JPH04172861A - Color image sensor and color picture reading method - Google Patents
Color image sensor and color picture reading methodInfo
- Publication number
- JPH04172861A JPH04172861A JP2301911A JP30191190A JPH04172861A JP H04172861 A JPH04172861 A JP H04172861A JP 2301911 A JP2301911 A JP 2301911A JP 30191190 A JP30191190 A JP 30191190A JP H04172861 A JPH04172861 A JP H04172861A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- components
- image sensor
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 13
- 230000035945 sensitivity Effects 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 230000003595 spectral effect Effects 0.000 claims description 12
- 239000010410 layer Substances 0.000 abstract description 9
- 239000011521 glass Substances 0.000 abstract description 6
- 239000000758 substrate Substances 0.000 abstract description 6
- 239000006059 cover glass Substances 0.000 abstract description 4
- 239000011241 protective layer Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 6
- 238000005286 illumination Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Facsimile Heads (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、カラー画像を読み取るカラーイメージセンサ
−の構造及びカラー画像の読み取り方式%式%
[従来の技術]
従来、カラー画像の読み取りを行うためのカラーイメー
ジセンサは、モノクロ画像読み取り用のイメージセンサ
に透過型カラーフィルタを貼り付けた構成となされてお
り、画像信号光を透過型カラーフィルタを通して受光す
ることにより、例えば赤(R)、緑(G)、青(B)の
3色に分解していた。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the structure of a color image sensor for reading color images and the method for reading color images. [Prior Art] Conventionally, color images are read. The color image sensor for this purpose has a configuration in which a transmissive color filter is attached to an image sensor for reading monochrome images, and by receiving the image signal light through the transmissive color filter, it is possible to detect red (R), green, etc. It was separated into three colors: (G) and blue (B).
[発明が解決しようとする課題]
しかしながら、従来のカラーイメージセンサにおいては
、カラーフィルタをイメージセンサ本体に高精度に貼り
合わせる工程が必要である。そして、カラーフィルタを
貼り合わせる工程は作業者が顕微鏡で観察しながら手作
業で行われているが、そのためにコストの上昇、歩止ま
りの低下を招いていた。このことは画素数の増加が強(
求められている現在においては無視できないものとなっ
ている。[Problems to be Solved by the Invention] However, the conventional color image sensor requires a process of bonding the color filter to the image sensor body with high precision. The process of bonding color filters together is carried out manually by an operator while observing through a microscope, which increases costs and reduces yield. This means that the increase in the number of pixels is strong (
In today's world, it cannot be ignored.
また、従来のカラーイメージセンサにおいては受光素子
の分光感度は分解される各色に対してそれぞれ最高感度
を育するようには構成されておらず、例えばR,G、B
の3色に分解する場合には、−船釣には青色に対する感
度が低く、そのために回路構成あるいは受光素子の構成
上様々な問題があった。Furthermore, in conventional color image sensors, the spectral sensitivity of the light-receiving element is not configured to increase the maximum sensitivity for each color to be separated; for example, R, G, B
When separating the light into the three colors, - boat fishing has low sensitivity to blue, which causes various problems in the circuit configuration or the configuration of the light receiving element.
更に、従来の透過型カラーフィルタは褪色、イメージセ
ンサ本体からの剥がれ等経時変化があり、信頼性の低下
をもたらしていた。Furthermore, conventional transmissive color filters suffer from changes over time such as fading and peeling off from the image sensor body, resulting in a decrease in reliability.
本発明は、上記の課題を解決するものであって、安価で
高感度且つ高信頼性のカラーイメージセンサ及びカラー
画像読み取り方法を提供するこきを目的とするものであ
る。The present invention is intended to solve the above-mentioned problems, and aims to provide a color image sensor and a color image reading method that are inexpensive, highly sensitive, and highly reliable.
