxを実際の燃料噴射量Qfにセットする。Qmax=Q, XTR, XFm1x After this, in step 66, the basic fuel injection amount Qaccp and the maximum fuel injection amount Qmax are compared,
ccp is less than the maximum fuel injection amount QmaX, step 67 changes the basic fuel injection amount Qaccp to the actual fuel injection amount Q.
If the basic fuel injection amount Qaccp exceeds the maximum injection amount Qmax, the maximum fuel injection amount Qamx is set to the actual fuel injection amount Qf in step 68.
この後ステップ69で実際の燃料噴射量Qfに相当する
噴射制御を実行する。例えばスピル位置を噴射相当の位
置に動かす。あるいはスピル弁の開時期を噴射量相当に
動かす。Thereafter, in step 69, injection control corresponding to the actual fuel injection amount Qf is executed. For example, move the spill position to a position equivalent to injection. Alternatively, change the opening timing of the spill valve to correspond to the injection amount.
このように、エンジンの運転状態から2サイクルディー
ゼルエンジンの吸入空気量Qll+ 吸気効率TR,、
ミキシング効率Fm1xを求め、これらの演算によって
2サイクルディーゼルエンジンでスモーク発生のない最
大燃料噴射量Qmaxを得ており、通常時に実際の燃料
噴射量Qfとして用いる基本燃料噴射量Qaccpが上
記最大燃料噴射量Qmaxを越えたとき実際の燃料噴射
量Qfを最大燃料噴射量Qmaxて規制している。この
ため吹き抜は空気が存在し、かっ掃気による流れの強さ
が変化する2サイクルディーゼルエンジンで実際の燃料
噴射量か過多となることがなくなり、スモークの発生を
防止できる。In this way, from the engine operating condition, the intake air amount Qll+ of the 2-cycle diesel engine, the intake efficiency TR,
The mixing efficiency Fm1x is calculated, and by these calculations, the maximum fuel injection amount Qmax without smoke generation is obtained in a 2-stroke diesel engine, and the basic fuel injection amount Qaccp, which is used as the actual fuel injection amount Qf in normal times, is the maximum fuel injection amount above. When Qmax is exceeded, the actual fuel injection amount Qf is regulated by the maximum fuel injection amount Qmax. For this reason, air exists in the atrium, and in a two-stroke diesel engine where the strength of the flow due to scavenging air changes, the actual fuel injection amount will not be excessive, and smoke can be prevented from occurring.
上述の如く、本発明による2サイクルディーゼルエンジ
ンの燃料噴射制御装置によれば、2サイクルディーゼル
エンジンのスモークの発生を防止でき、実用上きわめて
有用である。As described above, the fuel injection control device for a two-stroke diesel engine according to the present invention can prevent the occurrence of smoke in a two-stroke diesel engine, and is extremely useful in practice.
第1図は本発明の原理図、
第2図は本発明装置を適用したエンジンの一実施例の構
成図、
第3図は燃料噴射制御処理のフローチャート、第4図乃
至第7図は第3図の処理で参照するマツプの特性図であ
る。
4・・・主燃料室、5・・・燃料噴射弁、6・・・予燃
焼室、32・・・吸気温センサ、35・・・スロットル
センサ、55・・・回転数センサ、56・・・フランチ
角センサ、61〜69・・・ステップ、Ml・・・2サ
イクルディーゼルエンジン、M2・・・検出手段、M3
・・・噴射量演算手段、M4・・・最大噴射量演算手段
、M5・・・規制手段。
特許出願人 トヨタ自動車株式会社
第1図
第2図
第4図
NE
第5図
20’CTl−IA
第6図
NE
第7図Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a configuration diagram of an embodiment of an engine to which the device of the present invention is applied, Fig. 3 is a flowchart of fuel injection control processing, and Figs. It is a characteristic diagram of the map referred to in the processing of the figure. 4... Main fuel chamber, 5... Fuel injection valve, 6... Pre-combustion chamber, 32... Intake temperature sensor, 35... Throttle sensor, 55... Rotation speed sensor, 56... - Franch angle sensor, 61-69...step, Ml...2-cycle diesel engine, M2...detection means, M3
. . . injection amount calculation means, M4 . . . maximum injection amount calculation means, M5 . . . regulation means. Patent Applicant Toyota Motor Corporation Figure 1 Figure 2 Figure 4 NE Figure 5 20'CTl-IA Figure 6 NE Figure 7
Claims (1)
検出手段と、 該検出手段の検出信号に応じて基本燃料噴射量を演算す
る噴射量演算手段と、 該検出手段の検出信号に応じてエンジンの吸入空気量及
び吸入空気が燃料室に留まる吸気効率及び吸入空気と燃
料とのミキシング効率夫々を求め、該吸入空気量と吸気
効率とミキンシグ効率とから最大燃料噴射量を演算する
最大噴射量演算手段と、該基本燃料噴射量と最大燃料噴
射量との少なる方を該エンジンに供給する実際の燃料噴
射量として用い、実際の燃料噴射量を該最大噴射量によ
り規制する規制手段とを有することを特徴とする2サイ
