JPH04151818A - Method for manufacturing a mask structure for lithography - Google Patents
Method for manufacturing a mask structure for lithographyInfo
- Publication number
- JPH04151818A JPH04151818A JP2275181A JP27518190A JPH04151818A JP H04151818 A JPH04151818 A JP H04151818A JP 2275181 A JP2275181 A JP 2275181A JP 27518190 A JP27518190 A JP 27518190A JP H04151818 A JPH04151818 A JP H04151818A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- pattern
- etching
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、大規模集積回路(LSI)やマイクロマシン
等の微細パターンを、X線露光によりウェーハ等に焼き
付ける際に用いるリソグラフィー用マスク構造体の製造
方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a lithography mask structure used when printing fine patterns of large-scale integrated circuits (LSI), micromachines, etc. onto wafers, etc. by X-ray exposure. Regarding the manufacturing method.
(従来の技術及びその問題点)
DRAMに代表される大規模集積回路は今や4MDRA
Mの量産期にあり、しかも16MDRAMから64M
DRAMへと急速に技術的に進歩している。これに伴い
デバイスに要求される最小線幅も、ハーフミクロンから
クォーターミクロンへと縮小している。(Prior art and its problems) Large-scale integrated circuits represented by DRAM are now 4MDRA
M is in the mass production period, and from 16M DRAM to 64M
Technology is rapidly progressing towards DRAM. Along with this, the minimum line width required for devices has also been reduced from half a micron to a quarter micron.
これらの半導体デバイスは、近紫外光若しくは遠紫外光
を利用してマスクから半導体基板へと転写されるが、こ
れらの光の波長で加工出来るデバイスの線幅も限界に近
付きつつある。又、微細化に伴う焦点深度の低下も免れ
得ない。そこで、更に波長の短いx8Iによるリソグラ
フィー技術が考案されているが、これは上記の問題を同
時に解決するものとして期待が大きい。These semiconductor devices are transferred from a mask to a semiconductor substrate using near-ultraviolet light or far-ultraviolet light, but the line width of devices that can be processed using these wavelengths of light is approaching its limit. Further, the depth of focus inevitably decreases due to miniaturization. Therefore, a lithography technique using x8I, which has an even shorter wavelength, has been devised, and there are great expectations that this will solve the above problems at the same time.
かかるX線露光に使用するマスク構造体は、射的に、適
当な支持枠上に形成されたX線透過膜上に更にX線吸収
体の微細パターンが形成された構造を有する。又、X線
吸収体材料としては、重金属、特にAu、W、Ta等が
使用されている。The mask structure used for such X-ray exposure has a structure in which a fine pattern of an X-ray absorber is further formed on an X-ray transparent film formed on a suitable support frame. Furthermore, heavy metals, particularly Au, W, Ta, etc., are used as the X-ray absorber material.
更に、これらのX線吸収体のパターンを支持固定するX
線透過膜には、SiN、SiC等のシリコン化合物材料
が使用されている。Furthermore, the X-ray absorber pattern is supported and fixed.
A silicon compound material such as SiN or SiC is used for the light-transmitting film.
又、X線吸収体パターンの形成方法には、レジストによ
る°°め型パターン′°に対するメツキ方法、重金属吸
収体の薄膜を反応性イオンエツチング等のドライプロセ
スでパターニングするドライエツチング方法、又は適当
なエツチング液を用いてウェットプロセスでパターニン
グするウェブ1〜エツチング方法等がある。In addition, methods for forming the X-ray absorber pattern include a plating method for a diagonal pattern using a resist, a dry etching method in which a thin film of a heavy metal absorber is patterned by a dry process such as reactive ion etching, or a suitable method. There are web 1 to etching methods in which patterning is performed by a wet process using an etching solution.
