[go: up one dir, main page]

JPH04162481A - Integrated light source apparatus - Google Patents

Integrated light source apparatus

Info

Publication number
JPH04162481A
JPH04162481A JP2286138A JP28613890A JPH04162481A JP H04162481 A JPH04162481 A JP H04162481A JP 2286138 A JP2286138 A JP 2286138A JP 28613890 A JP28613890 A JP 28613890A JP H04162481 A JPH04162481 A JP H04162481A
Authority
JP
Japan
Prior art keywords
current
optical
light source
laser
integrated light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2286138A
Other languages
Japanese (ja)
Other versions
JP2616206B2 (en
Inventor
Masayuki Yamaguchi
山口 昌幸
Tomoaki Kato
友章 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2286138A priority Critical patent/JP2616206B2/en
Publication of JPH04162481A publication Critical patent/JPH04162481A/en
Application granted granted Critical
Publication of JP2616206B2 publication Critical patent/JP2616206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To eliminate optical output monitor from the rear surface of a light source for APC operation and facilitate high output operation by measuring an average value of a light current generated by light absorption in an optical demodulator and controlling a DC current to be applied to a semiconductor laser always to give constant average value of light current. CONSTITUTION:Laser oscillation can be realized by applying a DC current to a laser section 100 of an integrated light source with a bias circuit 300. Random pulse modulation is carried out in an optical demodulator 200 with a signal voltage from a drive circuit 400. As a result, an optical current, generated in the optical demodulator 200, in an optical output from the optical demodulator 200 providing good modulation waveform can be measured with a monitor circuit 500. A current to the laser section 100 from bias circuit 300 is controlled by a feedback loop 600 so that such optical current can be kept constant. Thereby, APC operation can be realized easily by controlling a current to the laser section 100 so that a light current generated from the optical demodulator 200 always becomes constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザと電界吸収型半導体光変調器とが
集積化された集積化光源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an integrated light source device in which a semiconductor laser and an electroabsorption semiconductor optical modulator are integrated.

〔従来の技術〕[Conventional technology]

分布帰還型半導体レーザ(D F B −L D )等
の単一波長半導体レーザと電界吸収型光変調器を集積化
した光源は、レーザ発振部と変調器部とが分離されてい
るため、変調動作の際にも発振波長が変動しないという
特徴を有している。これは、従来のDFB−LDを直接
変調する光通信システムにおいて、伝送後の波形劣化を
招くとして大きな問題となる変調時の波長変動(波長チ
ャーピングと言う〉を克服できるという利点となる。特
に、DFB−LDを直接変調する方式の伝送限界と思わ
れる2 G b / s以上のシステムにおいて、上記
の集積化光源は極めて魅力的な存在であり、現在各所で
研究開発が行なわれている(例えば、酔田他、電子情報
通信学界、光量子エレクトロニクス研究会予稿集、○Q
E89−30 1989年発行など)。前記文献では集
積化光源を用いた5Gb / s −69k mの高速
・長距離伝送実験について報告している。
A light source that integrates a single wavelength semiconductor laser such as a distributed feedback semiconductor laser (DFB-LD) and an electroabsorption optical modulator has a laser oscillation section and a modulator section separated, so that the modulation It has the characteristic that the oscillation wavelength does not change during operation. This has the advantage of being able to overcome wavelength fluctuations during modulation (called wavelength chirping), which is a major problem in conventional optical communication systems that directly modulate DFB-LDs, as it causes waveform deterioration after transmission. In systems of 2 Gb/s or higher, which is considered to be the transmission limit of the direct modulation method of DFB-LD, the above integrated light source is extremely attractive, and research and development is currently being carried out in various places ( For example, Suita et al., Electronics, Information and Communication Science, Proceedings of the Photon Quantum Electronics Research Group, ○Q
E89-30 published in 1989, etc.). The above document reports on a high-speed, long-distance transmission experiment of 5 Gb/s-69 km using an integrated light source.

ところで集積化光源からの光出力は、レーザ光が光変調
器を通過した分だけ、単体DFB−LDに比べて低い。
Incidentally, the optical output from the integrated light source is lower than that of a single DFB-LD due to the amount of laser light that passes through the optical modulator.

一方、高ビットレートの伝送では、受信側の感度が低下
するため、送信側ではより高い光出力が必要とされる。
On the other hand, in high bit rate transmission, the sensitivity on the receiving side decreases, so higher optical output is required on the transmitting side.