[課題を解決するための手段及び作用コ第1図に本発明
のカラーイメージセンサ及びカラー画像読み取り方法の
基本構成を示す。なお、第1図は副走査方向の断面を示
す図であり、副走査方向に沿って3列のセンサを備える
場合の構成例を示すものである。[Means and effects for solving the problems] FIG. 1 shows the basic configuration of a color image sensor and a color image reading method of the present invention. Note that FIG. 1 is a diagram showing a cross section in the sub-scanning direction, and shows a configuration example in which three rows of sensors are provided along the sub-scanning direction.
本発明のカラーイメージセンサは、第1図に示すように
、原稿4により反射された信号光6の経路上であって、
且つ受光素子2a、2b、2cに近接した位置にはそれ
ぞれ波長変換部材3a、3b、3cが設けられる。ここ
で、波長変換部材3a、3b、3cは、それぞれ、信号
光6の特定の波長域に分光感度を有し、これらの各波長
成分をそれぞれ対応する受光素子2a、2b、2cの分
光感度内の波長成分に変換するものであり、蛍光体、2
光子吸収体、非線形光学材料等、ある波長成分を異なる
波長成分に変換できるもので構成される。As shown in FIG. 1, the color image sensor of the present invention is on the path of the signal light 6 reflected by the original 4,
Further, wavelength conversion members 3a, 3b, and 3c are provided at positions close to the light receiving elements 2a, 2b, and 2c, respectively. Here, the wavelength conversion members 3a, 3b, 3c each have a spectral sensitivity in a specific wavelength range of the signal light 6, and each of these wavelength components is converted into a spectral sensitivity within the spectral sensitivity of the corresponding light receiving element 2a, 2b, 2c. It converts into the wavelength component of the phosphor, 2
It consists of something that can convert one wavelength component into a different wavelength component, such as a photon absorber or nonlinear optical material.
いま、例えば、受光素子2g、2b、2cの分光感度が
全て同じで第2図(b)の10で示されるようであり、
波長変換部材3a、3b、3cの量子効率がそれぞれ第
2図(a)の9a、9b、9cで示されるようであると
すると、波長変換部材3aは第2図(a)の98で示さ
れる波長成分を同図(b)の11で示される波長成分に
変換する。当該波長成分11が第2図(b)の10で示
される受光素子2aの分光感度内にあることは明らかで
ある。そして、波長変換部材3aにより波長変換された
信号光7aは受光素子2aに入射され、図示しない引出
し電極から電気信号として出力される。受光素子2b、
2cについても同様である。Now, for example, the spectral sensitivities of the light receiving elements 2g, 2b, and 2c are all the same, as shown by 10 in FIG. 2(b),
Assuming that the quantum efficiencies of the wavelength conversion members 3a, 3b, and 3c are as shown by 9a, 9b, and 9c in FIG. 2(a), respectively, the wavelength conversion member 3a is shown by 98 in FIG. 2(a). The wavelength component is converted into a wavelength component indicated by 11 in FIG. 2(b). It is clear that the wavelength component 11 is within the spectral sensitivity of the light receiving element 2a indicated by 10 in FIG. 2(b). The signal light 7a whose wavelength has been converted by the wavelength conversion member 3a enters the light receiving element 2a, and is output as an electrical signal from an extraction electrode (not shown). light receiving element 2b,
The same applies to 2c.
これによって受光素子2a、2b、2cを最大感度で使
用することができる。なお、使用する波長変換部材の材
料は、得ようとする波長成分及び受光素子の分光感度を
勘案して決定する。This allows the light receiving elements 2a, 2b, and 2c to be used at maximum sensitivity. Note that the material of the wavelength conversion member to be used is determined by taking into consideration the wavelength component to be obtained and the spectral sensitivity of the light receiving element.
なお、近接した位置とは、当該波長変換部材3a、3b
、3cで波長変換された信号光7 m + 7 b +
7 cが育効に受光素子2m、2b、2cに入射可能
な位置を意味し、受光素子2a、2b、2cに密着した
吠態を含むことは勿論、第1図に示すように離れていて
もよく、受光素子2 a 、2 b + 2 cの近傍
をも含むものである。Note that the close position refers to the wavelength conversion members 3a, 3b.
, 3c wavelength-converted signal light 7 m + 7 b +
7c means a position where the light can be incident on the light receiving elements 2m, 2b, 2c, and includes the position where the light is in close contact with the light receiving elements 2a, 2b, 2c, as well as the position where the light is far away as shown in Fig. 1. This also includes the vicinity of the light receiving elements 2a, 2b+2c.
なお、第1図において、1はガラス基板、8は透明体を
示す。In addition, in FIG. 1, 1 indicates a glass substrate, and 8 indicates a transparent body.
上記の説明では各センサ列が副走査方向に並ぶものとし
たが、いわゆるインライン型であってもよいことは当然
である。また、各波長変換部材は同じ波長成分に波長変
換するものとして説明したが、互いに異なる波長成分に
変換するものであってもよいことも当業者に明らかであ
る。In the above description, the sensor rows are arranged in the sub-scanning direction, but it goes without saying that they may be of a so-called in-line type. Further, although each wavelength conversion member has been described as one that converts the wavelength into the same wavelength component, it is also clear to those skilled in the art that it may convert into different wavelength components.
[実施例コ 以下、図面を参照しつつ実施例を説明する。[Example code] Examples will be described below with reference to the drawings.
第3図は本発明に係るカラーイメージセンサ及びカラー
画像読み取り方法を密着型イメージセンサに適用した場
合の一実施例の構成を示す断面図であり、図中、21は
ガラス基板、22は個別電極、23g、23b、23c
は受光素子、24は遮光絶縁層、25a、25b、25
cは透明電極、2 f3 a、26b、28cは共通電
極、27は透明絶縁層、28a、28 b 128 c
は波長変換部材、29は保護層、3oはカバーガラス、
31は原稿、32は照明光、33は信号光を示す。FIG. 3 is a sectional view showing the structure of an embodiment in which the color image sensor and color image reading method according to the present invention are applied to a contact type image sensor, in which 21 is a glass substrate, 22 is an individual electrode. , 23g, 23b, 23c
is a light receiving element, 24 is a light shielding insulating layer, 25a, 25b, 25
c is a transparent electrode, 2 f3 a, 26 b, 28 c are common electrodes, 27 is a transparent insulating layer, 28 a, 28 b 128 c
is a wavelength conversion member, 29 is a protective layer, 3o is a cover glass,
31 is a document, 32 is an illumination light, and 33 is a signal light.
第3図においては、受光素子23aの素子列、受光素子
23bの素子列及び受光素子23cの素子列の3つの受
光素子列が原稿31の副走査方向に沿って配置されてお
り、従来のカラーイメージセンサとは、透過型カラーフ
ィルタに代えて、各受光素子23a、23b、23cの
それぞれに対応して特定の波長成分に分光感度を有し、
且つ当該波長成分をそれぞれの対応する受光素子の分光
感度内の波長成分に波長変換する波長変換部材28a、
28b。In FIG. 3, three light-receiving element rows, an element row of light-receiving elements 23a, an element row of light-receiving elements 23b, and an element row of light-receiving elements 23c, are arranged along the sub-scanning direction of the original 31, and the conventional color An image sensor has spectral sensitivity to specific wavelength components corresponding to each of the light receiving elements 23a, 23b, and 23c, instead of a transmission color filter,
and a wavelength conversion member 28a that converts the wavelength component into a wavelength component within the spectral sensitivity of each corresponding light receiving element;
28b.
28cを備えている点で異なっている。即ち、例えば、
波長変換部材28aはRの波長成分に感応して当該波長
成分を波長λ鵞を中心波長とする波長成分に変換するも
のとし、同様に波長変換部材28b。It is different in that it is equipped with 28c. That is, for example,
The wavelength conversion member 28a is sensitive to the wavelength component of R and converts the wavelength component into a wavelength component having the wavelength λ as the center wavelength, and similarly the wavelength conversion member 28b.
28cはそれぞれG、Hの波長成分に感応して当該波長
成分を波長λ2.λ2を中心波長とする波長成分に変換
するものとすると、ガラス基板21、透明絶縁層27、
保護層29、カバーガラス30を透過して、原稿31で
反射して得られた信号光33の波長成分のうち、Rの波
長成分は波長変換部材28aにより波長λ1を中心波長
とする波長成分に変換されて、透明絶縁層27、透明電
極25aを透過して受光素子23aに入射して光電変換
が行われる。そして、受光素子23aに蓄えられた電荷
は個別電極22から電気信号として読み出され、R信号
として利用される。同様にして、信号光33の波長成分
のうち、G、Bの波長成分は、それぞれ、波長変換部材
28b、28cにより波長λり、λ3を中心波長とする
波長成分に変換されて、透明絶縁層27、透明電極25
aを透過して受光素子23b、23cに入射して光電変
換が行われ、個別電極22から電気信号として読み出さ
れ、G信号、B信号として利用される。28c is sensitive to the G and H wavelength components, respectively, and converts the corresponding wavelength components into wavelengths λ2. When converting to a wavelength component with λ2 as the center wavelength, the glass substrate 21, the transparent insulating layer 27,
Among the wavelength components of the signal light 33 obtained by transmitting through the protective layer 29 and the cover glass 30 and being reflected by the original 31, the R wavelength component is converted into a wavelength component with the wavelength λ1 as the center wavelength by the wavelength conversion member 28a. The light is converted, passes through the transparent insulating layer 27 and the transparent electrode 25a, enters the light receiving element 23a, and undergoes photoelectric conversion. The charge stored in the light receiving element 23a is then read out as an electrical signal from the individual electrode 22 and used as an R signal. Similarly, among the wavelength components of the signal light 33, the G and B wavelength components are converted into wavelength components whose center wavelength is λ3 by the wavelength conversion members 28b and 28c, respectively. 27, transparent electrode 25
The light passes through the light receiving elements 23b and 23c and undergoes photoelectric conversion, is read out from the individual electrode 22 as an electrical signal, and is used as a G signal and a B signal.
以上のようにしてR、G 、Hの3原色信号が生成され
る。なお、波長変換された後の中心波長λ1゜λ2.λ
才は互いに異なってもよいが、通常受光素子23a、2
3b、23cは同一の材料で形成されるから、λ1=λ
2=λ3となるように波長変換材料28a、28b、2
8cを選択するとよい。そして、この場合には、波長変
換部材28a、28b、28cと透明電極25a、25
b、25cの間に形成される絶縁層を、λ。As described above, three primary color signals of R, G, and H are generated. Note that the center wavelength λ1゜λ2. after wavelength conversion. λ
The light-receiving elements 23a and 2 are usually
Since 3b and 23c are made of the same material, λ1=λ
Wavelength conversion materials 28a, 28b, 2 so that 2=λ3
It is recommended to select 8c. In this case, the wavelength conversion members 28a, 28b, 28c and the transparent electrodes 25a, 25
The insulating layer formed between b and 25c is λ.
近傍の波長に対してのみ透明で、他の波長成分、特に照
明光32の波長成分に対して不透明となる材料を用いる
ことができ、このようにすることによってノイズ成分と
なる不要な波長成分を除去することができる。It is possible to use a material that is transparent only to nearby wavelengths and opaque to other wavelength components, especially the wavelength component of the illumination light 32. By doing this, unnecessary wavelength components that become noise components can be eliminated. Can be removed.
また、第3図に示す構成において、波長変換部材28a
、28b、28cは、周知のフォトリソグラフィープロ
セスにより形成することができる。Furthermore, in the configuration shown in FIG. 3, the wavelength conversion member 28a
, 28b, and 28c can be formed by a well-known photolithography process.
以上、本発明の一実施例について説明したが、本発明は
上記実施例に限定されるものではなく、種々の変形が可
能であり、インライン型のカラーイメージセンサも同様
に構成できることは当業者に明らかである。Although one embodiment of the present invention has been described above, it will be appreciated by those skilled in the art that the present invention is not limited to the above embodiment, and that various modifications can be made, and that an in-line color image sensor can also be configured in the same way. it is obvious.
[発明の効果]
以上の説明から明らかなように、本発明によれば、従来
のカラーイメージセンサのように透過型のカラーフィル
タを貼り合わせるものではないので、面倒な手作業によ
るカラーフィルタ貼り合わせの工程を省略することがで
きるばかりでなく、従来問題となっていたカラーフィル
タの褪色、ハガレ等による信頼性の劣化を回避すること
ができる。[Effects of the Invention] As is clear from the above description, according to the present invention, transmissive color filters are not pasted together as in conventional color image sensors, so color filter pasting is not a tedious process. Not only can this process be omitted, but it is also possible to avoid deterioration in reliability due to fading, peeling, etc. of the color filter, which has been a problem in the past.
更に、波長変換材料を適当に選ぶことで、任意の分光感
度をもつ受光素子が使用可能となり、例えばガリウムー
ヒ素を用いた近赤外に高い感度をもつような受光素子を
用いて高感度なカラーイメージセンサを構成できるなど
、設計の自由度を増やすことができる。Furthermore, by appropriately selecting the wavelength conversion material, it is possible to use a photodetector with any spectral sensitivity.For example, a photodetector with high sensitivity to near-infrared light using gallium-arsenide can be used to produce highly sensitive color. The degree of freedom in design can be increased, such as by being able to configure an image sensor.
第1図は本発明に係るカラーイメージセンサ及びカラー
画像読み取り方法の基本構成を示す図、第2図は波長変
換部材による波長変換を説明するための図、第3図は本
発明に係るカラーイメージセンサ及びカラー画像読み取
り方法の一実施例の構成を示す断面図である。
1・・・ガラス基板、2a、2b、2c・・・受光素子
、3m、3b、3c・・・波長変換部材、4・・・原稿
、5・・・照明光、6・・・信号光1 7m+7b+7
c・・・波長変換された信号光、8・・・透明体、21
・・・ガラス基板、22・・・個別電極、23 a +
23 b + 23 c・”受光素子、24−・・遮
光絶縁層、25 a、25 b、25 c−−−透明電
極、26m、2θb、26cm−−共通電極、27−・
・透明絶縁層、28m、28b、28c・・・波長変換
部材、29・・・保護層、30・・・カバーガラス、3
1・・・原稿、32・・・照明光、33・・・信号光。
第1図
第2図
第3図FIG. 1 is a diagram showing the basic configuration of a color image sensor and color image reading method according to the present invention, FIG. 2 is a diagram for explaining wavelength conversion by a wavelength conversion member, and FIG. 3 is a color image according to the present invention. 1 is a cross-sectional view showing the configuration of an embodiment of a sensor and a color image reading method. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2a, 2b, 2c... Light receiving element, 3m, 3b, 3c... Wavelength conversion member, 4... Original, 5... Illumination light, 6... Signal light 1 7m+7b+7
c...Wavelength converted signal light, 8...Transparent body, 21
... Glass substrate, 22 ... Individual electrode, 23 a +
23 b + 23 c・” Light-receiving element, 24-・Light-shielding insulating layer, 25 a, 25 b, 25 c---Transparent electrode, 26m, 2θb, 26cm--Common electrode, 27-・
・Transparent insulating layer, 28m, 28b, 28c... Wavelength conversion member, 29... Protective layer, 30... Cover glass, 3
1... Original, 32... Illumination light, 33... Signal light. Figure 1 Figure 2 Figure 3
Claims (2)
路上で且つ当該受光素子に近接した位置に配置され、信
号光の所定の波長成分に対応する受光素子の互いに異な
る分光感度内の波長成分に変換する複数種の波長変換部
材を具備することを特徴とするカラーイメージセンサ。(1) Multiple light-receiving elements and light-receiving elements that are placed on the path of the signal light to the light-receiving element and in close proximity to the light-receiving element, and that correspond to a predetermined wavelength component of the signal light, have different spectral sensitivities. A color image sensor comprising a plurality of types of wavelength conversion members that convert into wavelength components.
数の波長成分をそれぞれ各受光素子の分光感度内の波長
成分に波長変換して受光素子に入射させ読み取りを行う
ことを特徴とするカラー画像読み取り方法。(2) A color device characterized in that a plurality of mutually different wavelength components of signal light obtained by illuminating an image are wavelength-converted into wavelength components within the spectral sensitivity of each light-receiving element, and are made incident on the light-receiving element for reading. Image reading method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2301911A JP2926968B2 (en) | 1990-11-07 | 1990-11-07 | Color image sensor and color image reading method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2301911A JP2926968B2 (en) | 1990-11-07 | 1990-11-07 | Color image sensor and color image reading method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH04172861A true JPH04172861A (en) | 1992-06-19 |
| JP2926968B2 JP2926968B2 (en) | 1999-07-28 |
Family
ID=17902597
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2301911A Expired - Lifetime JP2926968B2 (en) | 1990-11-07 | 1990-11-07 | Color image sensor and color image reading method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2926968B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007281820A (en) * | 2006-04-05 | 2007-10-25 | Canon Inc | Solid-state imaging device and imaging method |
-
1990
- 1990-11-07 JP JP2301911A patent/JP2926968B2/en not_active Expired - Lifetime
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007281820A (en) * | 2006-04-05 | 2007-10-25 | Canon Inc | Solid-state imaging device and imaging method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2926968B2 (en) | 1999-07-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6448842B2 (en) | Solid-state imaging device and imaging apparatus | |
| US6211521B1 (en) | Infrared pixel sensor and infrared signal correction | |
| US7508431B2 (en) | Solid state imaging device | |
| EP0716538B1 (en) | Image pickup device | |
| US20070272836A1 (en) | Photoelectric conversion apparatus | |
| US4404586A (en) | Solid-state color imager with stripe or mosaic filters | |
| JPH0474469A (en) | Solid-state image sensing element | |
| US5028970A (en) | Image sensor | |
| JPH11313334A (en) | Solid-state imaging device | |
| JPWO2016158128A1 (en) | Photodetection device and imaging device | |
| JP5997149B2 (en) | Solid-state imaging device, imaging apparatus, and signal processing method | |
| US5168350A (en) | Solid-state color imaging apparatus | |
| JPH04172861A (en) | Color image sensor and color picture reading method | |
| KR20030070998A (en) | Cmos image sensor for embodying color | |
| JP3977130B2 (en) | Image forming apparatus sensitive to orange light | |
| Takada et al. | CMOS color image sensor with overlaid organic photoconductive layers having narrow absorption band | |
| JPH09210793A (en) | Color image sensor | |
| JPH01219641A (en) | Color detection element | |
| JP2908136B2 (en) | Optical spectrometer for solid-state imaging device | |
| US20050285956A1 (en) | Color-filter array for an optical-image sensor | |
| WO2022207421A1 (en) | Sensor arrangement, image sensor, imaging device and method of providing a sensor arrangement | |
| JPS5967791A (en) | Solid-state image pickup device | |
| JP2021040260A (en) | Imaging module | |
| JPH01239974A (en) | Optical input IC | |
| JP2990630B2 (en) | Color image sensor |