ところでこのX線吸収体の形状に関しては、マスクに入
射するX線のフルネル回折を考えた場合、その断面形状
がマスク基板面に関して垂直でない形状を有する方が、
レジストへのパターン転写に対し望ましい事が提案され
ている(特開平2−52416)。又、更にマスクにX
線が入射した際の吸収体パターン側壁での反射によるレ
ジストの解像度の低下を考えると、吸収体パターンの断
面形状は基板面に長寸法を有する台形形状が望ましい。By the way, regarding the shape of this X-ray absorber, when considering Fournel diffraction of X-rays incident on the mask, it is better to have a cross-sectional shape that is not perpendicular to the mask substrate surface.
A desirable method for pattern transfer to resist has been proposed (Japanese Patent Laid-Open No. 2-52416). Also, even more X on the mask
Considering the reduction in the resolution of the resist due to reflection on the side walls of the absorber pattern when a line is incident, it is desirable that the cross-sectional shape of the absorber pattern is a trapezoid having a long dimension on the substrate surface.
しかしながら、この様な任意の断面形状を有するX線吸
収体パターンを、上記のドライエツチング方法で同一条
件で作成しようとすると、吸収体パターンの側壁の角度
に対するエツチング液件の設定が困難であるという間穎
がある。However, when attempting to create such an X-ray absorber pattern with an arbitrary cross-sectional shape using the dry etching method described above under the same conditions, it is difficult to set the etching liquid conditions for the angle of the side wall of the absorber pattern. There is glume.
従って、本発明の目的は、上記従来技術の問題点を解決
し、X線吸収体の断面形状の側壁を任意の角度に制御可
能なリソグラフィー用マスク構造体の製造方法を提供す
ることにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for manufacturing a lithography mask structure in which the cross-sectional sidewall of an X-ray absorber can be controlled at an arbitrary angle.
(問題点を解決する為の手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.
即ち、本発明は、所望パターンのX線吸収体をX線透過
膜上に形成する工程を含むX線マスク構造体の製造方法
において、該X線吸収体パターンをドライエツチング方
法で形成する際に異方性エツチングと等方性エツチング
を交互に行う事を特徴とするリソグラフィー用マスク構
造体の製造方法である。That is, the present invention provides a method for manufacturing an X-ray mask structure including a step of forming an X-ray absorber in a desired pattern on an X-ray transparent film, in which the X-ray absorber pattern is formed by a dry etching method. This is a method for manufacturing a lithography mask structure characterized by alternately performing anisotropic etching and isotropic etching.
(作 用)
本発明者らは鋭意研究を重ねた結果、マスク構造体のX
線吸収体パターンをドライエツチング方法で形成する際
に、ドライエツチング方法を、吸収体パターン形状が基
板面に対して垂直になる異方性エツチング条件と吸収体
パターン形状が台形若しくは三角形となる等方性ドライ
エツチング条件の2条件とし、ある一定時間の間隔でこ
れらの条件を交互に変化させれば、吸収体パターンの側
壁の基板面に対する角度を有利に制御することが出来る
ことを知見して本発明に至った。(Function) As a result of intensive research, the present inventors found that
When forming a line absorber pattern using a dry etching method, the dry etching method is divided into anisotropic etching conditions in which the shape of the absorber pattern is perpendicular to the substrate surface and isotropic etching conditions in which the shape of the absorber pattern is trapezoidal or triangular. This book was developed based on the discovery that the angle of the sidewall of the absorber pattern relative to the substrate surface could be advantageously controlled by setting two dry etching conditions and alternating these conditions at a certain time interval. This led to the invention.
(好ましい実施態様)
次に好ましい実施態様を挙げて本発明を更に詳しく説明
する。(Preferred Embodiments) Next, the present invention will be described in more detail by citing preferred embodiments.
本発明方法により形成されるリソグラフィー用マスク構
造体は、基本的にはシリコンウェー八等からなるマスク
支持枠、支持枠上のX線透過膜、及びX線透過膜上に形
成されたX線吸収体パターンからなる。更に、これらの
他に、X線吸収体の保護膜、導電膜等も使用してもよい
。The lithography mask structure formed by the method of the present invention basically consists of a mask support frame made of a silicon wafer, an X-ray transparent film on the support frame, and an X-ray absorbing film formed on the X-ray transparent film. Consists of body patterns. Furthermore, in addition to these, a protective film for an X-ray absorber, a conductive film, etc. may also be used.