そこで、パワーマージンに余裕のある光伝送を実現する
ために、光変調器とは反対側のレーザ端面に高反射膜コ
ーティングを施すことによって、光変調器側から高光出
力を得る試みが行なわれている(例えば、須藤゛ 他、
1990年春季応用物理学関係連合講演会、30a−8
A−15)。上記文献では、高反射膜コーティングによ
り、光変調器側からの注入電流−光出力の効率が、コー
ティング前の状態の約1.4倍に改善されたことを述べ
ている。
Therefore, in order to realize optical transmission with sufficient power margin, attempts have been made to obtain high optical output from the optical modulator side by coating the laser end face on the side opposite to the optical modulator with a high reflection film. (For example, Sudo et al.
1990 Spring Applied Physics Association Lecture, 30a-8
A-15). The above-mentioned document states that the high-reflection film coating improves the efficiency of injection current vs. optical output from the optical modulator side to about 1.4 times the state before coating.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

集積化光源を実際のシステムに適用する際、従来のDF
B−LD直接変調方式と同様に、光ファイバへの入力光
強度を一定に保つ(この機能をAuto Power 
Control: A P Cと呼ぶ)必要がある。従
来のシステムではAPC動作を実現するために、DFB
−LDの裏端面からの光出力をPINフォトダイオード
でモニタし、フォトダイオードの受光パワーが一定とな
るようにLDのバイアス電流を調整していた。集積化光
源を用いたシステムでも、裏端面からの光出力があれば
同様の方式によりAPC動作が可能である。しかし、前
記したように、裏面に高反射コートを施して高出力化を
図った素子では、裏面からのモニタ光を得ることができ
ないため、従来の方式に変わる新たなAPC方式を開発
する必要が生じた。
When applying an integrated light source to a practical system, traditional DF
Similar to the B-LD direct modulation method, the input light intensity to the optical fiber is kept constant (this function can be
Control: APC) is necessary. In conventional systems, in order to realize APC operation, DFB
- The optical output from the back end surface of the LD was monitored by a PIN photodiode, and the bias current of the LD was adjusted so that the light receiving power of the photodiode was constant. Even in a system using an integrated light source, APC operation is possible in a similar manner as long as there is light output from the back end surface. However, as mentioned above, with devices that have a high-reflection coating on the back side to achieve high output, it is not possible to obtain monitor light from the back side, so it is necessary to develop a new APC method to replace the conventional method. occured.

本発明の目的は、光源の裏面に光出力モニタ用のPTN
フォトダイオードを配置する必要がなく、APC動作が
可能な集積化光源装置を提供することにある。
The purpose of the present invention is to provide a PTN for optical output monitor on the back side of the light source.
It is an object of the present invention to provide an integrated light source device that is capable of APC operation without the need for arranging a photodiode.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による集積化光源装置は、半導体レーザと電界吸
収型光変調器とが1つの半導体基板に集積化された集積
化光源と、前記半導体レーザにレーザ発振のための直流
電源を注入する電気回路と、前記変調器に光の強度変調
を行うための信号電圧を加える電気回路と、前記光変調
器において光の吸収によって生じる光電流の平均値を測
定し、この光電流が常に一定となるように前記半導体レ
ーザに注入する直流電流を制御する機能とを備えた構成
である。
An integrated light source device according to the present invention includes an integrated light source in which a semiconductor laser and an electroabsorption optical modulator are integrated on one semiconductor substrate, and an electric circuit that injects DC power for laser oscillation into the semiconductor laser. an electric circuit that applies a signal voltage to the modulator to perform intensity modulation of light; and an electric circuit that measures the average value of the photocurrent generated by absorption of light in the optical modulator, and ensures that this photocurrent is always constant. This configuration also has a function of controlling the direct current injected into the semiconductor laser.

〔作用〕[Effect]

