JPH04179004A - Oxide superconducting tape conductor - Google Patents
Oxide superconducting tape conductorInfo
- Publication number
- JPH04179004A JPH04179004A JP2304944A JP30494490A JPH04179004A JP H04179004 A JPH04179004 A JP H04179004A JP 2304944 A JP2304944 A JP 2304944A JP 30494490 A JP30494490 A JP 30494490A JP H04179004 A JPH04179004 A JP H04179004A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- oxide
- base material
- metal layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Physical Vapour Deposition (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、電カケープル、超電導マグネット、超電導
電力貯蔵、変圧器、超電導発電機等で用いる電力応用超
電導導体として酸化物超電導体を利用するために、テー
プ状の基材上に酸化物超電導薄膜を形成したものである
。[Detailed Description of the Invention] "Industrial Application Field" This invention is for the use of oxide superconductors as power application superconducting conductors used in power cables, superconducting magnets, superconducting power storage, transformers, superconducting generators, etc. In this method, an oxide superconducting thin film is formed on a tape-shaped base material.
「従来の技術」
西暦1987年に発見された90に級の酸化物超電導体
は、液体窒素温度(77K)を上回る超電導遷移温度を
持つことから、電力およびエレクトロニクスへの広範囲
な応用が期待されている。"Prior Art" The 90-grade oxide superconductor discovered in 1987 has a superconducting transition temperature that exceeds the temperature of liquid nitrogen (77K), and is expected to have a wide range of applications in electric power and electronics. There is.
ところがこの種の酸化物超電導体は、コヒーレンス長さ
が短いことから、多結晶粒界や不純物が障害となり易い
とともに、結晶の特定の方向に電流を流し易く、特定の
方向に流しにくい電気的異方性が大きいことから、電力
応用などの面で実用的な電流密度を得るためには、でき
る限り結晶粒界を少なくするとともに、緻密で高い結晶
配向性を存する状態の酸化物超電導導体を製造する必要
がある。However, because this type of oxide superconductor has a short coherence length, polycrystalline grain boundaries and impurities are likely to cause obstacles, and it is easy for current to flow in a specific direction of the crystal, while electrical current is difficult to flow in a specific direction. Due to its large crystal orientation, in order to obtain a practical current density for power applications, etc., it is necessary to reduce the number of grain boundaries as much as possible and manufacture oxide superconducting conductors with dense and highly crystalline orientation. There is a need to.
そこで従来、粉末を混合して焼結することで酸化物超電
導体を得る方法とは異なり、焼結過程を経ることなく酸
化物超電導体を作製することができるiiJ膜プロセス
が有力な酸化物超電導導体の製造方法として注目されて
いる。Therefore, unlike the conventional method of obtaining oxide superconductors by mixing powder and sintering, the iiJ film process, which can produce oxide superconductors without going through the sintering process, is a promising method for oxide superconductors. It is attracting attention as a method for manufacturing conductors.
この種の成膜プロセスとして、従来、真空蒸着法、スパ
ッタリング法、レーザ蒸着法、MBE法(分子線エビタ
キシー法)、CVD法(化学気相蒸着法)、IVD法(
イオン気相成長法)などが知られているが、これらの成
膜プロセスにおいて重要なことは、得られた酸化物超電
導薄膜の結晶の配向性が十分に整っていることである。Conventionally, this type of film formation process includes vacuum evaporation, sputtering, laser evaporation, MBE (molecular beam epitaxy), CVD (chemical vapor deposition), and IVD (
The important thing in these film-forming processes is that the crystal orientation of the obtained oxide superconducting thin film is well-organized.
前記結晶の配向性を考慮して成膜プロセスを実施する場
合、酸化物超電導薄膜の結晶構造に類似した結晶構造の
単結晶からなる基板を用い、熱処理温度などの成膜条件
を適切に設定し、基板上で理想的なエピタキシャル成長
を行わせて酸化物超電導薄膜を製造することが行なわれ
ている。When carrying out a film formation process taking into account the crystal orientation, a substrate made of a single crystal with a crystal structure similar to that of an oxide superconducting thin film is used, and film formation conditions such as heat treatment temperature are appropriately set. 2. Description of the Related Art In recent years, oxide superconducting thin films have been manufactured by performing ideal epitaxial growth on a substrate.
「発明が解決しようとする課題」
ところで、酸化物超電導薄膜を送電線用あるいは超電導
マグネット用などの電力応用面で利用しようとした場合
、酸化物超電導薄膜を長尺の可撓性の基材上に形成する
必要がある。しかもこの可撓性の基材は、熱処理に耐え
得るような耐熱性のものであることか必要であり、前述
のように酸化物超電導薄膜の結晶と類似構造のものであ
ることが有利である。``Problems to be Solved by the Invention'' By the way, when trying to use an oxide superconducting thin film for power applications such as power transmission lines or superconducting magnets, it is difficult to use the oxide superconducting thin film on a long flexible substrate. It is necessary to form the Moreover, this flexible base material needs to be heat resistant so that it can withstand heat treatment, and as mentioned above, it is advantageous to have a structure similar to the crystal of the oxide superconducting thin film. .
ところが、長尺の耐熱性の基材として使用できるものは
、現在のところ、ハステロイなどの耐熱金属製のテープ
材か有力であるが、この種の耐へ金属は結晶構造の面で
酸化物超電導薄膜の結晶とは整合性が悪く、しかも、成
膜時の熱処理時において、酸化物超電導薄膜との間に相
互拡散反応を生しさせてしまい、酸化物超電導薄膜の組
成が崩れる結果、その超電導特性を劣化させてしまう問
題かあった。However, at present, tape materials made of heat-resistant metals such as Hastelloy are likely to be used as long heat-resistant base materials; It has poor consistency with the crystals of the thin film, and moreover, during the heat treatment during film formation, a mutual diffusion reaction occurs between the oxide superconducting thin film and the composition of the oxide superconducting thin film, which destroys its superconductivity. There was a problem that the characteristics deteriorated.
本発明は府記課題を解決するためになされたもので、酸
化物超電導薄膜との間の結晶整合性が十分ではない長尺
の金属製の基材の外方に、優れた超電導特性を示す酸化
物超電導薄膜を備えさせることかできる酸化物超電導テ
ープ導体を提供することを目的とする。The present invention has been made to solve the above problems, and exhibits excellent superconducting properties on the outside of a long metal base material that does not have sufficient crystal consistency with an oxide superconducting thin film. An object of the present invention is to provide an oxide superconducting tape conductor that can be provided with an oxide superconducting thin film.
「課題を解決するための手段」
本発明は、前述の課題を解決するために、耐熱金属製の
可撓性のテープ状の基材と、この基材上に形成されたP
t、Auなどからなる賃金yAMと、この貴金属層上に
500℃以下の成膜温度で厚さ1.5 μtrr以下l
以下酸されたS rT jo s、Mgoなどの絶縁酸
化物層と、この絶縁酸化物層上に成膜された酸化物超電
導′FI膜とからなるものである。"Means for Solving the Problems" In order to solve the above-mentioned problems, the present invention provides a flexible tape-shaped base material made of heat-resistant metal, and a tape-like base material formed on this base material.
t, Au, etc., and a thickness of 1.5 μtrr or less on this noble metal layer at a film formation temperature of 500°C or less.
It consists of an insulating oxide layer such as S rT jo s or Mgo which has been acidified, and an oxide superconducting 'FI' film formed on this insulating oxide layer.
「作用j
iltl全熱製のテープ状の基材上に形成された貴金属
層と絶縁酸化物層が、基材と酸化物超電導薄膜との拡散
反応を抑制する。また、貴金属層の存在により絶縁酸化
物層と基材との密着性が向上する。更に、酸化物超電導
薄膜の結晶と整合性の良好な絶縁酸化物層上に、酸化物
超電導4膜が形成されるので、酸化物超電導薄膜の結晶
の整合性も良好になり、超電導特性の優秀な酸化物超電
導導体が絶縁酸化物層上に形成される。The noble metal layer and insulating oxide layer formed on the fully heated tape-shaped base material suppress the diffusion reaction between the base material and the oxide superconducting thin film. The adhesion between the oxide layer and the base material is improved.Furthermore, since the oxide superconductor 4 film is formed on the insulating oxide layer that has good consistency with the crystals of the oxide superconductor thin film, the oxide superconductor thin film The crystal integrity of the oxide becomes good, and an oxide superconducting conductor with excellent superconducting properties is formed on the insulating oxide layer.
「実施例」
第1図は本発明の酸化物超電導導体の一実施例を示すも
ので、この酸化物超電導テープ導体lは、耐熱金属製の
長尺のテープ状の基材2と、この基材2の上面に被覆さ
れた貴金属層3と、この貴金属層3の上面に被覆された
絶縁酸化物層4と、この絶縁酸化物層4の上面に被覆さ
れた酸化物超電導薄膜5とから構成されている。なお、
図面では省略されているが、必要に応して酸化物超電導
薄膜5の上にコーティング処理を行って被覆層を形成し
、酸化物超電導薄膜5の経時的あるいは環境的な超電導
特性劣化現象を阻止するようにしても良い。"Example" Figure 1 shows an example of the oxide superconducting conductor of the present invention. It is composed of a noble metal layer 3 coated on the upper surface of the material 2, an insulating oxide layer 4 coated on the upper surface of this noble metal layer 3, and an oxide superconducting thin film 5 coated on the upper surface of this insulating oxide layer 4. has been done. In addition,
Although not shown in the drawings, if necessary, a coating treatment is performed on the oxide superconducting thin film 5 to form a coating layer to prevent deterioration of the superconducting properties of the oxide superconducting thin film 5 over time or due to the environment. You may also do this.
前記基材2を構成する材料としては、耐熱性と耐酸化性
に優れたハステロイなどの耐熱合金が好ましい。これは
、後に説明する如く酸化性超電導薄膜を製造する場合、
600〜850’C程度で好ましくは酸素ガス雰囲気中
で熱処理することから、この熱処理後においても基材2
の強度が低下しないようにするためである。また、基材
2の厚さは、0.5mm以下が好ましい。基材2の厚さ
を0,5■以下にすることで、基材の可撓性を確保し、
酸化物超電導導体Iを撓曲させた場合に酸化物超電導1
1i5に作用する歪を少なくすることができるが、0.
5+mより厚く形成すると、基材2の可撓性が損なわれ
るとともに、曲げに伴う歪が増大するので好ましくない
。The material constituting the base material 2 is preferably a heat-resistant alloy such as Hastelloy, which has excellent heat resistance and oxidation resistance. As will be explained later, when producing an oxidizing superconducting thin film,
Since the heat treatment is performed at about 600 to 850'C, preferably in an oxygen gas atmosphere, even after this heat treatment, the base material 2
This is to prevent the strength from decreasing. Moreover, the thickness of the base material 2 is preferably 0.5 mm or less. By making the thickness of the base material 2 0.5 mm or less, flexibility of the base material is ensured,
When oxide superconductor conductor I is bent, oxide superconductor 1
Although the distortion acting on 1i5 can be reduced, 0.
If it is thicker than 5+m, the flexibility of the base material 2 will be impaired and the strain caused by bending will increase, which is not preferable.
貴金属層3は、Pt、Auなどの貴金属あるいは貴金属
の合金からなり、スパッタリング、CVD法、レーザ蒸
着法などの成膜法によって基材2の上面に被覆されたも
のである。この貴金属層3は、後述する熱処理時に基材
2と酸化物超電導薄膜5との拡散反応を抑制するために
設けられるもので、更に、基材2と絶縁酸化物層4の密
着性を考慮して被覆される。前記拡散反応の抑制効果と
密着性の向上効果を考慮すると、貴金属R3の厚さは、
0.1〜0.5μlの範囲が好ましい。また、貴命14
83が、0.1μmより薄いようであると拡散反応の抑
制効果が不十分であり、0.5μmより厚い場合は絶縁
酸化物s4の密着性の面で問題を生じるおそれがある。The noble metal layer 3 is made of a noble metal such as Pt or Au or an alloy of noble metals, and is coated on the upper surface of the base material 2 by a film forming method such as sputtering, CVD, or laser vapor deposition. This noble metal layer 3 is provided in order to suppress the diffusion reaction between the base material 2 and the oxide superconducting thin film 5 during heat treatment, which will be described later. coated with Considering the effect of suppressing the diffusion reaction and the effect of improving adhesion, the thickness of the noble metal R3 is as follows:
A range of 0.1 to 0.5 μl is preferred. Also, Takamei 14
If 83 is thinner than 0.1 μm, the effect of suppressing the diffusion reaction will be insufficient, and if it is thicker than 0.5 μm, there may be a problem with the adhesion of the insulating oxide s4.
絶縁酸化物層4は、スパッタリング法、CVD法、レー
ザ蒸着法などの成膜法で製造されたもので、5rTiO
s、MgO、イツトリア安定化ジルコニア(YSZ)な
どの絶縁酸化物からなる薄膜であり、基材1と酸化物超
電導薄膜5との拡散反応をD制するためと、剥離を防止
する目的で形成される。前記拡散反応の抑制と剥離現象
の防止のためには、絶縁酸化物層4を成膜する際に、5
00℃以下の基材処理温度で15μm以下の厚さに成膜
することが重要である。50Q℃を越える温度で形成す
ると、基材との相互拡散反応のために好ましくなく、1
.5μ藺を越える厚さIこ形成すると、クラックの生成
のために好ましくない。The insulating oxide layer 4 is manufactured by a film forming method such as a sputtering method, a CVD method, or a laser evaporation method, and is made of 5rTiO.
It is a thin film made of an insulating oxide such as S, MgO, or yttria-stabilized zirconia (YSZ), and is formed for the purpose of controlling the diffusion reaction between the base material 1 and the oxide superconducting thin film 5 and for preventing peeling. Ru. In order to suppress the diffusion reaction and prevent the peeling phenomenon, when forming the insulating oxide layer 4,
It is important to form the film to a thickness of 15 μm or less at a substrate processing temperature of 00° C. or less. Forming at a temperature exceeding 50Q°C is unfavorable due to interdiffusion reaction with the base material, and 1
.. Formation of a thickness exceeding 5 μm is undesirable due to the formation of cracks.
酸化物超電導薄膜5はスパッタリング法、CVD法、レ
ーザ蒸着法などの成膜法で形成されたものであり、具体
的には、Y −B a−Cu−,0系、Bi−P b−
5r−Ca−Cu−0系、T IB a−Ca−Cu−
0系のものなどであり、数μm−数lOμm程度の厚さ
に形成されている。The oxide superconducting thin film 5 is formed by a film forming method such as a sputtering method, a CVD method, or a laser evaporation method.
5r-Ca-Cu-0 system, T IB a-Ca-Cu-
0 series, etc., and is formed to have a thickness of several micrometers to several 10 micrometers.
以下に前記酸化物超電導テープ導体1の製造方法につい
て説明する。The method for manufacturing the oxide superconducting tape conductor 1 will be described below.
テープ状の基材2を用意したならば、この基材2の表面
にスパッタリング法あるいは真空蒸着法などの成膜法に
よって貴金属層3を形成する。なお、長尺の基材2の上
面全部に貴金属層3を形成するには、基材2をローラ状
の送出装置に巻き付けておき、この送出装置から巻取装
置に巻き取る過程において成膜装置の成膜室を通過させ
、成膜室内で長平方向に順次成膜してゆくことで基材2
の全長に貴金属層3を形成することができる。Once a tape-shaped base material 2 is prepared, a noble metal layer 3 is formed on the surface of this base material 2 by a film forming method such as a sputtering method or a vacuum evaporation method. Note that in order to form the noble metal layer 3 on the entire upper surface of the long base material 2, the base material 2 is wound around a roller-shaped delivery device, and during the process of winding it up from this delivery device to a winding device, the film forming device The base material 2
The noble metal layer 3 can be formed over the entire length of the substrate.
貴金属層3を形成したならば、貴金属層3を形成した基
材2を再び成膜装置にセットして前記と同様の方法で貴
金属層3の上面に絶縁酸化物層4を形成する。Once the noble metal layer 3 has been formed, the base material 2 on which the noble metal layer 3 has been formed is set in the film forming apparatus again, and the insulating oxide layer 4 is formed on the upper surface of the noble metal layer 3 in the same manner as described above.
絶縁酸化物層4を形成したならば、貴金属層3と絶縁酸
化物層4を形成した基材2を更に成膜装置にセットして
絶縁酸化物R4の上面に酸化物超電導薄膜の前駆体N膜
を形成する。この前駆体薄膜を形成する場合、成膜室に
おいて成膜したままの状態の薄膜は、結晶化されてはい
るものの超電導体ではない場合、あるいは、非晶質状惑
の場合があるので、この場合には熱処理を施す。熱処理
は成膜と同時に成膜室において行っても良いし、成膜後
に別途に加熱炉において行っても良い。この熱処理を行
う場合、Y −B a−Cu−0系とTI−Ba−Ca
−Cu−0系などのものにあっては、酸素ガス雰囲気中
で熱処理することが好ましい。更に、熱処理温度は60
0〜850℃で数分〜数十時間か好ましい。Once the insulating oxide layer 4 has been formed, the base material 2 on which the noble metal layer 3 and the insulating oxide layer 4 have been formed is further set in a film forming apparatus, and a precursor N of an oxide superconducting thin film is deposited on the upper surface of the insulating oxide R4. Forms a film. When forming this precursor thin film, the thin film as formed in the film forming chamber may be crystallized but not a superconductor, or it may be amorphous. If necessary, heat treatment is applied. The heat treatment may be performed in a film formation chamber simultaneously with film formation, or may be performed separately in a heating furnace after film formation. When performing this heat treatment, Y-Ba-Cu-0 system and TI-Ba-Ca
-Cu-0 type materials are preferably heat-treated in an oxygen gas atmosphere. Furthermore, the heat treatment temperature was 60
Preferably, the temperature is 0 to 850°C for several minutes to several tens of hours.
前記のように絶縁酸化物54上に前駆体薄膜を成膜する
場合、酸化物超電導薄膜5の結晶が、絶縁酸化物層4の
結晶と整合性良好であるので、絶縁酸化物層4上には前
駆体薄膜が良好な整合性でもって成膜される。従ってこ
のような整合性の良好な前駆体薄膜を熱処理することで
結晶整合性の良好な酸化物層[導N膜5が生成する。When forming a precursor thin film on the insulating oxide layer 54 as described above, the crystals of the oxide superconducting thin film 5 have good consistency with the crystals of the insulating oxide layer 4, so that the precursor thin film is formed on the insulating oxide layer 4. The precursor thin film is deposited with good consistency. Therefore, by heat-treating such a precursor thin film with good crystal consistency, an oxide layer [N-conducting film 5] with good crystal consistency is generated.
ここで前記のように熱処理する場合において、基材2と
酸化物超電導薄膜5の熱拡散反応が問題となる。In the case of heat treatment as described above, the thermal diffusion reaction between the base material 2 and the oxide superconducting thin film 5 becomes a problem.
この点において、本発明の構造では、基材2と酸化物超
電導薄膜5の間に、貴金属層3と絶縁酸化物層4が設け
られており、貴金属層3か高融点であって熱処理温度に
おける基材2と貴金属層3の相互拡散反応が少なく、絶
縁酸化物層4と貴金属層3との間の相互拡散反応も少な
いとともに、絶縁酸化物層4は更に融点が高いので酸化
物超電導薄膜5に元素拡散による悪影響を与えない。従
って熱処理後に結品配同性の良好な酸化物超電導薄膜5
が得られる。In this respect, in the structure of the present invention, a noble metal layer 3 and an insulating oxide layer 4 are provided between the base material 2 and the oxide superconducting thin film 5, and the noble metal layer 3 has a high melting point and is at a heat treatment temperature. The interdiffusion reaction between the base material 2 and the noble metal layer 3 is small, the interdiffusion reaction between the insulating oxide layer 4 and the noble metal layer 3 is also small, and the insulating oxide layer 4 has a higher melting point, so the oxide superconducting thin film 5 No adverse effects due to elemental diffusion. Therefore, the oxide superconducting thin film 5 has good bonding properties after heat treatment.
is obtained.
以上のように製造された酸化物超電導テープ導体1は、
液体ヱ素などの冷媒で冷却することで酸化物超電導薄膜
5の電気抵抗が0になるので、電力輸送用として使用す
ることができる。The oxide superconducting tape conductor 1 manufactured as described above is
Since the electrical resistance of the oxide superconducting thin film 5 becomes zero by cooling it with a coolant such as liquid hydrogen, it can be used for power transportation.
前記構成の酸化物超電導テープ導体lは、耐熱金属製の
基材2を使用しているので、熱処理後であっても高い強
度を維持している。また、基材2は厚さ0.5+em以
下のテープ状であるので可撓性に優れ、曲げ応力が作用
した場合であっても酸化物超電導薄膜5に作用する歪は
少ない。Since the oxide superconducting tape conductor 1 having the above structure uses the base material 2 made of heat-resistant metal, it maintains high strength even after heat treatment. Further, since the base material 2 is in the form of a tape with a thickness of 0.5+em or less, it has excellent flexibility, and even when bending stress is applied, the strain acting on the oxide superconducting thin film 5 is small.
「製造例」
Ni合金(ハステロイC276)製の幅5 l11m、
厚さ0 、5 amのテープ状の基材と、ptのターゲ
ットとS rT io sのターゲットとY −B a
−Cu−0系のターゲットを用意し、それぞれのターゲ
ットを用い、順次基打上に高周波スパッタ装置によって
貴金属層と絶縁酸化物層と酸化物超電導N膜の前駆体薄
膜を形成した。"Manufacturing example" Width 5 l11m made of Ni alloy (Hastelloy C276),
A tape-shaped base material with a thickness of 0.5 am, a PT target, a SrTios target, and a Y-B a
-Cu-0 series targets were prepared, and precursor thin films of a noble metal layer, an insulating oxide layer, and an oxide superconducting N film were sequentially formed on the substrate using a high-frequency sputtering device using each target.
貴金属層と絶縁酸化物層を形成するスパッタ装置では、
ホルダにターゲットを装着するとともに、酸化物超電導
薄膜を形成するスパッタ装置では、基材を真空容器内の
送出装置と巻取装置にセットし、真空容器内を真空引き
するとともに、送出装置から巻取装置に基材を送り出し
つつスパッタリングを行って成膜した。In the sputtering equipment that forms the noble metal layer and the insulating oxide layer,
In a sputtering device that forms an oxide superconducting thin film while attaching a target to a holder, the substrate is set in a delivery device and a winding device inside a vacuum container, the inside of the vacuum container is evacuated, and the material is taken up from the delivery device. The film was formed by sputtering while feeding the base material into the apparatus.
前述の操作により碁打上に、厚さ0.2μ閾の貴金属層
と、厚さ0.5μ囚の絶縁酸化物層と、厚さ3μlの前
駆体薄膜を順次形成した。スパッタ装置の成H室の内部
には、ロール状の送出装置と巻取装置を設け、送出装置
から出された基材がターゲットの近傍を連通した後に巻
取装置に巻き取られるようにした。A noble metal layer with a thickness of 0.2μ, an insulating oxide layer with a thickness of 0.5μ, and a precursor thin film with a thickness of 3μl were sequentially formed on the Go board by the above-described operations. A roll-shaped delivery device and a winding device were installed inside the formation chamber of the sputtering device, so that the base material discharged from the delivery device communicated with the vicinity of the target and then wound up by the winding device.
この際、スパッタリング装置の真空容器の圧力はtX+
O′□’Pa、100%アルゴンガス雰囲気に設定した
。更に、前駆体薄膜の形成とともに、基材において前駆
体N膜の形成部分を加熱ヒータによって700℃に加熱
しながら成膜した。At this time, the pressure in the vacuum chamber of the sputtering device is tX+
The atmosphere was set to O'□'Pa and 100% argon gas. Further, while forming the precursor thin film, the portion of the base material where the precursor N film was to be formed was heated to 700° C. using a heater.
得られた酸化物超電導テープ導体の超電導特性を基材の
長さ方向の複数の箇所で測定したところ、いずれの部分
においてもTc=85に、77Kにおける臨界電流密度
J c= 5000 A/am’を示しん。この酸化物
超電導薄膜は、C軸配向しているが、多結晶体であった
。また、得られた酸化物超電導テープ導体を湾曲させて
みたが、酸化物超電導薄膜の部分に剥離部分を生じるこ
とはなかった。When the superconducting properties of the obtained oxide superconducting tape conductor were measured at multiple locations along the length of the base material, Tc = 85 at all locations, and critical current density Jc = 5000 A/am' at 77K. Do not show. This oxide superconducting thin film had C-axis orientation, but was polycrystalline. Furthermore, when the obtained oxide superconducting tape conductor was bent, no peeling occurred in the oxide superconducting thin film.
「発明の効果」
以上説明したように本発明は、基材上に貴金属層と絶縁
酸化物層と酸化物超電導薄膜を順次形成したので、熱処
理を行って酸化物超電導薄膜を得た場合であっても基材
と酸化物超電導薄膜との間に相互を散反応が生じない。"Effects of the Invention" As explained above, the present invention sequentially forms a noble metal layer, an insulating oxide layer, and an oxide superconducting thin film on a base material. No dispersion reaction occurs between the base material and the oxide superconducting thin film even if the substrate and the oxide superconducting thin film are mixed.
従って熱処理後であっても組成の変動がない酸化物層1
[導N膜を備えた臨界電流密度の高い酸化物超電導テー
プ導体を得ることができる。また、基材を耐熱金属から
構成したため、熱処理後であっても基材の強度が低下す
ることはない。更に、絶縁酸化物層を形成する前に基材
に貴金属層を形成するたゎに、基材に対して貴金属層が
良好な密着性で接合し、貴金属層に絶縁酸化物層が良好
な密着性で接合するので、基材を曲げた場合であっても
、曲げによる剥離に強い酸化物超電導テープ導体を提供
することができる。更にまた、絶縁酸化物層上に超電導
NIIIを形成するので、結晶の整合性に優れた酸化物
超電導NMが生成し、超電導特性の優れた酸化物超電導
テープ導体を得ることができる。Therefore, the oxide layer 1 does not change its composition even after heat treatment.
[An oxide superconducting tape conductor having a high critical current density and having a N-conducting film can be obtained. Furthermore, since the base material is made of a heat-resistant metal, the strength of the base material does not decrease even after heat treatment. Furthermore, since the noble metal layer is formed on the base material before forming the insulating oxide layer, the noble metal layer is bonded to the base material with good adhesion, and the insulating oxide layer is bonded to the noble metal layer with good adhesion. Since the oxide superconducting tape conductor is bonded with elasticity, even when the base material is bent, it is possible to provide an oxide superconducting tape conductor that is resistant to peeling due to bending. Furthermore, since superconducting NIII is formed on the insulating oxide layer, oxide superconducting NM with excellent crystal consistency is produced, and an oxide superconducting tape conductor with excellent superconducting properties can be obtained.
第1図は本発明の一実施例を示す断面図である。
1・・・酸化物超電導テープ導体、2・・・基材、3・
・貴金属層、4・・絶縁酸化物層、5・・酸化物超電導
薄膜。FIG. 1 is a sectional view showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Oxide superconducting tape conductor, 2... Base material, 3...
- Noble metal layer, 4... Insulating oxide layer, 5... Oxide superconducting thin film.
Claims (1)
に形成されたPt、Auなどからなる貴金属層と、この
貴金属層上に500℃以下の成膜温度で厚さ1.5μm
以下に形成されたSrTiO_3、MgOなどの絶縁酸
化物層と、この絶縁酸化物層上に成膜された酸化物超電
導薄膜とからなることを特徴とする酸化物超電導テープ
導体。A flexible tape-shaped base material made of a heat-resistant metal, a noble metal layer made of Pt, Au, etc. formed on the base material, and a film formed on the noble metal layer to a thickness of 1.5 mm at a film formation temperature of 500° C. or less. 5μm
An oxide superconducting tape conductor characterized by comprising an insulating oxide layer such as SrTiO_3 or MgO formed as follows, and an oxide superconducting thin film formed on this insulating oxide layer.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2304944A JP3061634B2 (en) | 1990-11-09 | 1990-11-09 | Oxide superconducting tape conductor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2304944A JP3061634B2 (en) | 1990-11-09 | 1990-11-09 | Oxide superconducting tape conductor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH04179004A true JPH04179004A (en) | 1992-06-25 |
| JP3061634B2 JP3061634B2 (en) | 2000-07-10 |
Family
ID=17939199
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2304944A Expired - Lifetime JP3061634B2 (en) | 1990-11-09 | 1990-11-09 | Oxide superconducting tape conductor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3061634B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007179804A (en) * | 2005-12-27 | 2007-07-12 | Fujikura Ltd | Oxide superconducting conductor and manufacturing method thereof |
| JP2008251564A (en) * | 2007-03-29 | 2008-10-16 | Kyushu Univ | High temperature superconducting current leads and methods for increasing critical current density |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3530114B2 (en) * | 2000-07-11 | 2004-05-24 | 忠弘 大見 | Single crystal cutting method |
-
1990
- 1990-11-09 JP JP2304944A patent/JP3061634B2/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007179804A (en) * | 2005-12-27 | 2007-07-12 | Fujikura Ltd | Oxide superconducting conductor and manufacturing method thereof |
| JP2008251564A (en) * | 2007-03-29 | 2008-10-16 | Kyushu Univ | High temperature superconducting current leads and methods for increasing critical current density |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3061634B2 (en) | 2000-07-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3587956B2 (en) | Oxide superconducting wire and its manufacturing method | |
| US4994435A (en) | Laminated layers of a substrate, noble metal, and interlayer underneath an oxide superconductor | |
| JP5806302B2 (en) | Multifilament superconductor with reduced AC loss and its formation method | |
| US6156376A (en) | Buffer layers on metal surfaces having biaxial texture as superconductor substrates | |
| JP4713012B2 (en) | Tape-shaped oxide superconductor | |
| US8142881B2 (en) | Mesh-type stabilizer for filamentary coated superconductors | |
| JPH07335051A (en) | Oxide superconductive tape with stabilizing layer and manufacture thereof | |
| JP5513154B2 (en) | Oxide superconducting wire and manufacturing method of oxide superconducting wire | |
| WO2007080876A1 (en) | Rare earth-containing tape-shaped oxide superconductor | |
| US6596421B2 (en) | Elongated superconductor structure with a high-Tc superconductor material and a metallic mount, and method for producing the structure | |
| US6998028B1 (en) | Methods for forming superconducting conductors | |
| JP5624839B2 (en) | Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same | |
| JP3061634B2 (en) | Oxide superconducting tape conductor | |
| JP3403465B2 (en) | Method for producing oxide superconducting tape having stabilizing layer | |
| JP5663244B2 (en) | Method for producing enamel-coated superconducting wire | |
| KR100821209B1 (en) | Method for manufacturing high temperature superconducting thick film tape using nickel substrate | |
| JPH01275434A (en) | Manufacturing method of oxide high temperature superconducting film | |
| JP2721322B2 (en) | Oxide superconducting compact | |
| JP2813287B2 (en) | Superconducting wire | |
| JPH0524806A (en) | Oxide superconductor | |
| JP5764421B2 (en) | Oxide superconducting conductor | |
| JPH01221810A (en) | Oxide superconducting molded body and its manufacturing method | |
| JP2532986B2 (en) | Oxide superconducting wire and coil using the same | |
| JPH11329118A (en) | Oxide superconducting composite and manufacturing method thereof | |
| JPH02152110A (en) | Oxide superconducting molded body and its manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080428 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 11 |
|
| EXPY | Cancellation because of completion of term | ||
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 11 |