X線透過膜の材料としては、例えば、Si、5in2.
SiC,SiN、BN、BNC等の無機膜、ポリイミド
等の耐放射線性有機膜等の公知の材料を使用することが
出来る。この他、X線透過膜として使用出来るものであ
ればいかなるものも使用可能である。又、X線透過膜の
成膜方法としては、各種のスパッタ法、化学気相蒸着法
等の方法を用い、マスク支持枠上に上記TA料を1〜1
0ILmの厚みに成膜し、X線透過膜を形成する。Examples of the material for the X-ray transparent film include Si, 5in2.
Known materials such as inorganic films such as SiC, SiN, BN, and BNC, and radiation-resistant organic films such as polyimide can be used. In addition, any material that can be used as an X-ray transparent film can be used. In addition, as a method for forming the X-ray transparent film, various sputtering methods, chemical vapor deposition methods, etc. are used, and 1 to 1 portion of the above TA material is deposited on the mask support frame.
A film is formed to a thickness of 0ILm to form an X-ray transparent film.
)J9吸収体パターンの材料としては、例えば、Ta、
Ta< B、W、WNX 、W T 1等の公知の材
料を使用する事が出来、本発明方法ではこの様な材料か
らなる膜をドライエツチング方法によりパターン化する
。) Examples of materials for the J9 absorber pattern include Ta,
Known materials such as Ta<B, W, WNX, W T 1, etc. can be used, and in the method of the present invention, a film made of such materials is patterned by a dry etching method.
本発明は、このドライエツチング方法によりX線吸収体
膜をパターン化する際に、2つの異なる条件で交互にト
ライエツチングを行うことにより、吸収体パターンの断
面形状の側壁角度を基板面に対して任意に制御可能とし
たことを特徴とする。In the present invention, when patterning an X-ray absorber film using this dry etching method, the sidewall angle of the cross-sectional shape of the absorber pattern is adjusted relative to the substrate surface by alternately performing tri-etching under two different conditions. It is characterized by being able to be controlled arbitrarily.
X線吸収体パターンの断面形状の側壁角度を基板面に対
して制御する方法としては、基板温度を変える事により
エツチングの異方性を変化させる方法、及びエツチング
時に、パターン側壁に膜を形成するガス種と膜を形成し
ないガス種を交互にエツチングチャンバー内に導入させ
る方法とがある。両者の方法を相対的に比較した場合、
後者の方が実際の制御を考えた場合適しており、本発明
においてもこの方法を用いた。Methods for controlling the sidewall angle of the cross-sectional shape of the X-ray absorber pattern with respect to the substrate surface include changing the etching anisotropy by changing the substrate temperature, and forming a film on the pattern sidewall during etching. There is a method in which gas species and non-film forming gas species are alternately introduced into the etching chamber. When comparing both methods relatively,
The latter method is more suitable when considering actual control, and this method was also used in the present invention.
後者の方法で使用するエツチング時に吸収体パターン側
壁に膜を付着する様なガス種としては、CF4.CCf
14.CBrF3等のハロゲン化炭化水素、CH4等の
炭化水素系のガス等がある。In the latter method, CF4. CCf
14. Examples include halogenated hydrocarbons such as CBrF3 and hydrocarbon gases such as CH4.
逆にエツチング時にパターン側壁に膜を付着しない様な
ガス種としては、SF、、NF3等の炭素を含有しない
ハロゲン化ガスを使用する事が出来る。Conversely, a halogenated gas that does not contain carbon, such as SF, NF3, etc., can be used as a gas that does not cause a film to adhere to the side walls of the pattern during etching.