集積化光源において、電界吸収型光変調器の吸収層に形
成されたpn接合部に、逆方向の信号電圧を加えると、
吸収層内部の吸収係数が変調され、その結果透過光の強
度が変調される。この時、変調信号のパルスのデユーテ
ィを一定(通常は1/2)とすると、光変調器において
吸収によって生じる光電流は、レーザ部から光変調器に
導かれた全光出力に比例する。このことは、即ち光変調
器で発生する光電流と、光変調器を通過して出力される
光出力とが比例関係にあることを意味する。この原理を
応用すれば、光変調器で発生する光電流が常に一定とな
るように、レーザ部への注入電流を制御することにより
APC動作が容易に得られる。
In an integrated light source, when a signal voltage in the opposite direction is applied to the pn junction formed in the absorption layer of the electroabsorption optical modulator,
The absorption coefficient within the absorbing layer is modulated, and as a result the intensity of the transmitted light is modulated. At this time, if the duty of the pulse of the modulation signal is constant (usually 1/2), the photocurrent generated by absorption in the optical modulator is proportional to the total optical output guided from the laser section to the optical modulator. This means that there is a proportional relationship between the photocurrent generated in the optical modulator and the optical output that passes through the optical modulator and is output. By applying this principle, APC operation can be easily obtained by controlling the current injected into the laser section so that the photocurrent generated in the optical modulator is always constant.

〔実施例1〕 以下に本発明の実施例を図面を用いて詳細に説明する。[Example 1] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1の実施例である集積化光源装置の
構成を示すものである。まず集積化光源素子の構造につ
いては、前述した文献等に示されているため、ここでは
簡単に説明する。n−Inp半導体基板1の表面のレー
ザ領域100に相当する部分に回折格子2が形成、され
ており、基板1の上全面に波長組成1.3μmのn−I
nGaAsPガイド層3(厚さ0.1μm)が形成され
ている。ガイド層3の上には、レーザ領域100に相当
する部分にゲインピーク波長1.55μmのI nGa
As/I nGaAsP多重量子井戸活性層4が、また
光変調器部200に相当する部分に波長組成1.4C1
μmのInGaAsP光吸収層5(厚さ0.3μm)が
互いに横方向に接続する形で形成されている。そして、
それらの上にp −InPクラッド層6(厚さ2μm)
が全面に形成されており、更にその上のレーザ領域10
0及び6一 変調器部200のそれぞれの領域に独立にp +=In
GaAsPキャップ層7を有している。キャップ層7の
上にはレーザ部100と光変調器200のn側電極8が
、また基板1の下にはn側電極9が形成されている。光
変調器側端面には無反射コーテイング膜10が、またレ
ーザ側端面には高反射コーテイング膜11が形成されて
いる。この集積化光源に公知のバイアス回路300、ド
ライブ回路400、モニタ回路500を図示のように接
続して集積化光源装置ができ上る。
FIG. 1 shows the configuration of an integrated light source device which is a first embodiment of the present invention. First, the structure of the integrated light source element is described in the above-mentioned literature, so it will be briefly explained here. A diffraction grating 2 is formed on the surface of the n-Inp semiconductor substrate 1 in a portion corresponding to the laser region 100, and an n-I with a wavelength composition of 1.3 μm is formed on the entire upper surface of the substrate 1.
An nGaAsP guide layer 3 (thickness: 0.1 μm) is formed. On the guide layer 3, a layer of InGa with a gain peak wavelength of 1.55 μm is formed in a portion corresponding to the laser region 100.
The As/InGaAsP multiple quantum well active layer 4 also has a wavelength composition of 1.4C1 in a portion corresponding to the optical modulator section 200.
InGaAsP light absorption layers 5 (thickness: 0.3 μm) having a thickness of 0.3 μm are formed so as to be connected to each other in the lateral direction. and,
On top of them is a p-InP cladding layer 6 (thickness 2 μm).
is formed on the entire surface, and furthermore, a laser region 10 is formed on the entire surface.
0 and 6 - independently in each region of the modulator section 200 p + = In
It has a GaAsP cap layer 7. An n-side electrode 8 of a laser section 100 and an optical modulator 200 is formed on the cap layer 7 , and an n-side electrode 9 is formed below the substrate 1 . A non-reflection coating film 10 is formed on the end face on the optical modulator side, and a high reflection coating film 11 is formed on the end face on the laser side. A known bias circuit 300, drive circuit 400, and monitor circuit 500 are connected to this integrated light source as shown in the figure to complete an integrated light source device.