クルディーゼルエンジンの燃料噴射制御装置。[Scope of Claims] Detection means for detecting the operating state of a two-stroke diesel engine; injection amount calculation means for calculating a basic fuel injection amount according to a detection signal of the detection means; The maximum injection method calculates the maximum fuel injection amount from the intake air amount, intake efficiency, and mixing efficiency by determining the intake air amount of the engine, the intake efficiency in which the intake air stays in the fuel chamber, and the mixing efficiency of the intake air and fuel. a quantity calculating means; and a regulating means for regulating the actual fuel injection quantity by the maximum injection quantity, using the smaller of the basic fuel injection quantity and the maximum fuel injection quantity as the actual fuel injection quantity supplied to the engine. A fuel injection control device for a two-stroke diesel engine, characterized in that it has the following features:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28044890A JPH04159435A (en) | 1990-10-18 | 1990-10-18 | Fuel injection controller of two-cycle diesel engine |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP28044890A JPH04159435A (en) | 1990-10-18 | 1990-10-18 | Fuel injection controller of two-cycle diesel engine |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04159435A true JPH04159435A (en) | 1992-06-02 |
Family
ID=17625202
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP28044890A Pending JPH04159435A (en) | 1990-10-18 | 1990-10-18 | Fuel injection controller of two-cycle diesel engine |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04159435A (en) |
-
1990
- 1990-10-18 JP JP28044890A patent/JPH04159435A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5698780A (en) | Method and apparatus for detecting a malfunction in an intake pressure sensor of an engine | |
| JP3121613B2 (en) | Otto engine control method | |
| US7100375B2 (en) | System for limiting rotational speed of a turbocharger | |
| JPS62159771A (en) | Ignition timing control method for internal combustion engine | |
| JPH1136962A (en) | Fuel injection control system for diesel engine | |
| US5701867A (en) | Apparatus for controlling the speed of an engine | |
| JP2658460B2 (en) | Exhaust gas recirculation system for internal combustion engine | |
| CN100404830C (en) | internal combustion engine | |
| JP4415509B2 (en) | Control device for internal combustion engine | |
| JPH02227527A (en) | Intake air amount control method for internal combustion engine | |
| JPH1089122A (en) | Idle speed control device for stratified combustion engine | |
| JPH0465227B2 (en) | ||
| JPH04159435A (en) | Fuel injection controller of two-cycle diesel engine | |
| JPS6019936A (en) | Method of controlling rotational speed of internal-combustion engine | |
| JP2536242B2 (en) | Air supply device for internal combustion engine | |
| JP3307306B2 (en) | Combustion system control device for internal combustion engine | |
| JPH0536622B2 (en) | ||
| JP3114352B2 (en) | Air-fuel ratio control device for internal combustion engine | |
| JP2536241B2 (en) | Air supply device for internal combustion engine | |
| JP3269414B2 (en) | Intake air amount control device for internal combustion engine | |
| JPS5853659A (en) | Air-fuel ratio control method for internal combustion engine | |
| JPH06229322A (en) | Exhaust gas recirculating device of internal combustion engine | |
| JPS61255233A (en) | Fuel injection controller for engine | |
| JP2590894B2 (en) | Air-fuel ratio control device for internal combustion engine | |
| JPS61112751A (en) | Method of controlling fuel injection in internal combustion engine |