上記の如き方法を採用することによって、X線透過膜上
のX線吸収体パターンは、第1図示の如く台形状となる
。本発明では該台形の下地基板に対する側壁の角度は8
0〜87°の範囲とすることが好ましい。By employing the above method, the X-ray absorber pattern on the X-ray transparent film becomes trapezoidal as shown in the first diagram. In the present invention, the angle of the side wall of the trapezoid with respect to the underlying substrate is 8.
It is preferable to set it as the range of 0-87 degrees.
尚、本発明方法で使用する他の構成、例えば、下地基板
のバックエツチング、補強剤の接着等ははいずれも従来
公知の構成でよ(、特に限定されない。Note that other configurations used in the method of the present invention, such as back etching of the underlying substrate and adhesion of the reinforcing agent, may be conventionally known configurations (but are not particularly limited).
(実施例)
次に実施例を挙げて本発明を更に具体的に説明する。尚
、本発明は実施例のみに限られないことは言うまでもな
い。(Example) Next, the present invention will be described in more detail with reference to Examples. It goes without saying that the present invention is not limited to the examples.
実施例1
シリコンウェーハからなるマスク支持枠上に、化学気相
成長法により21Lm厚のSiN膜を形成し、実験用の
基板とした。Example 1 A SiN film with a thickness of 21 Lm was formed by chemical vapor deposition on a mask support frame made of a silicon wafer, and this was used as an experimental substrate.
次に、この基板上にX線吸収体であるWをスパッタ法に
より0.81zmの厚みに成膜した。更に、この上にW
のエツチング時のマスク材として、電子ビーム蒸着法に
よってCrを300人の厚さに成膜した。Next, a film of W as an X-ray absorber was formed on this substrate by sputtering to a thickness of 0.81 zm. Furthermore, on top of this
As a mask material during etching, a Cr film was formed to a thickness of 300 nm by electron beam evaporation.
次に、その上に電子線レジストであるPMMAを0.5
μmμmビスピン塗布電子線描画により0.257人m
幅のレジストパターンを形成した。Next, 0.5% of PMMA, which is an electron beam resist, is applied on top of it.
μm μm bispin coating 0.257 person m by electron beam lithography
A resist pattern with a wide width was formed.
次に、PMMAの下地層であるCr膜をセリツクアンモ
ニウムナイトライドで湿式エツチングした。Next, the Cr film, which is the underlying layer of PMMA, was wet-etched with seric ammonium nitride.
次に、このCrパターンをマスクとして、Crの下層の
Wをドライエツチング方法によりバターニングした。こ
の際、ドライエツチング条件を、パワー100W、CF
、ガス流量20CCM、圧力4X10−’torrの異
方性エツチング条件と、S F aガス流量50CCM
、圧力2X10−2torrの等方性エツチング条件の
2条件とし、一定時間の間隔でこれらの条件を交互に変
化させて、Wのエツチング量が400人に達する迄エツ
チングを行った。尚、基板はドライエツチング中水冷し
、基板温度の上昇を防いだ。Next, using this Cr pattern as a mask, the W underlying the Cr layer was patterned by dry etching. At this time, the dry etching conditions were: power 100W, CF
, gas flow rate of 20 CCM, pressure of 4 x 10-'torr, and S Fa gas flow rate of 50 CCM.
Etching was carried out under two isotropic etching conditions, ie, pressure 2.times.10@-2 Torr, and these conditions were alternately changed at fixed time intervals until the amount of W etched reached 400. The substrate was water-cooled during dry etching to prevent the substrate temperature from rising.
得られたWのXi!吸収体パターンの断面形状を走査型
電子顕微鏡(SEM)で観察したところ、W吸収体パタ
ーンは、第1図示の如く基板に対して台形で、且つピラ
ミッド状の断面形状を有していた。又、この時のX線吸
収体パターンの下地基板に対する側壁の角度は87°で
あった。The obtained W Xi! When the cross-sectional shape of the absorber pattern was observed with a scanning electron microscope (SEM), the W absorber pattern had a trapezoidal and pyramidal cross-sectional shape with respect to the substrate as shown in the first figure. Further, the angle of the side wall of the X-ray absorber pattern with respect to the base substrate at this time was 87°.
同、角度の定義方法は、第1図に示す様に、パターン底
部のエッチとパターン上部のエッチを結ぶ直線が下地基
板となす角度をいう。As shown in FIG. 1, the angle is defined as the angle formed by a straight line connecting the etches at the bottom of the pattern and the etches at the top of the pattern with respect to the base substrate.
実施例2 実験用基板は、実施例1と同じものを使用した。Example 2 The same experimental substrate as in Example 1 was used.
次に、この基板上にX線吸収体であるTaをスパッタ法
により0.8μmの厚みに成膜した。更に、この上にT
aのエツチング時のマスク材として、電子ビーム蒸着法
によってCrを300人の厚さに成膜した。Next, a film of Ta, which is an X-ray absorber, was formed on this substrate to a thickness of 0.8 μm by sputtering. Furthermore, on top of this
A Cr film was formed to a thickness of 300 mm by electron beam evaporation as a mask material during etching of a.
この後、実施例1と同様に、この上にPMMAを0.5
μmμmビスピン塗布電子線描画により0.25μm幅
のレジストパターンを形成した後、PMMAの下地層の
Cr膜をセリツクアンモニウムナイトライドで湿式エツ
チングした。After that, as in Example 1, 0.5% of PMMA was added on top of this.
After forming a resist pattern with a width of 0.25 μm by μm μm bispin coating and electron beam writing, the Cr film of the PMMA underlayer was wet-etched with seric ammonium nitride.
次に、このCrパターンをマスクとして、下層のTaを
ドライエツチング方法によりバターニングした。この際
、トライエツチング条件を、パワー100W、CBrF
3ガス(I(2ガスを]0%含む)流量25CCM、圧
力4XIO−’torrの異方性エツチング量件と、C
BrF3ガス流量50CCM、圧力2X10−2tor
rの等方性エツチング条件の2条件とし、一定時間の間
隔で条件を交互に変化させて、Taのエツチング量が4
00人に達する迄エツチングを行った。尚、基板はドラ
イエツチング中水冷し、基板温度の上昇を防いだ。Next, using this Cr pattern as a mask, the underlying Ta layer was patterned by dry etching. At this time, the trial etching conditions were as follows: power 100W, CBrF
3 gas (I (contains 2 gases) 0%) flow rate 25 CCM, pressure 4XIO-'torr, anisotropic etching quantity requirements, and C
BrF3 gas flow rate 50CCM, pressure 2X10-2tor
By setting two isotropic etching conditions of r and changing the conditions alternately at fixed time intervals, the amount of Ta etched
We continued etching until we reached 00 people. The substrate was water-cooled during dry etching to prevent the substrate temperature from increasing.
得られたTa吸収体パターンの断面形状を走査型電子顕
微鏡(SEM)で観察したところ、第1図示の如<Ta
のX線吸収体パターンは基板に対して台形で、且つピラ
ミッド状の断面形状を有していた。又、この時のTaパ
ターンの下地基板に対する側壁の角度は、85°であっ
た。When the cross-sectional shape of the obtained Ta absorber pattern was observed with a scanning electron microscope (SEM), it was found that < Ta
The X-ray absorber pattern had a trapezoidal and pyramidal cross-sectional shape with respect to the substrate. Further, the angle of the sidewall of the Ta pattern with respect to the base substrate at this time was 85°.
第1図は本発明方法により形成されたX線吸収体パター
ンの側壁角を示す図である。
1:シリコンウェーハ
2:X線透過膜
3:X線吸収パターンFIG. 1 is a diagram showing sidewall angles of an X-ray absorber pattern formed by the method of the present invention. 1: Silicon wafer 2: X-ray transmission film 3: X-ray absorption pattern
Claims (1)
する工程を含むX線マスク構造体の製造方法において、
該X線吸収体パターンをドライエッチング方法で形成す
る際に異方性エッチングと等方性エッチングを交互に行
う事を特徴とするリソグラフィー用マスク構造体の製造
方法。(1) A method for manufacturing an X-ray mask structure including a step of forming an X-ray absorber in a desired pattern on an X-ray transparent film,
A method for manufacturing a lithography mask structure, characterized in that anisotropic etching and isotropic etching are performed alternately when forming the X-ray absorber pattern by a dry etching method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2275181A JPH04151818A (en) | 1990-10-16 | 1990-10-16 | Method for manufacturing a mask structure for lithography |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2275181A JPH04151818A (en) | 1990-10-16 | 1990-10-16 | Method for manufacturing a mask structure for lithography |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04151818A true JPH04151818A (en) | 1992-05-25 |
Family
ID=17551805
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2275181A Pending JPH04151818A (en) | 1990-10-16 | 1990-10-16 | Method for manufacturing a mask structure for lithography |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04151818A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100501768B1 (en) * | 2002-11-30 | 2005-07-18 | 엘지전자 주식회사 | X-ray mask and manufacturing method there of |
| JP2012104670A (en) * | 2010-11-10 | 2012-05-31 | Toshiba Corp | Exposure value evaluation method and photo mask |
-
1990
- 1990-10-16 JP JP2275181A patent/JPH04151818A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100501768B1 (en) * | 2002-11-30 | 2005-07-18 | 엘지전자 주식회사 | X-ray mask and manufacturing method there of |
| JP2012104670A (en) * | 2010-11-10 | 2012-05-31 | Toshiba Corp | Exposure value evaluation method and photo mask |
| US9110374B2 (en) | 2010-11-10 | 2015-08-18 | Kabushiki Kaisha Toshiba | Exposure amount evaluation method and photomask |
| US9250512B2 (en) | 2010-11-10 | 2016-02-02 | Kabushiki Kaisha Toshiba | Exposure amount evaluation method and photomask |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112020676A (en) | Method of fabricating an EUV patternable hardmask | |
| US7179396B2 (en) | Positive tone bi-layer imprint lithography method | |
| EP2300214B1 (en) | Method for the fabrication of periodic structures on polymers using plasma processes | |
| KR20110118781A (en) | Hardmask Process for Forming Reverse Tone Phase Using Polysilazane | |
| TW200822185A (en) | Etching of nano-imprint templates using an etch reactor | |
| JPS6385553A (en) | Mask substrate and mask pattern forming method | |
| US20040033445A1 (en) | Method of forming a photoresist pattern and method for patterning a layer using a photoresist | |
| US6042993A (en) | Photolithographic structure generation process | |
| TW202219628A (en) | Structures and methods for use in photolithography | |
| JP3506248B2 (en) | Manufacturing method of microstructure | |
| US7052618B2 (en) | Nanostructures and methods of making the same | |
| US20170062229A1 (en) | Atomic layer chemical patterns for block copolymer assembly | |
| US20010012592A1 (en) | Process for depositing and developing a plasma polymerized organosilicon photoresist film | |
| JP3105990B2 (en) | X-ray mask and method of manufacturing X-ray mask | |
| Lercel et al. | Plasma etching with self‐assembled monolayer masks for nanostructure fabrication | |
| CN100536083C (en) | A manufacturing method and apparatus of semiconductor | |
| JPH02191957A (en) | resist composition | |
| Li et al. | Fabrication of sub-20 nm patterns using dopamine chemistry in self-aligned double patterning | |
| TW411503B (en) | Method of forming bottom anti-reflective coating on substrate | |
| JPH04151818A (en) | Method for manufacturing a mask structure for lithography | |
| US20030203648A1 (en) | Plasma polymerized electron beam resist | |
| Liu et al. | Top-down fabrication of nanostructures | |
| JP2006080359A (en) | Manufacturing method of silicon nitride film and pattern forming method using silicon nitride film | |
| Le et al. | Development of an etch-definable lift-off process for use with step and flash imprint lithography | |
| Sheu et al. | Fabrication of intermediate mask for deep x-ray lithography |