この集積化光源のレーザ部100に、バイアス回路30
0により直流電流を注入することによりレーザ発振を得
た。発振しきい値は20mAであった。レーザ部100
に約100mAの電流を注入しドライブ回路400から
の信号電圧により光変調器200において5 G b 
/ sのランダムパルス変調を行った。その結果、良好
な変調波形が得られている光変調器200からの光出力
の平均は2mWである。光変調器200で発生した光電
流をモニタ回路500により測定したところ約2mAで
あった。この光電流を一定に保つように、フィードバッ
クループ600によりバイアス回路300からレーザ部
100への注入電流を制御した。
A bias circuit 30 is provided in the laser section 100 of this integrated light source.
Laser oscillation was obtained by injecting a direct current at zero. The oscillation threshold was 20 mA. Laser section 100
A current of approximately 100 mA is injected into the optical modulator 200 using a signal voltage from the drive circuit 400.
/s random pulse modulation was performed. As a result, the average optical output from the optical modulator 200, which provides a good modulation waveform, is 2 mW. When the photocurrent generated by the optical modulator 200 was measured by the monitor circuit 500, it was approximately 2 mA. In order to keep this photocurrent constant, the current injected from the bias circuit 300 to the laser section 100 was controlled by the feedback loop 600.

第2図に周囲の温度を変えた時の、上記APC制御を行
った場合と、そうでない場合との光出力の変動の様子を
示す。本発明のAPC制御により、0℃〜60℃の広い
温度範囲にわたって光出力の変動±0.5dB以下の低
出力動作が得られた。
FIG. 2 shows how the optical output changes when the ambient temperature is changed, with and without the above APC control. By the APC control of the present invention, low output operation was obtained with optical output variation of ±0.5 dB or less over a wide temperature range of 0° C. to 60° C.

尚、本実施例では、集積化光源の構造の詳細については
触れなかったが、゛半導体レーザ100及び電界吸収型
光変調器200は共にいかなる構造のものであっても本
発明の一般性は失われない。
Although details of the structure of the integrated light source were not mentioned in this embodiment, the generality of the present invention is lost regardless of the structure of the semiconductor laser 100 and the electroabsorption optical modulator 200. It won't happen.

例えば、前者は分布ブラッグ反射型のレーザ(DBR−
LD)であってもよい。後者は吸収層5にMQWを用い
た謂ゆる量子閉じ込めシュタルク効果を利用したもので
あってもよい。
For example, the former is a distributed Bragg reflection type laser (DBR-
LD). The latter may utilize the so-called quantum confined Stark effect by using MQW in the absorption layer 5.

〔実施例2〕 第3図に本発明の第2の実施例である集積化光源装置の
構成図を示す。本装置は、アレイ上に並んだ複数の波長
可変半導体レーザ100と電界吸収型光変調器200、
それにスターカップラー700とを同一半導体基板1の
上に集積化した集積化光源を用いている。波長可変半導
体レーザ100は、活性領域1019位相制御領域10
2.DBR領域103の3領域からなるDBR−LDで
ある。スターカップラー700は半導体光導波路から形
成されている。光変調器200は実施例1と同様の構造
をなしている。スターカップラー700の出力端には無
反射コート膜10が形成されている。
[Embodiment 2] FIG. 3 shows a configuration diagram of an integrated light source device which is a second embodiment of the present invention. This device includes a plurality of wavelength tunable semiconductor lasers 100 arranged in an array, an electroabsorption optical modulator 200,
An integrated light source in which a star coupler 700 and a star coupler 700 are integrated on the same semiconductor substrate 1 is used. The wavelength tunable semiconductor laser 100 has an active region 1019 and a phase control region 10.
2. This is a DBR-LD consisting of three areas, a DBR area 103. Star coupler 700 is formed from a semiconductor optical waveguide. The optical modulator 200 has a structure similar to that of the first embodiment. A non-reflection coating film 10 is formed on the output end of the star coupler 700.

この集積化光源に、公知のバイアス回路300、ドライ
ブ回路400、モニタ回路500、波長制御回路800
を図示のような接続して集積化光源装置ができ上る。な
お、図では集積化光源の一部の素子にしか接続されてい
ないが、実際は他の素子にも接続している。全ての接続
を描くと煩雑になるので一部のみ表示して他は図示略し
である。
This integrated light source includes a known bias circuit 300, drive circuit 400, monitor circuit 500, and wavelength control circuit 800.
By connecting them as shown, an integrated light source device is completed. Note that although in the figure it is connected to only some elements of the integrated light source, it is actually connected to other elements as well. Since it would be complicated to draw all the connections, only some are shown and the others are omitted.

この集積化光源は、位相制御領域102及びDBR領域
103に注入する電流を波長制御回路800によって調
整することによって、レーザの発振波長を任意にコント
ロールできる。そのため、各レーザの発振波長を少しづ
つずらすことによって、光波長多重伝送用の光源として
使用できる。
This integrated light source can arbitrarily control the oscillation wavelength of the laser by adjusting the current injected into the phase control region 102 and the DBR region 103 using the wavelength control circuit 800. Therefore, by slightly shifting the oscillation wavelength of each laser, it can be used as a light source for optical wavelength multiplex transmission.

本集積化光源装置においても、実施例1と同様に、バイ
アス回路500によって活性領域101に電流注入する
ことでレーザ発振が生じ、そのレーザ光を光変調器20
0において、ドライブ回路400からの信号電圧によっ
て強度変調することができる。光変調器において発生す
る光電流をモニタ回路500により測定し、光電流が一
定となるように活性領域101に注入する電流をバイア
ス回路300によって制御することにより、スターカッ
プラ700からの光出力は、周囲温度の変化(0℃〜6
0℃)によらずほぼ一定に保つことができた。
In this integrated light source device, as in the first embodiment, laser oscillation occurs by injecting current into the active region 101 by the bias circuit 500, and the laser light is transmitted to the optical modulator 20.
0, the intensity can be modulated by the signal voltage from the drive circuit 400. By measuring the photocurrent generated in the optical modulator with the monitor circuit 500 and controlling the current injected into the active region 101 with the bias circuit 300 so that the photocurrent is constant, the optical output from the star coupler 700 is Changes in ambient temperature (0℃~6
It was possible to keep the temperature almost constant regardless of the temperature (0°C).

〔発明の効果〕〔Effect of the invention〕

本発明による集積化光源装置では、APC動作のための
光源の裏面からの光出力モニタを必要としないなめ、光
源の後方端面に高反射コーテイング膜を形成することに
より高出力動作が容易に実現される利点を有している。
In the integrated light source device according to the present invention, there is no need to monitor the optical output from the back side of the light source for APC operation, and high-output operation can be easily achieved by forming a high-reflection coating film on the rear end face of the light source. It has the advantage of

また、実施例2で示した様なアレイデバイスでは、それ
ぞれのチャンネル毎に従来の様な出力モニタ用のPIN
フォトダイオードを備えつけることは実装上不可能であ
る。本発明はこれらの問題点をも容易に解決するもので
ある。
In addition, in the array device shown in Example 2, each channel has a PIN for output monitoring as in the past.
It is impossible to install a photodiode in terms of implementation. The present invention also easily solves these problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図は本発明の第1.第2の実施例である集
積化光源装置の構成図である。 第2図は実施例1の集積化光源の低出力動作を示した図
である。図において、1はp−InP基板、2は回折格
子、3はn−InGaAsPガイド層、4はMQW活性
層、5はInGaAsPキャップ層、8.9は電極、1
0は無反射コーテイング膜、11は高反射コーテイング
膜、100はレーザ部、101は活性領域3102は位
相制御領域、103はDBR領域、200は光変調器、
300はバイアス回路、400はドライブ回路、500
は光電流モニタ回路、600はフィードバックループ、
700はスターカップラー、800は波長制御回路であ
る。
FIGS. 1 and 3 show the first embodiment of the present invention. FIG. 2 is a configuration diagram of an integrated light source device according to a second embodiment. FIG. 2 is a diagram showing low output operation of the integrated light source of Example 1. In the figure, 1 is a p-InP substrate, 2 is a diffraction grating, 3 is an n-InGaAsP guide layer, 4 is an MQW active layer, 5 is an InGaAsP cap layer, 8.9 is an electrode, 1
0 is a non-reflection coating film, 11 is a high reflection coating film, 100 is a laser section, 101 is an active region 3102 is a phase control region, 103 is a DBR region, 200 is an optical modulator,
300 is a bias circuit, 400 is a drive circuit, 500
is a photocurrent monitor circuit, 600 is a feedback loop,
700 is a star coupler, and 800 is a wavelength control circuit.

Claims (1)

【特許請求の範囲】[Claims]  半導体レーザと電界吸収型光変調器とが1つの半導体
基板に集積化された集積化光源と、前記半導体レーザに
レーザ発振のための直流電源を注入する電気回路と、前
記変調器に光の強度変調を行うための信号電圧を加える
電気回路と、前記光変調器において光の吸収によって生
じる光電流の平均値を測定し、この光電流が常に一定と
なるように前記半導体レーザに注入する直流電流を制御
する機能とを備えたことを特徴とする集積化光源装置。
an integrated light source in which a semiconductor laser and an electro-absorption optical modulator are integrated on one semiconductor substrate; an electric circuit for injecting DC power into the semiconductor laser for laser oscillation; An electric circuit that applies a signal voltage for modulation, and a DC current that measures the average value of photocurrent generated by absorption of light in the optical modulator and injects it into the semiconductor laser so that this photocurrent is always constant. An integrated light source device characterized by having a function of controlling.
JP2286138A 1990-10-24 1990-10-24 Integrated light source device Expired - Fee Related JP2616206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2286138A JP2616206B2 (en) 1990-10-24 1990-10-24 Integrated light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2286138A JP2616206B2 (en) 1990-10-24 1990-10-24 Integrated light source device

Publications (2)

Publication Number Publication Date
JPH04162481A true JPH04162481A (en) 1992-06-05
JP2616206B2 JP2616206B2 (en) 1997-06-04

Family

ID=17700429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2286138A Expired - Fee Related JP2616206B2 (en) 1990-10-24 1990-10-24 Integrated light source device

Country Status (1)

Country Link
JP (1) JP2616206B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174223A (en) * 2001-09-28 2003-06-20 Furukawa Electric Co Ltd:The Semiconductor laser device, semiconductor laser module, and semiconductor laser control method
JP2008018190A (en) * 2006-07-14 2008-01-31 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
WO2008126276A1 (en) * 2007-03-30 2008-10-23 Fujitsu Limited Light transmitting apparatus and method for controlling the same
WO2009008073A1 (en) * 2007-07-11 2009-01-15 Fujitsu Limited Optical signal generator and optical signal generating method
JP2016180779A (en) * 2015-03-23 2016-10-13 日本電信電話株式会社 Optical circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174223A (en) * 2001-09-28 2003-06-20 Furukawa Electric Co Ltd:The Semiconductor laser device, semiconductor laser module, and semiconductor laser control method
JP2008018190A (en) * 2006-07-14 2008-01-31 Ge Medical Systems Global Technology Co Llc Magnetic resonance imaging apparatus
WO2008126276A1 (en) * 2007-03-30 2008-10-23 Fujitsu Limited Light transmitting apparatus and method for controlling the same
JP5029689B2 (en) * 2007-03-30 2012-09-19 富士通株式会社 Optical transmitter and control method thereof
WO2009008073A1 (en) * 2007-07-11 2009-01-15 Fujitsu Limited Optical signal generator and optical signal generating method
JP2016180779A (en) * 2015-03-23 2016-10-13 日本電信電話株式会社 Optical circuit

Also Published As

Publication number Publication date
JP2616206B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP4934344B2 (en) Semiconductor optical integrated device and semiconductor optical integrated device
US6516017B1 (en) Multiwavelength semiconductor laser device with single modulator and drive method therefor
US5784183A (en) Semiconductor optical device and method for fabricating the same
JP5823920B2 (en) Semiconductor optical integrated device
Takeuchi et al. Very high-speed light-source module up to 40 Gb/s containing an MQW electroabsorption modulator integrated with a DFB laser
US4743087A (en) Optical external modulation semiconductor element
JP2001320124A (en) Modulator integrated light source and module for optical communication
JP4421951B2 (en) Optical transmission module
JP2907185B2 (en) Drive device for optical modulator, drive device for modulator-integrated light source, optical communication module and optical communication system having the same
Oshiba et al. Low-drive-voltage MQW electroabsorption modulator for optical short-pulse generation
JP2008503094A (en) Electroabsorption modulated Fabry-Perot laser and method of manufacturing the same
JPH0732279B2 (en) Semiconductor light emitting element
US7065300B1 (en) Optical transmitter including a linear semiconductor optical amplifier
JP2891741B2 (en) Semiconductor integrated light source
JP2616206B2 (en) Integrated light source device
Luo et al. 2.5 Gb/s electroabsorption modulator integrated with partially gain-coupled distributed feedback laser fabricated using a very simple device structure
US5999298A (en) Electroabsorption optical intesity modulator having a plurality of absorption edge wavelengths
US5321253A (en) Method of and means for controlling the electromagnetic output power of electro-optic semiconductor devices
Dummer et al. 40 Gb/s field-modulated wavelength converters for all-optical packet switching
JP2001013472A (en) Optical semiconductor element and optical communication equipment
JP2001290114A (en) Optical transmission module
JPS63186210A (en) Semiconductor integrated optical modulator
Hutchinson et al. Monolithically integrated InP-based tunable wavelength conversion
JP3051499B2 (en) Semiconductor light emitting device
JP2890644B2 (en) Manufacturing method of integrated optical modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees