[go: up one dir, main page]

JPH04152296A - Photo electron emission material - Google Patents

Photo electron emission material

Info

Publication number
JPH04152296A
JPH04152296A JP2278123A JP27812390A JPH04152296A JP H04152296 A JPH04152296 A JP H04152296A JP 2278123 A JP2278123 A JP 2278123A JP 27812390 A JP27812390 A JP 27812390A JP H04152296 A JPH04152296 A JP H04152296A
Authority
JP
Japan
Prior art keywords
thin film
base material
work function
fine particles
photoelectron emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2278123A
Other languages
Japanese (ja)
Other versions
JP2877487B2 (en
Inventor
Toshiaki Fujii
敏昭 藤井
Kazuhiko Sakamoto
和彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP27812390A priority Critical patent/JP2877487B2/en
Publication of JPH04152296A publication Critical patent/JPH04152296A/en
Application granted granted Critical
Publication of JP2877487B2 publication Critical patent/JP2877487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To enable fine particles to be efficiently electrified by constituting a multiplet structure of a base material or the like comprising an element or the like emitting photo electron upon exposure to ultraviolet and radial rays, and a thin film of specific thickness having a large work function for service at or below specific relative humidity. CONSTITUTION:For photo electron emission from a thin film, a thin film of a stable material having a large work function is formed on a pertinent shape of base material having no photoeffect. For photo electron emission from both of a thin film and a base material, a thin film of such a material as having a large work function is formed on a pertinent shape of base material having a small work function. The material having a large work function may be a stable material having a work function value equal to or above approximately 3.4eV, and strength capable of carrying a thin film. For this purpose, Cu, Ag, stainless steel or the like is used. As a thin film material, Au, Ag or a high molecular compound is used. The thickness of the thin film is taken at 0.01mm or less determined in a preliminary test. For photo electron emission from both of the base material and thin film, the base material is such a material as having a small work function. For example, Ba, Sr or the like, or a compound or an alloy thereof is used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光電効果を有する光電子放出材に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a photoelectron emitting material having a photoelectric effect.

そして光電子放出材を用いて微粒子を荷電し利用する分
野としては、 (a)  微粒子の表面改質、荷電量の制御、微粒子の
分離・分級を行う分野、 (b)  荷電微粒子により、空気あるいは排ガス等の
気体中の微粒子の濃度や粒径の測定を行う分野、(C)
  荷電微粒子を捕集、除去して、清浄化気体を得る分
野、等がある。
Fields in which fine particles are charged and utilized using photoelectron emitting materials include (a) fields in which surface modification of fine particles, control of charge amount, and separation and classification of fine particles are performed; (b) charged fine particles are used to charge and utilize fine particles in the air or exhaust gas. Fields that measure the concentration and particle size of fine particles in gases such as (C)
There are fields such as collecting and removing charged particles to obtain clean gas.

[従来の技術] 光電子放出材に、紫外線及び/又は放射線を照射するこ
とにより発生する光電子による微粒子の荷電及びその利
用については、本発明者の多数の提案がある。本発明者
が気体清浄化関係において提案したものの内、本発明と
特に関連性を有するものは次の通りである。
[Prior Art] The present inventor has made many proposals regarding the charging of fine particles by photoelectrons generated by irradiating a photoelectron emitting material with ultraviolet rays and/or radiation, and the use thereof. Among the things proposed by the present inventor in relation to gas purification, the following are particularly relevant to the present invention.

(1)特開昭61−178050号 (US Patent 4.750.917号)、18
2−244459号、 〃63−54959号、 〃63−77557号、 〃63−78471号、 〃63−97247号、 〃63−100955号、 1163−100956号、 1163−147556号、 〃63−147565号、 (11)特開平1−262953号、 (12)特開平1−282954号、 (13)   〃1−286864号、(14)   
112−8638号、 (15)  〃2−8639号、 (1B)  〃2−10034号、 (17)特願平2−52688号、 (18)  ”  2−89185号、又、測定関係に
おいて提案したものには、(1)特開昭62−2428
38号、 (2)特開平2−47536号、 (3)特願平1−134781号がある。
(1) Japanese Patent Publication No. 61-178050 (US Patent No. 4.750.917), 18
2-244459, 63-54959, 〃 63-77557, 〃 63-78471, 〃 63-97747, 〃 63-100955, 1163-100956, 1163-100956, 1163-147556, 〃 63-147565 , (11) JP-A-1-262953, (12) JP-A-1-282954, (13) 〃1-286864, (14)
No. 112-8638, (15) No. 2-8639, (1B) No. 2-10034, (17) Japanese Patent Application No. 2-52688, (18) No. 2-89185, and also proposed in relation to measurement. (1) Japanese Patent Application Laid-Open No. 62-2428
No. 38, (2) Japanese Patent Application Publication No. 2-47536, and (3) Japanese Patent Application No. 1-134781.

さらに分離・分級関係において提案したものには、特願
平1−177198号がある。
A further proposal related to separation and classification is Japanese Patent Application No. 1-177198.

その他、荷電条件関係において提案したものには、 (1)特願平1−120563号、 (2)特願平1−120564号がある。Other proposals related to charging conditions include: (1) Patent Application No. 1-120563, (2) There is Japanese Patent Application No. 1-120564.

さらに、発表文献類は下記の通りである。Furthermore, the published documents are as follows.

(1)  板本、外用、藤井、篠塚、第6回エアロゾル
科学φ技球研究討論会、August、 13〜15.
1988(2)  Sakamoto、 Togava
、 Fuzii、 5hinozuka。
(1) Itamoto, Toyo, Fujii, Shinozuka, 6th Aerosol Science φ Technique Ball Research Symposium, August, 13-15.
1988 (2) Sakamoto, Togava
, Fujii, 5hinozuka.

Man and his Ecosystem、 Pr
oceedings of the8th World
 C1ean Air Congress、 3735
〜740゜(3)篠塚、藤井、吉山、小暮、白波瀬、田
森、公害24 (5) 63〜71.1989[当該発
明が解決しようとする課題] 従来の光電子放出材は、1種類のバルク状(かたまり状
)の材料を用いていた。該放出材は、光電子放出量や安
定性に限界があり、改善の必要があった。すなわち、光
電子放出材は、仕事関数の小さい物質が良いが、仕事関
数の小さい物質は、一般に変質を受けやすく長時間の安
定性に欠ける課題があり、改善が求められていた。この
改善の一対応策として本発明者らは先に特願平2−15
3335号を提案した。
Man and his Ecosystem, Pr
oceedings of the8th World
C1ean Air Congress, 3735
〜740゜(3) Shinozuka, Fujii, Yoshiyama, Kogure, Shiranase, Tamori, Koukou 24 (5) 63-71.1989 [Problem to be solved by the invention] Conventional photoelectron emitting materials are made of one type of bulk material. (lumped) material was used. This emissive material has limitations in the amount of photoelectron emission and stability, and there is a need for improvement. That is, photoelectron emitting materials are preferably materials with a small work function, but materials with a small work function are generally susceptible to deterioration and lack long-term stability, and improvements have been sought. As a countermeasure for this improvement, the present inventors previously filed a patent application on patent application No. 2-15
No. 3335 was proposed.

さらに、本発明は、上記の課題のより一層の改善を企図
し、光電子放出量が多く、長時間安定して使用できる光
電子放出材を提供し、微粒子の荷電を効果的に行うこと
を目的とするものである。
Furthermore, the present invention aims to further improve the above-mentioned problems, and aims to provide a photoelectron emitting material that emits a large amount of photoelectrons and can be used stably for a long time, and to effectively charge fine particles. It is something to do.

ここに、仕事関数とは、物質がその内部に電子を束縛し
ている束縛エネルギーをうわまって物質の内部から電子
を放出させるために必要な最小エネルギーをe■で表わ
した値である。
Here, the work function is the minimum energy required to emit electrons from the inside of a substance, exceeding the binding energy that binds electrons inside the substance, expressed as e.

[課題を解決するための手段及び作用]本発明らは、上
記目的を達成すべく研究の結果、光電子放出材として使
用できる物質(仕事関数が小さい程好ましい)は程度に
差はあるが一般に変質を受けやすく長期の安定性に欠け
るが、これらの物質のうち仕事関数の比較的大きい物質
、例えばAuなどの特定金属は相対湿度が80%以下、
好ましくは60%以下の環境下であれば、薄膜状にして
空気に触れても比較的安定であり、これらの物質を薄膜
状にして単独でまたは該薄膜と母材の両方より光電子を
放出できることを見出し本発明に到達した。
[Means and effects for solving the problem] As a result of research to achieve the above object, the present inventors have found that materials that can be used as photoelectron emitting materials (the smaller the work function is, the better) are generally altered to varying degrees. Among these substances, substances with a relatively large work function, such as certain metals such as Au, are susceptible to oxidation and lack long-term stability.
Preferably, in an environment of 60% or less, these substances are relatively stable even when exposed to air in the form of a thin film, and photoelectrons can be emitted by forming these substances into a thin film alone or from both the thin film and the base material. This discovery led to the present invention.

したがって、本発明では、紫外線及び/又は放射線の照
射により光電子を放出する元素、無機化合物、合金又は
これらの混合物又はこれらの複合物からなる母材、若し
くは、紫外線及び/又は放射線の照射により光電子を放
出しない材料からなる母材と、該母材上に厚さが0.0
1Elより薄い仕事関数が比較的大きい安定な物質を付
加し、該薄膜単独又は該薄膜と母材より光電子放出を行
うものである。
Therefore, in the present invention, a base material made of an element, an inorganic compound, an alloy, a mixture thereof, or a composite thereof that emits photoelectrons when irradiated with ultraviolet rays and/or radiation, or a base material that emits photoelectrons when irradiated with ultraviolet rays and/or radiation is used. A base material made of a non-emitting material and a thickness of 0.0 on the base material.
A stable substance with a relatively large work function thinner than 1El is added, and photoelectrons are emitted from the thin film alone or from the thin film and the base material.

さらに本発明を具体的に説明する。本発明の光電子放出
材は、母材と母材上の薄膜とよりなる。
Further, the present invention will be specifically explained. The photoelectron emitting material of the present invention consists of a base material and a thin film on the base material.

本発明は、仕事関数の比較的大きい安定な物質を超薄膜
化すると、光電子放出が効果的になるとの本発明らの新
規な知見に基づくものである。
The present invention is based on the novel finding of the present inventors that photoelectron emission becomes effective when a stable substance with a relatively large work function is made into an ultra-thin film.

すなわち、適宜な母材上に仕事関数の比較的大きい安定
な物質を薄膜状に付加することにより、効果的な光電子
放出材となる。
That is, by adding a stable substance with a relatively large work function in the form of a thin film onto a suitable base material, an effective photoelectron emitting material can be obtained.

本発明の光電子放出材は、次の構成と役割とすることが
できる。
The photoelectron emitting material of the present invention can have the following configuration and role.

■、光電効果を有しない物質の適宜な形状の母材上に仕
事関数の比較的大きい安定な物質を薄膜状に付加し、該
薄膜単独より光電子放出を行う。
(2) A stable substance with a relatively large work function is added in the form of a thin film onto a suitably shaped base material of a substance that does not have a photoelectric effect, and photoelectrons are emitted from the thin film alone.

2、仕事関数の小さい物質の適宜な形状の母材上に、前
記1に記載の仕事関数の比較的大きい物質を薄膜状に付
加し、母材と薄膜の両者より光電子放出を行う。
2. The material having a relatively large work function described in 1 above is added in the form of a thin film onto a base material of an appropriately shaped material having a low work function, and photoelectrons are emitted from both the base material and the thin film.

つまり、1及び2における光電子の放出は、1では薄膜
、2では薄膜と母材の両方である。
That is, photoelectron emission in 1 and 2 occurs in the thin film in 1, and in both the thin film and the base material in 2.

ここで、仕事関数の比較的大きい物質(安定な物質)と
は、紫外線及び/又は放射線の照射により容易に光電子
を放出しうる物質において、仕事関数が比較的太き(、
具体的にはその値が約3,4eV以上の物質を指す。
Here, a substance with a relatively large work function (stable substance) is a substance with a relatively large work function (,
Specifically, it refers to a substance whose value is about 3.4 eV or more.

次に、薄膜より光電子放出を行う場合について説明する
Next, a case where photoelectron emission is performed from a thin film will be explained.

母材は、薄膜支持の役割りであるので、薄膜が付加でき
る安定な物質で、適宜(任意)の形状にできるものであ
れば何れでもよい。例としては、Cu合金(例えばCu
−Zn、Cu−3n、Cu−Afl)、Ag合金(例え
ばAg −Mg 、 AgIn、Ag−N1.Ag−T
i、Ag −Fe。
Since the base material plays the role of supporting the thin film, it may be any stable material to which the thin film can be attached and which can be formed into an appropriate (arbitrary) shape. Examples include Cu alloys (e.g. Cu
-Zn, Cu-3n, Cu-Afl), Ag alloys (e.g. Ag-Mg, AgIn, Ag-N1.Ag-T
i, Ag-Fe.

Ag−Cu、Ag−Zn、Ag−AM、AgZn)、A
g合金(例えばAfI−Cu−Mg)、ステンレスがあ
る。
Ag-Cu, Ag-Zn, Ag-AM, AgZn), A
There are g-alloys (for example AfI-Cu-Mg) and stainless steel.

これら母材用の材料の使用形状は、板状、プリーツ状、
格子状、網状等、があり表面の形状を適宜凹凸状とし使
用することができる。又、凸部の先端を先鋭状あるいは
球面状とすることもできる。
The shapes used for these base materials are plate-like, pleated-like,
There are lattice shapes, net shapes, etc., and the surface shape can be appropriately roughened. Further, the tip of the convex portion can be made into a sharp point or a spherical shape.

該薄膜材料の例としては、Au、Ag、Ap。Examples of the thin film material are Au, Ag, Ap.

Zr、ZH,In、Nb、Pb、Ti、Nl。Zr, ZH, In, Nb, Pb, Ti, Nl.

Cu、Ta、Si 、W、C,高分子化合物のいずれか
、又はその化合物、これらの物質の合金または混合物、
複合材があり、これらは単独でまたは2種以上を組合せ
て用いることができる。
Any of Cu, Ta, Si, W, C, or a polymer compound, or a compound thereof, an alloy or mixture of these substances,
There are composite materials, and these can be used alone or in combination of two or more.

高分子化合物の例としては、エポキシ樹脂があり、化合
物の例としてはZrC,TaC,Tic。
Examples of polymer compounds include epoxy resins, and examples of compounds include ZrC, TaC, and Tic.

WC,TiN、ZrO2がある。There are WC, TiN, and ZrO2.

上述の薄膜の厚さは、該薄膜に紫外線及び/又は放射線
照射することにより、光電子放出効果が顕著になる厚さ
で、電場のかけ方、強さ、効果等で適宜予備試験等を行
い決めることができる。
The thickness of the above-mentioned thin film is the thickness at which the photoelectron emission effect becomes noticeable when the thin film is irradiated with ultraviolet rays and/or radiation, and is determined by conducting preliminary tests as appropriate depending on the application method, strength, effect, etc. of the electric field. be able to.

通常、厚さは0.01uylより薄く、好ましくは0.
0051M以下で効果的となる。
Usually the thickness is less than 0.01uyl, preferably less than 0.01uyl.
It becomes effective at 0051M or less.

次に、母材と薄膜の両方より光電子放出を行う場合を説
明する。母材の材質は、上述の薄膜からの紫外線及び/
又は放射線の照射により光電子を放出するものであれば
何れでも良く、光電的な仕事関数の小さいもの程好まし
い。効果や経済性の面から、Ba、Sr、Ca、Y、G
d、La。
Next, a case where photoelectron emission is performed from both the base material and the thin film will be explained. The material of the base material is UV and/or UV rays from the thin film mentioned above.
Alternatively, any material may be used as long as it emits photoelectrons when irradiated with radiation, and the smaller the photoelectric work function, the more preferable it is. From the viewpoint of effectiveness and economy, Ba, Sr, Ca, Y, G
d.La.

Ce、Nd、Th、Pr、Be、Zr、Fe。Ce, Nd, Th, Pr, Be, Zr, Fe.

Nl 、Zn、Cu、Ag、Pt、Cd、Pb。Nl, Zn, Cu, Ag, Pt, Cd, Pb.

Al、C,Mg、Au、In、Bi、Nb、Si。Al, C, Mg, Au, In, Bi, Nb, Si.

Ta、T1 、U、B、Eu、Sn、Pのいずれか又は
これらの化合物又は合金が好ましく、これらは単独で又
は2種以上を複合して用いられる。複合材としては、ア
マルガムの如く物理的な複合材も用いうる。
Any one of Ta, T1, U, B, Eu, Sn, P, or a compound or alloy thereof is preferred, and these may be used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can also be used.

化合物としては酸化物、はう化物、炭化物があり、酸化
物にはBad、SrO,Cab、Y2O6゜Gd  O
、Nd  O、ThO、Zro2゜F e20s 、 
Z n O,Cu O,Ag2O,L a 20s 。
Compounds include oxides, ferrides, and carbides, and oxides include Bad, SrO, Cab, Y2O6゜GdO
, NdO, ThO, Zro2°F e20s,
Z n O, Cu O, Ag2O, L a 20s.

PtO,PbO,Aρ2032Mg02In203゜B
ib、NbO,BaOなどがあり、またほう化物には、
Yb6.GdB6.LaB6.NdB5゜Ce B 6
 、 E u B 6 、 P r B 6 、 Z 
r B 2などがあり、さらに炭化物としては、UC,
ZrC。
PtO, PbO, Aρ2032Mg02In203゜B
There are ib, NbO, BaO, etc., and borides include
Yb6. GdB6. LaB6. NdB5゜Ce B 6
, E u B 6 , P r B 6 , Z
There are r B 2, etc., and carbides include UC,
ZrC.

TaC,TiC,NbCなどがあり窒化物としてTiN
がある。
There are TaC, TiC, NbC, etc., and TiN as a nitride.
There is.

また、合金としては黄銅、青銅、リン青銅、Ag (!
:Mgとの合金(Mgが2〜20wt%)、CuとBe
との合金(Beが1〜10wt%)及びBaとAgとの
合金を用いることができ、上記AgとMgとの合金、C
uとBeとの合金及びBaとAllとの合金が好ましい
In addition, alloys include brass, bronze, phosphor bronze, and Ag (!
: Alloy with Mg (2 to 20 wt% Mg), Cu and Be
(Be is 1 to 10 wt%) and an alloy of Ba and Ag can be used.
An alloy of u and Be and an alloy of Ba and All are preferred.

母材の形状は、上述のごとくであり、最適な形状は、装
置規模、形状、電子放出材の種類、電場のかけ方、効果
、経済性等で適宜予備試験を行い決めることができる。
The shape of the base material is as described above, and the optimal shape can be determined by conducting preliminary tests as appropriate, taking into account the scale of the device, shape, type of electron-emitting material, method of applying electric field, effect, economical efficiency, etc.

母材上の薄膜については、上述のごとくであり、薄膜の
種類、厚さは母材の種類、形状、適用分野、効果等で適
宜法めることができる。
The thin film on the base material is as described above, and the type and thickness of the thin film can be determined as appropriate depending on the type of base material, shape, field of application, effect, etc.

ここでの薄膜の役割りは、それ自身による光電子放出と
、母材の保護(使用雰囲気に母材を直接させないで保護
する)である。
The role of the thin film here is to emit photoelectrons by itself and to protect the base material (protect the base material by not exposing it directly to the operating atmosphere).

上記薄膜は、母材の表面に適宜の方法で薄膜状にコーテ
ィング、あるいは付着させて作ることができる。例えば
、イオンブレーティング法、スパッタリング法、蒸着法
、CVD法、材料を加熱処理し表面に酸化層を作る方法
、あるいは材料を薬品処理し膜状物質を作る方法があり
、適宜用いることができる。
The above-mentioned thin film can be made by coating or adhering it to the surface of the base material by an appropriate method. For example, there are an ion blasting method, a sputtering method, a vapor deposition method, a CVD method, a method of heat-treating the material to form an oxide layer on the surface, or a method of treating the material with chemicals to form a film-like substance, which can be used as appropriate.

光電子放出材の構成(光電子放出部が薄膜のみか、薄膜
と母材の両方か)の選択は、本技術の適用分野、装置形
状、規模、電場のかけ方、強さ、効果、経済性等で適宜
予備試験を行い決めることができる。例えば、適用分野
によっては、かなりの高効率で荷電を行う必要があり、
この場合は薄膜と母材の両方より光電子放出を行い、微
粒子の荷電を高効率で行う。
The selection of the configuration of the photoelectron emitting material (whether the photoelectron emitting part is only a thin film or both a thin film and a base material) depends on the field of application of this technology, device shape, scale, method of applying electric field, strength, effect, economical efficiency, etc. You can make a decision by conducting a preliminary test as appropriate. For example, depending on the field of application, it is necessary to perform charging with considerably high efficiency.
In this case, photoelectrons are emitted from both the thin film and the base material, and the particles are charged with high efficiency.

この例として、スーパークリーンルームにおけるクリー
ンゾーンでの清浄器への利用(高性能なりリーン気体を
得る分野)がある。
An example of this is the use as a purifier in the clean zone of a super clean room (in the field of obtaining high performance or lean gas).

別の適用分野として、例えば微粒子測定では微粒子への
荷電効率が必ずしも高くなくても一定な荷電が長時間安
定しておれば実用し得る。すなわち80〜90%程度の
荷電効率でも長時間安定していれば差支えない。この場
合は、薄膜のみからの光電子放出を利用することができ
る。
As another field of application, for example, in particle measurement, even if the charging efficiency of particles is not necessarily high, it can be put to practical use as long as a constant charge remains stable for a long time. That is, even if the charging efficiency is about 80 to 90%, there is no problem as long as it is stable for a long time. In this case, photoelectron emission from only the thin film can be used.

次に、紫外線及び/又は放射線の照射について述べれば
、紫外線の光源は、光電子放出材料が紫外線照射により
光電子を放出するものであれば良く、水銀灯、水素放電
管、キセノン放電管、ライマン放電管などを適宜利用で
きる。
Next, regarding the irradiation of ultraviolet rays and/or radiation, the light source for ultraviolet rays may be any material that emits photoelectrons when irradiated with ultraviolet rays, such as a mercury lamp, a hydrogen discharge tube, a xenon discharge tube, a Lyman discharge tube, etc. can be used as appropriate.

放射線を用いる場合の線源も同様に、照射により光電子
を放出するものであれば良く、α線、β線、γ線などが
用いられ、照射手段としてコバルト60、セシウム13
7、ストロンチウム90などの放射性同位元素、又は原
子炉内で生成する放射性廃棄物及びこれに適当な処理加
工した放射性物質など適宜利用できる。
Similarly, when using radiation, any radiation source may be used as long as it emits photoelectrons upon irradiation, and α-rays, β-rays, γ-rays, etc. are used, and cobalt-60, cesium-13, etc. are used as the irradiation means.
7. Radioactive isotopes such as strontium-90, radioactive waste generated in nuclear reactors, and radioactive substances processed appropriately can be used as appropriate.

これらの材料、紫外線あるいは放射線の種類の使用は、
装置の形状、適用分野、精度、経済性等で適宜決めるこ
とができる。
The use of these materials, ultraviolet light or types of radiation,
It can be determined as appropriate depending on the shape of the device, field of application, accuracy, economic efficiency, etc.

また、光電子放出材への紫外線及び/又は放射線の照射
は電場において行うと、光電子放出材からの光電子発生
が効果的に起こる。
Furthermore, when the photoelectron emitting material is irradiated with ultraviolet rays and/or radiation in an electric field, photoelectron generation from the photoelectron emitting material occurs effectively.

電場の形成方法としては、装置の形状、構造、適用分野
或いは期待する効果(精度)等によって適宜選択するこ
とができる。
The method for forming the electric field can be appropriately selected depending on the shape, structure, field of application, expected effect (accuracy), etc. of the device.

電場の強さは、共存水分濃度や光電子放出材の種類等で
適宜決めることができ、このことについては本発明者の
別の発明がある。電場の強さは、一般に0. I V 
/ cm〜2 kV/ cmである。
The strength of the electric field can be appropriately determined depending on the coexisting moisture concentration, the type of photoelectron emitting material, etc., and this is another invention of the present inventor. The strength of the electric field is generally 0. IV
/ cm to 2 kV/cm.

電極材料とその構造は通常の荷電装置において使用され
ているもので良く、例えば電極材料としてタングステン
線あるいは棒が用いられる。
The electrode material and its structure may be those used in ordinary charging devices; for example, a tungsten wire or rod is used as the electrode material.

以下本発明を実施例により具体的に説明するが、本発明
はこの実施例に限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

[実施例1] 本発明により相対湿度60%における空気中の浮遊微粒
子の測定を図面に従って、具体的に説明する。
[Example 1] Measurement of suspended particles in the air at a relative humidity of 60% according to the present invention will be specifically explained with reference to the drawings.

第1図は、荷電微粒子の分級部に分級板を用い検出部に
エレクトロメータを用いた概略図である。
FIG. 1 is a schematic diagram in which a classification plate is used as a part for classifying charged fine particles and an electrometer is used as a detection part.

予めインパクタ(図示されていない)等により10μ以
上の大きい粒子を除去された浮遊微粒子を含む空気1が
空気導入口から導入され、該空気中に含まれる微粒子は
、荷電部A1において、紫外線照射源(ランプ)2から
の紫外線照射を受けた光電子放出面3から放出される光
電子により荷電される。
Air 1 containing floating particles from which large particles of 10μ or more have been removed by an impactor (not shown) or the like is introduced from the air inlet, and the particles contained in the air are transferred to the charging section A1 by an ultraviolet irradiation source. It is charged by photoelectrons emitted from the photoelectron emitting surface 3 that has been irradiated with ultraviolet light from the (lamp) 2.

荷電部A1は、主に、紫外線ランプ2と光電子放出材3
及び電極4より構成されている。荷電部A1では、光電
子放出材3と電極4の間に電場が形成されており、紫外
線ランプ2の照射を受けた光電子放出材3から、光電子
が効果的に発生している。空気導入口から導入された空
気1中の微粒子は、該光電子の作用で荷電される。
The charging section A1 mainly includes an ultraviolet lamp 2 and a photoelectron emitting material 3.
and an electrode 4. In the charging section A1, an electric field is formed between the photoelectron emitting material 3 and the electrode 4, and photoelectrons are effectively generated from the photoelectron emitting material 3 irradiated with the ultraviolet lamp 2. Fine particles in the air 1 introduced from the air inlet are charged by the action of the photoelectrons.

荷電部A1で荷電された微粒子は荷電微粒子分級部B、
において分級される。
The fine particles charged in the charging section A1 are transferred to a charged fine particle classification section B,
It is classified in

荷電微粒子分級部B1は、コンパクトかつ簡易な構造で
荷電微粒子が分級される部分であり、前記した分級材の
印加電圧を変化させることにより荷電微粒子を分級する
機能を有する。
The charged fine particle classification section B1 has a compact and simple structure, and has a function of classifying charged fine particles by changing the voltage applied to the classification material.

以下に、細孔5,6を備えた分級板を用いた場合の作用
を述べる。
Below, the effect when using a classification plate equipped with pores 5 and 6 will be described.

分級板7,8間には、電源により電場が形成されている
。分級部B1における全荷電微粒子をb とする。分級
板7.8間に先ずalなる弱い電場を形成すると、該電
場で影響を受ける微細な荷電微粒子b2は該分級板に捕
集される。その結果、残りの粒径の大きい荷電微粒子(
bl−b2)は、後流のエレクトロメータ9よりなる検
出部Cにて荷電量d1が計測され微粒子濃度が測定され
る。
An electric field is formed between the classification plates 7 and 8 by a power source. Let b be the total charged particles in the classification section B1. When a weak electric field al is first formed between the classification plates 7 and 8, fine charged particles b2 affected by the electric field are collected on the classification plates. As a result, the remaining large-sized charged particles (
bl-b2), the charge amount d1 is measured by a detection section C consisting of an electrometer 9 located downstream, and the particle concentration is measured.

次に、分級板7.8間にalよりも強い電場a を形成
すると、該電場で影響を受ける( b 2よりも粒径の
大きい)荷電微粒子b3は、該分級板に捕集される。そ
の結果、残りの粒径の大きい荷電微粒子(b  −b3
)は、同様に後流のニレクトロメータ9で計測される。
Next, when an electric field a stronger than al is formed between the classification plates 7 and 8, charged fine particles b3 (larger in particle size than b 2) affected by the electric field are collected on the classification plates. As a result, the remaining charged fine particles (b - b3
) is similarly measured by the downstream niretrometer 9.

以下、順次適宜分級板の電場を変化させ、同様に行う。Thereafter, the same procedure is carried out by sequentially changing the electric field of the classification plate as appropriate.

このように、分級と微粒子濃度の測定を行うことで空気
導入口の空気1中微粒子の粒径(分布)とその濃度が分
かるものである。
In this way, by performing classification and measuring the concentration of fine particles, the particle size (distribution) and concentration of fine particles in the air 1 at the air inlet can be determined.

C1は荷電微粒子の検出部であり、上述のように分級部
B1で分級された荷電微粒子の検出をエレクトロメータ
9で行う。
C1 is a detection section for charged particles, and the electrometer 9 detects the charged particles classified by the classification section B1 as described above.

エレクトロメータ9は、荷電微粒子の荷電量を計測し、
これより分級されてきた微粒子濃度が分かるものであれ
ば良い。10は空気出口である。
The electrometer 9 measures the amount of charge of the charged fine particles,
Any method that allows the concentration of classified fine particles to be determined from this is sufficient. 10 is an air outlet.

この例の光電子放出材は、Cu−Znn母上上、All
を0.0051Mコーティングしたものである。
The photoelectron emitting material of this example is made of Cu-Znn matrix, All
0.0051M coating.

次に、本発明の特徴である光電子放出材3の構成を第2
図及び第3図で説明する。
Next, the structure of the photoelectron emitting material 3, which is a feature of the present invention, will be explained in a second manner.
This will be explained with reference to FIG.

第2図は、光電子放出材の部分断面図であり、光電子放
出材3は主に安定な物質(材料)の母材11と該母材上
の薄膜12より成る。
FIG. 2 is a partial cross-sectional view of the photoelectron emitting material 3. The photoelectron emitting material 3 mainly consists of a base material 11 of a stable substance (material) and a thin film 12 on the base material.

該薄膜12は、前記したように、仕事関数が比較的大き
い物質(安定な物質)を薄膜化したものであり、紫外線
及び/又は放射線照射により光電子放出が効果的となる
ものであれば良い。
As described above, the thin film 12 is a thin film made of a material (stable material) having a relatively large work function, and may be any material that can effectively emit photoelectrons when irradiated with ultraviolet rays and/or radiation.

第3図は、別の光電子放出材30の例を示す。光電子放
出材30は、仕事関数の小さい物質の母材110と、該
母材110の薄膜120より成る。
FIG. 3 shows another example of a photoelectron emitting material 30. The photoelectron emitting material 30 consists of a base material 110 of a substance with a small work function and a thin film 120 of the base material 110.

この例では、母材110と薄膜120の両方より光電子
放出を行う。
In this example, photoelectron emission is performed from both the base material 110 and the thin film 120.

光電子放出材の母材110は、前記したように、紫外線
及び/又は放射線の照射により光電子を放出するもので
あれば何れでも良く、光電的な仕事関数の小さいもの程
よい。また、母材上の薄膜120は、母材から放出され
る光電子を通過させ、かつそれ自身から光電子放出を効
果的に行い、母材の保護(使用雰囲気から隔離し、母材
の劣化を防ぐ)もしている。
As described above, the base material 110 of the photoelectron emitting material may be any material that emits photoelectrons upon irradiation with ultraviolet rays and/or radiation, and the smaller the photoelectric work function, the better. In addition, the thin film 120 on the base material allows photoelectrons emitted from the base material to pass through and effectively emits photoelectrons from itself, thereby protecting the base material (isolating it from the operating atmosphere and preventing deterioration of the base material. ) are also doing.

本例の光電子放出材3.30は、母材11.110と母
材上の薄膜12.120の2重構造の例であるが、母材
11.110あるいは母材上の薄膜12.120を適宜
複数(複合)で使用し、3重構造あるいはそれ以上の多
重構造とすることができることは言う迄もない。
The photoelectron emitting material 3.30 of this example has a double structure of a base material 11.110 and a thin film 12.120 on the base material. It goes without saying that a plurality of layers (compound) can be used as appropriate to form a triple structure or more than one structure.

[実施例2] 相対湿度60%の環境下で、第4図に示す空気清浄器に
煙草の煙を適宜空気で希釈し5N /winで送気して
、粒子測定器で性能を調べた。また長期連続運転を行い
性能を調べた。
[Example 2] In an environment with a relative humidity of 60%, cigarette smoke was appropriately diluted with air and blown into the air purifier shown in FIG. 4 at a rate of 5N/win, and the performance was examined using a particle measuring device. We also conducted long-term continuous operation to examine performance.

すなわち、光電子放出材13としてはCu−Znの母材
上に0.003節の薄膜を設けたものを用い、紫外線ラ
ンプとして低圧水銀灯14を用い、電場の強さ50V/
cn+において微粒子の荷電を行った。17及び18は
入口及び出口、15は電極、16は集じん板である。
That is, a thin film of 0.003 knots was provided on a Cu-Zn base material as the photoelectron emitting material 13, a low-pressure mercury lamp 14 was used as the ultraviolet lamp, and the electric field strength was 50V/
The microparticles were charged at cn+. 17 and 18 are an inlet and an outlet, 15 is an electrode, and 16 is a dust collecting plate.

測定結果は、入口濃度540万個/ρ、出口濃度は31
0個/gで1ケ月間の連続運転後も、その性能に変化は
認められなかった。
The measurement results are that the inlet concentration is 5.4 million pieces/ρ and the outlet concentration is 31.
Even after one month of continuous operation at 0 pieces/g, no change in performance was observed.

[比 較 例コ 実施例2において、Cu−Zn(バルク状)からなる材
料を用い同様に試験した。
[Comparative Example] In Example 2, a similar test was conducted using a material made of Cu-Zn (bulk).

測定結果は、入口濃度540万個/g、出口濃度75.
800個/ρで、連続運転を行ったところ、3日後の出
口濃度は260.500個/D 、10日後の出口濃度
は591.100個/1であった。
The measurement results were an inlet concentration of 5.4 million pieces/g and an outlet concentration of 75.
When continuous operation was performed at 800 particles/ρ, the outlet concentration after 3 days was 260.500 particles/D, and the outlet concentration after 10 days was 591.100 particles/D.

[実施例3〕 母材に金又は銀を蒸着して、相対湿度60%の大気中で
光電子放出量を調べた。
[Example 3] Gold or silver was deposited on a base material, and the amount of photoelectron emission was examined in the atmosphere at a relative humidity of 60%.

すなわち、母材としてZrC,Cu−Znまたは光電子
放出量の少ないセラミックからなる材料を用い、測定器
としては大気雰囲気型紫外線光電子分析装置を用いた。
That is, a material made of ZrC, Cu-Zn, or a ceramic with a small amount of photoelectron emission was used as the base material, and an atmospheric ultraviolet photoelectron analyzer was used as the measuring instrument.

試験結果は第1表の通りであった。なお光電子放出量は
1秒当りの光電子放出量の1/2乗の値であるYで示し
た。
The test results are shown in Table 1. The amount of photoelectron emission is expressed as Y, which is the value of the 1/2 power of the amount of photoelectron emission per second.

また、バルク状の金、銀のYについてはAu11.0、
銀13,5であった。
In addition, for bulk gold and silver Y, Au11.0,
It was silver 13.5.

[発明の効果コ 以上説明したように、本発明によれば、下記のような効
果を奏する。
[Effects of the Invention] As explained above, the present invention provides the following effects.

1、仕事関数の比較的大きい物質を薄膜化することによ
って、 (1)光電子放出が効果的になった。
1. By making a material with a relatively large work function into a thin film, (1) photoelectron emission became more effective.

(2)仕事関数の大きい物質程安定であるので、光電子
放出材の安定性が向上した。
(2) Since a substance with a larger work function is more stable, the stability of the photoelectron emitting material has been improved.

2゜仕事関数の比較的大きい物質を薄膜化することによ
り、光電子放出が効果的になったことによって、 (1)光電子放出材の構成を、安定で加工性の良い母材
と母材上の該薄膜とすることができるので、母材として
加工性の良い材料を選択して任意の形状の光電子放出材
が得られる。
2゜ Photoelectron emission has become more effective by thinning a material with a relatively large work function. Since the film can be made into such a thin film, a photoelectron emitting material of any shape can be obtained by selecting a material with good workability as the base material.

(2)仕事関数の小さい物質の母材と、仕事関数の比較
的大きい物質の薄膜とすることができるので、光電子を
母材と薄膜の両方から放出させることができ効果(性能
)が向上し、母材の表面が該薄膜により保護されるので
、効果が長時間安定する。
(2) Since the base material is made of a substance with a small work function and the thin film is made of a substance with a relatively large work function, photoelectrons can be emitted from both the base material and the thin film, improving the effect (performance). Since the surface of the base material is protected by the thin film, the effect is stable for a long time.

3、上記1及び2から、微粒子の荷電が効果的となり、
このことから、装置の小型化が可能となり、又処理量が
増加した。
3. From 1 and 2 above, charging of fine particles becomes effective,
This has made it possible to downsize the device and increase throughput.

4、前記1〜3により、夫々の利用分野で特に次の効果
が生じた。
4. 1 to 3 above produced the following effects in their respective fields of application.

(1)空気または排ガス等の気体中微粒子の濃度や粒径
の測定を行う分野では、測定精度を向上し、長時間安定
した。
(1) In the field of measuring the concentration and particle size of fine particles in gases such as air or exhaust gas, measurement accuracy has been improved and stability has been achieved over a long period of time.

(2)清浄気体を得る分野では、性能が向上し、長時間
安定したので、装置の小型化、処理容量の増加が可能と
なった。
(2) In the field of obtaining clean gas, improved performance and long-term stability have made it possible to downsize equipment and increase processing capacity.

(3)微粒子の分離、分級、表面改質、荷電制御を行う
分野では、性能が向上し、長時間安定し、装置の小型化
、処理量の増加が可能となり、特に0.1節より小さい
超微粒子の処理について処理性能向上に有効となった。
(3) In the field of fine particle separation, classification, surface modification, and charge control, performance is improved, stability is maintained over a long period of time, equipment can be made smaller, and throughput can be increased, especially smaller than 0.1 section. It has become effective in improving the processing performance of ultrafine particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の空気中の浮遊微粒子を測定
するための概略図である。第2図及び第3図は光電子放
出材の部分断面図であり、前者は安定な物質の母材上に
仕事関数が比較的大きい物質を薄膜化して薄膜より光電
子が放出される例、後者は母材と薄膜の両方から光電子
放出を行う例である。 第4図は本発明の一実施例の空気清浄器の概略図である
。 符号の説明 1・・・空 気      2,14・・・紫外線ラン
プ3、13.30・・・光電子放出材 4.15・・・電 極    5,6・・・細 孔7.
8・・・分級板 9・・・エレクトロメータ 10・・・空気出口     11.110・・・母 
材12、120・・・薄 膜   16・・・集じん板
17・・・タバコを希釈した煙の入口 18・・・清浄化処理後の煙の出口 ・・・荷電部 ・・・荷電微粒子分級部 ・・・検出部
FIG. 1 is a schematic diagram for measuring suspended particles in the air according to an embodiment of the present invention. Figures 2 and 3 are partial cross-sectional views of photoelectron-emitting materials. This is an example in which photoelectrons are emitted from both the base material and the thin film. FIG. 4 is a schematic diagram of an air purifier according to an embodiment of the present invention. Explanation of symbols 1... Air 2, 14... Ultraviolet lamp 3, 13. 30... Photoelectron emitting material 4.15... Electrode 5, 6... Pore 7.
8... Classifying plate 9... Electrometer 10... Air outlet 11.110... Mother
Materials 12, 120...Thin membrane 16...Dust collecting plate 17...Inlet for smoke diluted with tobacco 18...Outlet for smoke after cleaning treatment...Charged part...Charged particulate classification Section: Detection section

Claims (11)

【特許請求の範囲】[Claims] (1)紫外線及び/又は放射線の照射により光電子を放
出する元素、無機化合物、合金又はこれらの混合物又は
これらの複合物からなる母材、もしくは紫外線及び/又
は放射線の照射により光電子を放出しない材料からなる
母材と、相対湿度80%以下、好ましくは60%以下の
環境下で使用する、該母材上に厚さが0.01μmより
薄い前記照射により光電子を放出する物質の内、光電的
に仕事関数の比較的大きい安定な物質の薄膜とよりなる
多重構造の光電子放出材。
(1) From a base material consisting of an element, an inorganic compound, an alloy, or a mixture thereof or a composite thereof that emits photoelectrons when irradiated with ultraviolet rays and/or radiation, or from a material that does not emit photoelectrons when irradiated with ultraviolet rays and/or radiation. Among the substances that emit photoelectrons upon irradiation with a thickness of less than 0.01 μm on the base material, which is used in an environment with a relative humidity of 80% or less, preferably 60% or less, A photoelectron emitting material with a multilayer structure consisting of a thin film of a stable substance with a relatively large work function.
(2)前記光電子を放出する母材の少なくとも1部分が
、光電的な仕事関数の小さい物質よりなる請求項1記載
の光電子放出材。
(2) The photoelectron emitting material according to claim 1, wherein at least a portion of the base material that emits photoelectrons is made of a substance with a small photoelectric work function.
(3)前記光電子放出材の薄膜は、厚さが0.001μ
m以下の薄膜である請求項1記載の光電子放出材。
(3) The thin film of the photoelectron emitting material has a thickness of 0.001μ
The photoelectron emitting material according to claim 1, which is a thin film with a thickness of less than m.
(4)前記光電子放出材の母材が、Ba、Sr、Ca、
Y、Gd、La、Ce、Nd、Th、Pr、Be、Zr
、Fe、Ni、Zn、Cu、Ag、Pt、Cd、Pb、
Al、C、Mg、Au、In、Bi、Nb、Si、Ta
、Ti、U、B、Eu、Sn、P及びその化合物から選
ばれた1種の材料、又は2種以上の合金又は混合物又は
複合材よりなる請求項1記載の光電子放出材。
(4) The base material of the photoelectron emitting material is Ba, Sr, Ca,
Y, Gd, La, Ce, Nd, Th, Pr, Be, Zr
, Fe, Ni, Zn, Cu, Ag, Pt, Cd, Pb,
Al, C, Mg, Au, In, Bi, Nb, Si, Ta
, Ti, U, B, Eu, Sn, P, and compounds thereof, or an alloy, mixture, or composite of two or more of them.
(5)前記光電子放出材の薄膜が、光電的に比較的仕事
関数の大きい物質である、Au、Ag、Al、Zr、I
n、Nb、Pb、Ti、Ni、Cu、Ta、Si、W、
C及びその化合物、高分子化合物から選ばれた1種の材
料、2種以上の合金又は混合物又は複合材よりなる請求
項1記載の光電子放出材。
(5) The thin film of the photoelectron emitting material is made of a material having a relatively large photoelectric work function, such as Au, Ag, Al, Zr, or I.
n, Nb, Pb, Ti, Ni, Cu, Ta, Si, W,
2. The photoelectron emitting material according to claim 1, comprising one material, an alloy, a mixture, or a composite material of two or more selected from C, its compounds, and polymer compounds.
(6)請求項1記載の光電子放出材を用いて微粒子の荷
電を、電場において行う微粒子の荷電方法。
(6) A method for charging fine particles in which the photoelectron emitting material according to claim 1 is used to charge fine particles in an electric field.
(7)電場の強さが、1V/cm〜2kV/cmである
請求項6記載の微粒子の荷電方法。
(7) The method for charging fine particles according to claim 6, wherein the electric field has a strength of 1 V/cm to 2 kV/cm.
(8)請求項6又は7記載の方法により、微粒子の荷電
を行い、微粒子の表面改質、荷電量の制御を行う方法。
(8) A method of charging fine particles by the method according to claim 6 or 7, modifying the surface of the fine particles, and controlling the amount of charge.
(9)請求項6又は7記載の方法により、微粒子の荷電
を行い、微粒子の分離、分級を行う方法。
(9) A method of charging fine particles and separating and classifying the fine particles by the method according to claim 6 or 7.
(10)請求項6又は7記載の方法により、微粒子の荷
電を行い、気体中の微粒子の濃度や粒径の測定を行う方
法。
(10) A method of charging fine particles by the method according to claim 6 or 7 and measuring the concentration and particle size of the fine particles in a gas.
(11)請求項6又は7記載の方法により、微粒子の荷
電を行い、気体中の微粒子を捕集・除去し、清浄化気体
を得る方法。
(11) A method according to claim 6 or 7, in which the particles are charged, the particles in the gas are collected and removed, and a purified gas is obtained.
JP27812390A 1990-10-17 1990-10-17 Photoemission material Expired - Fee Related JP2877487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27812390A JP2877487B2 (en) 1990-10-17 1990-10-17 Photoemission material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27812390A JP2877487B2 (en) 1990-10-17 1990-10-17 Photoemission material

Publications (2)

Publication Number Publication Date
JPH04152296A true JPH04152296A (en) 1992-05-26
JP2877487B2 JP2877487B2 (en) 1999-03-31

Family

ID=17592933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27812390A Expired - Fee Related JP2877487B2 (en) 1990-10-17 1990-10-17 Photoemission material

Country Status (1)

Country Link
JP (1) JP2877487B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008571A1 (en) * 2006-03-17 2009-01-08 Shigeki Matsuura Ionizing Device
WO2009020208A1 (en) * 2007-08-09 2009-02-12 Kyoto University Radial multipolar type layout lens, and charged particle optical system device using the lens
US8044343B2 (en) 2006-03-17 2011-10-25 Rigaku Corporation Gas analyzer
US8986510B2 (en) 2005-05-09 2015-03-24 Genesis Research Institute, Inc. Method of decomposing target and decomposition apparatus
US9493817B2 (en) 2007-03-05 2016-11-15 Genesis Research Institute, Inc. Decomposition method and decomposition apparatus for nucleic acid polymer
JP2019029199A (en) * 2017-07-31 2019-02-21 アズビル株式会社 Method for producing cathode electrode of ultraviolet sensor and ultraviolet sensor
DE102020113351A1 (en) 2020-05-18 2021-11-18 Dbt Gmbh Electron emitter structure, external photo effect emitter, particle collecting device, tunnel surface emitter, semiconductor-based direct emitter, and liquid ionizer with the same, method for generating free electrons and method for collecting particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986510B2 (en) 2005-05-09 2015-03-24 Genesis Research Institute, Inc. Method of decomposing target and decomposition apparatus
US20090008571A1 (en) * 2006-03-17 2009-01-08 Shigeki Matsuura Ionizing Device
US8044343B2 (en) 2006-03-17 2011-10-25 Rigaku Corporation Gas analyzer
US8592779B2 (en) * 2006-03-17 2013-11-26 Hamamatsu Photonics K.K. Ionizing device
US9493817B2 (en) 2007-03-05 2016-11-15 Genesis Research Institute, Inc. Decomposition method and decomposition apparatus for nucleic acid polymer
WO2009020208A1 (en) * 2007-08-09 2009-02-12 Kyoto University Radial multipolar type layout lens, and charged particle optical system device using the lens
JP2019029199A (en) * 2017-07-31 2019-02-21 アズビル株式会社 Method for producing cathode electrode of ultraviolet sensor and ultraviolet sensor
DE102020113351A1 (en) 2020-05-18 2021-11-18 Dbt Gmbh Electron emitter structure, external photo effect emitter, particle collecting device, tunnel surface emitter, semiconductor-based direct emitter, and liquid ionizer with the same, method for generating free electrons and method for collecting particles
WO2021233501A3 (en) * 2020-05-18 2022-01-13 Dbt Gmbh Electron emitter structure, devices comprising such an electron emitter structure, and method for generating free electrons
US12272513B2 (en) 2020-05-18 2025-04-08 Dbt Gmbh Electron emitter structure, external photoelectric effect emitter, particle collecting device, tunnel surface emitter, semiconductor- based direct emitter and liquid ioniser comprising same, gas sensor comprising an emitter or emitter structure, method for generating free electrons, and method for collecting particles

Also Published As

Publication number Publication date
JP2877487B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
JP3405439B2 (en) How to clean solid surfaces
EP0445787B1 (en) Photoelectron emitting member and uses thereof
US5060805A (en) Photoelectron emitting member
JPH08211B2 (en) Method and device for cleaning closed space
JPH04152296A (en) Photo electron emission material
JP3888806B2 (en) Photoelectron emitting material and negative ion generator using the same
JP2877449B2 (en) Photoemission material
JPH0568875A (en) Photoelectron emitting member
JP3570612B2 (en) Negative ion generation method and device, fine particle charging method and trapping device
JP2670942B2 (en) Method and apparatus for electrically neutralizing charged fine particles in gas
JPS62242838A (en) Method and instrument for measuring concentration of pulverized particle suspending in gas
JPH04171062A (en) Photoelectron emitting material and method for charging minute partials using the same
JP2001252344A (en) Photoelectron releasing material and negative ion generator
JP2001259474A (en) Device and method for capturing granular material
JP3105445B2 (en) Vacuum space provided with method and apparatus for cleaning vacuum space
JPH02303558A (en) Method for charging fine particle in gas
JP3046085B2 (en) Photoemission device and method of charging fine particles using the same
JPH05107178A (en) Method and device for charging fine particle
JP2000102743A (en) Method for charging granular matter, its usage and device
JP3139591B2 (en) Method and apparatus for generating negative ions, method for charging fine particles, apparatus for collecting fine particles in gas, and stocker
JPH0822393B2 (en) Particle charging / collecting unit device
JP3672077B2 (en) Method and apparatus for generating negative ions
JPH02303557A (en) Method for charging fine particle in gas by photoelectron
JP3661835B2 (en) Method and apparatus for generating negative ions
JP2000153179A (en) Method and apparatus for generating anion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees