JPH04185911A - magnetic bearing device - Google Patents
magnetic bearing deviceInfo
- Publication number
- JPH04185911A JPH04185911A JP31637490A JP31637490A JPH04185911A JP H04185911 A JPH04185911 A JP H04185911A JP 31637490 A JP31637490 A JP 31637490A JP 31637490 A JP31637490 A JP 31637490A JP H04185911 A JPH04185911 A JP H04185911A
- Authority
- JP
- Japan
- Prior art keywords
- rotating body
- electromagnet
- magnetic bearing
- gap
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0444—Details of devices to control the actuation of the electromagnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
A、産業上の利用分野
この発明は、磁性材料で形成された円環状の回転体を非
接触状態で支持する磁気軸受装置に係り、特に、回転体
の径方向の位置制御に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a magnetic bearing device that supports an annular rotating body made of a magnetic material in a non-contact manner, and particularly relates to a magnetic bearing device that supports a rotating body made of a magnetic material in a non-contact manner. Regarding position control.
B、従来技術
従来、この種の磁気軸受”217において、回転体の径
方向の位置制御として、次のような二つの手法がある。B. Prior Art Conventionally, in this type of magnetic bearing "217," there are two methods for controlling the position of the rotating body in the radial direction.
(1)その一つは、第3図に示すように、円環状の回転
体lの外周部に近接して複数個の電磁石2aを等間隔に
配置し、各電磁石2aに対応付けて設けられたギャップ
センサ3で回転体lと電磁石2aとの間隔をそれぞれ検
出し、これらの検出信号に基づいて各を磁石2aの駆動
電流を各々独立に制御することによって、回転体1を径
方向外側向きに吸引して、これを中立状態に支持するも
のである。(1) As shown in Fig. 3, one method is to arrange a plurality of electromagnets 2a at equal intervals close to the outer circumference of an annular rotating body l, and to correspond to each electromagnet 2a. The gap sensor 3 detects the distance between the rotating body l and the electromagnet 2a, and the drive current of each magnet 2a is independently controlled based on these detection signals, so that the rotating body 1 is oriented outward in the radial direction. It is designed to attract and support this in a neutral state.
(2)他の一つは、第4図に示すように、円環状の回転
体1の内周部に近接して複数個の電磁石2bを等間隔に
配置し、前記(1)と同様にギャップセンサ3を使って
、各電磁石2bの駆動電流を各々独立に制御して、回転
体1を径方向内側向きに吸引して、これを中立状態に支
持するものである。(2) The other method is to arrange a plurality of electromagnets 2b at equal intervals close to the inner circumference of the annular rotating body 1, as shown in FIG. The drive current of each electromagnet 2b is independently controlled using the gap sensor 3 to attract the rotating body 1 radially inward and support it in a neutral state.
C6発明が解決しようとする課題
上述した磁気軸受装置の用途の一つとして、例えば、X
線断層撮影装置に用いられる回転陰極χ線管装置がある
。この回転陰極X線管装置は、例えば、真空容器内に磁
気軸受装置で支持された円環状の回転体にフィラメント
を取り付けた陰極部と、この陰極部に対向するように固
定設置されたリング状のターゲットとを備えており、前
記回転体を回転駆動することによって、前記陰極から放
出された熱電子でターゲツト面上を円形に走査して、タ
ーゲ7)からその中心部に向けてX線を放射するように
したものである。C6 Problems to be Solved by the Invention One of the applications of the above-mentioned magnetic bearing device is, for example,
There is a rotating cathode chi-ray tube device used in a tomography device. This rotating cathode X-ray tube device includes, for example, a cathode section in which a filament is attached to an annular rotating body supported by a magnetic bearing device in a vacuum container, and a ring-shaped cathode section fixedly installed opposite to this cathode section. By rotating the rotating body, the target surface is scanned circularly with thermionic electrons emitted from the cathode, and X-rays are emitted from the target 7) toward its center. It is designed to radiate light.
回転陰極X線管装置に使用される回転体の直径は約1m
程度と比較的に大きく、しかも、回転体に取り付けられ
たフィラメントから発せられる熱によって回転体は低温
度状態から相当な高温度状態にまで温度上昇する。The diameter of the rotating body used in the rotating cathode X-ray tube device is approximately 1 m.
Moreover, the temperature of the rotating body increases from a low temperature state to a considerably high temperature state due to the heat emitted from the filament attached to the rotating body.
このような回転陰極X線管装置に上述した各従来装置を
適用した場合、次のような問題点がある。When the above-mentioned conventional devices are applied to such a rotating cathode X-ray tube device, the following problems arise.
(1)第3図に示した磁気軸受装置では、第5図(a)
に示すように、低温度状態では電磁石2aと回転体1と
の間隙寸法Aは磁気軸受制御に適当な例えば、IIw1
1程度の距離に設定されるが、直径約1mの回転体1に
例えば、60〜70°C程度の温度上昇があると、同I
EI (b)に示すように、回転体1が径方向に約1m
m程度膨張して、回転体lと電磁石2aとが接触すると
いう不都合が生しる。(1) In the magnetic bearing device shown in Fig. 3, Fig. 5(a)
As shown in , the gap size A between the electromagnet 2a and the rotating body 1 is set to a value suitable for magnetic bearing control in a low temperature state, for example, IIw1.
However, if there is a temperature rise of about 60 to 70°C in the rotating body 1 with a diameter of about 1 m, the distance is set to about 1 m.
As shown in EI (b), the rotating body 1 is about 1 m in the radial direction.
This causes the inconvenience that the rotating body 1 and the electromagnet 2a come into contact with each other due to expansion by about m.
(2)一方、第4図に示した磁気軸受装置では、第1(
a)に示すように、低温度状態では電磁石2bと回転体
lとの間隙寸法すは磁気軸受制御に適当な11程度の距
離に設定されるが、回転体1が60〜70°C温度上昇
すると、同図(b)に示すように、回転体1と内周部と
電磁石2bとの間隙寸法Cが21程度にまで拡がり、磁
気軸受制御が困難になるという不都合が生しる。(2) On the other hand, in the magnetic bearing device shown in FIG.
As shown in a), in a low temperature state, the gap between the electromagnet 2b and the rotating body 1 is set to a distance of about 11, which is suitable for magnetic bearing control, but when the temperature of the rotating body 1 increases by 60 to 70°C. Then, as shown in FIG. 4B, the gap C between the rotating body 1, the inner circumferential portion, and the electromagnet 2b increases to about 21, causing a disadvantage that magnetic bearing control becomes difficult.
この発明は、このような事情に鑑みてなされたものであ
って、回転体に温度上昇が生しても、回転体がその周囲
にある電磁石に接触することがなく、しかも、磁気軸受
制御が可能な磁気軸受装置を提供することを目的として
いる。This invention was made in view of the above circumstances, and even if the temperature of the rotating body increases, the rotating body does not come into contact with the electromagnets around it, and moreover, magnetic bearing control is possible. The purpose of the present invention is to provide a possible magnetic bearing device.
D、 yA題を解決するための手段
この発明は、上記目的を達成するために次のような構成
を備えている。D. Means for Solving the Problem The present invention has the following configuration in order to achieve the above object.
即ち、この発明に係る磁気軸受装置は、磁性材料で形成
された円環状の回転体と、低温度域において、前記回転
体の内周部との間隙が磁気軸受制御可能な距離になるよ
うに、前記回転体の内周部に沿って近接配置された複数
個の内周部iit磁石と、高温度域において、前記回転
体の外周部との間隙が磁気軸受制御可能な距離になるよ
うに、前記回転体の外周部に沿って近接配置された複数
個の外周部電磁石と、前記回転体の熱膨張の程度を検出
する熱膨張検出手段と、前記熱膨張検出手段からの検出
信号に基づき、低温度域では前記内周部電磁石を駆動し
、高温度域では前記外周部!磁石を駆動する切り換え制
御手段とを備えたものである。That is, in the magnetic bearing device according to the present invention, the gap between the annular rotating body made of a magnetic material and the inner circumferential portion of the rotating body is a distance that allows the magnetic bearing to control in a low temperature range. , a gap between a plurality of inner peripheral part IIT magnets disposed close to each other along the inner peripheral part of the rotary body and the outer peripheral part of the rotary body in a high temperature range is a distance that allows magnetic bearing control. , a plurality of outer circumferential electromagnets disposed close to each other along the outer circumference of the rotating body, a thermal expansion detecting means for detecting the degree of thermal expansion of the rotating body, and a detection signal from the thermal expansion detecting means. , in a low temperature range, the inner circumference electromagnet is driven, and in a high temperature range, the outer circumference electromagnet is driven! The magnet is equipped with a switching control means for driving the magnet.
E1作用 この発明の作用は次のとおりである。E1 action The operation of this invention is as follows.
熱膨張が小さい低温度域では、切り換え制御手段によっ
て内部電磁石が駆動されることにより、回転体は内部電
磁石によって磁気軸受制御される。In a low temperature range where thermal expansion is small, the internal electromagnet is driven by the switching control means, and the rotating body is magnetically bearing controlled by the internal electromagnet.
また、熱膨張が大きい高温度域では、回転体が膨張する
ことにより、回転体と内部電磁石の間隙が磁気軸受制御
に不適当な程度にまで拡がる一方、回転体と外部電磁石
の間隙が磁気軸受制御に適当な距離にまで狭くなるので
、切り換え制御手段によって内部電磁石の駆動状態から
外部電磁石の駆動状態へと切り換えられる。In addition, in high temperature ranges where thermal expansion is large, the rotating body expands and the gap between the rotating body and the internal electromagnet expands to an extent inappropriate for magnetic bearing control. Since the distance is narrowed to a distance suitable for control, the switching control means switches from the driving state of the internal electromagnet to the driving state of the external electromagnet.
F、実施例 以下、この発明の実施例を図面に基づいて説明する。F. Example Embodiments of the present invention will be described below based on the drawings.
第1図は、この発明に係る磁気軸受装置の一実施例の概
略構成を示したブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a magnetic bearing device according to the present invention.
磁性材料で形成された円環状の回転体1の外周部に近接
して、複数個の外周部TM、N石2aが等間隔に配置さ
れているとともに、回転体1の内周部に近接して、複数
個の内周部電磁石2bが外周部1i磁石2aに対向する
ように配置されている。各外周部Nm石2aには、それ
ぞれギヤノプセンサ3が並設されており、これらのギャ
ップセンサ3によって、各外周部電磁石2aと回転体I
の間隙寸法を検出している。外周部電磁石2aは電磁石
駆動部4aによって各々独立して駆動され、内周部電磁
石2bは電磁石駆動部4bによって各々独立して駆動さ
れる。電磁石駆動部4a、4bはスイッチング回路SW
を介して制御部5に接続されている。制御部5には、各
ギャップセンサ3の検出信号が与えられる。A plurality of outer peripheral portions TM and N stones 2a are arranged at equal intervals close to the outer peripheral portion of the annular rotating body 1 formed of a magnetic material, and are located close to the inner peripheral portion of the rotating body 1. A plurality of inner circumference electromagnets 2b are arranged to face the outer circumference magnets 2a. Gear knob sensors 3 are arranged in parallel to each of the outer circumferential Nm stones 2a, and these gap sensors 3 are used to connect each outer circumferential electromagnet 2a and the rotating body I.
The gap size is being detected. The outer circumferential electromagnets 2a are each independently driven by an electromagnet driving section 4a, and the inner circumferential electromagnets 2b are each independently driven by an electromagnet driving section 4b. The electromagnet drive units 4a and 4b are switching circuits SW.
It is connected to the control unit 5 via. A detection signal from each gap sensor 3 is given to the control section 5 .
各電磁石2a、2bと回転体1との間隙寸法は次のよう
に設定されている。The gap size between each electromagnet 2a, 2b and the rotating body 1 is set as follows.
第2ID(a)に示すように、直径が約1mの回転体1
が低温度状態にあるとき、回転体】との間隙寸法りが約
0.5mmになるように内周部電磁石2bが設置されて
おり、回転体lとの間隙寸法Eが約1゜51になるよう
に外周部電磁石2aが設置されている。このような間隙
寸法に設定された場合、回転体1が60〜70°C温度
上昇すると回転体1が熱膨張することにより、第211
ffl(b)に示すように、内周部電磁石2bと回転体
1との間隙寸法F−ま約1,5m−にまで拡がり、外周
部電磁石2aと回転体1との間隙寸法Gは約0.51に
まで狭まる。As shown in the second ID (a), a rotating body 1 with a diameter of about 1 m
The inner circumferential electromagnet 2b is installed so that the gap with the rotating body 1 is about 0.5 mm when the is in a low temperature state, and the gap E with the rotating body 1 is about 1°51. The outer peripheral electromagnet 2a is installed so that When such a gap size is set, when the temperature of the rotating body 1 increases by 60 to 70°C, the rotating body 1 thermally expands, and the 211th
As shown in ffl(b), the gap F between the inner electromagnet 2b and the rotating body 1 has expanded to about 1.5 m, and the gap G between the outer electromagnet 2a and the rotating body 1 has increased to about 0. It narrows down to .51.
次に上述した実施例装置の動作を説明する。Next, the operation of the above-described embodiment device will be explained.
制御部5は各ギャップセンサ3の検出信号を入力し、こ
れらの検出信号から各間隙の平均値を算出することによ
って、電磁石2a、2bと回転体1との間隙寸法を監視
している。具体的には、制御部5は、間隙寸法1.OL
llmを闇値として設定し、前記間隙平均値が、この闇
値よりも大きいか、小さいかを判断している。The control unit 5 monitors the gap size between the electromagnets 2a, 2b and the rotating body 1 by inputting the detection signals of each gap sensor 3 and calculating the average value of each gap from these detection signals. Specifically, the control unit 5 controls the gap size 1. OL
llm is set as a darkness value, and it is determined whether the gap average value is larger or smaller than this darkness value.
間隙平均値が閾(1!!1.0 amよりも大きい場合
、すなわち、回転体1が低温度状態にある場合、外周部
ii電磁石aと回転体]との間隙は、外周部電磁石2a
による磁気軸受制御が困難な程度にまで広(なっている
のに対し、内周部@VA石2bと回転体1との間隙は略
0.5〜1.0 amの範囲にあり、この範囲は磁気軸
受制御に適した距離である。そこで、制御部5は、スイ
ッチング回路SWを電磁石駆動部4b側に設定して、i
it磁石駆動部4bを作動させる。これにより、各内周
部Nm石2bの駆動電流が各々に対応したギヤ、プセン
サ3の検出信号に応して、独立して制御されることによ
り、回転体Iは径方向内側に向かう吸引力によって中立
状態に支持される。When the average gap value is larger than the threshold (1!!1.0 am, that is, when the rotating body 1 is in a low temperature state, the gap between the outer circumferential electromagnet a and the rotating body) is
However, the gap between the inner peripheral part @ VA stone 2b and the rotating body 1 is in the range of approximately 0.5 to 1.0 am; is a distance suitable for magnetic bearing control.Therefore, the control section 5 sets the switching circuit SW on the electromagnet drive section 4b side, and
It activates the magnet drive section 4b. As a result, the driving current of each inner circumferential Nm stone 2b is independently controlled according to the detection signal of the gear and sensor 3 corresponding to each, so that the rotating body I has an attractive force directed inward in the radial direction. is supported in a neutral state by
一方、間隙平均値が闇値1.0 mmよりも小さい場合
、すなわち、回転体1が高温度状態にある場合、内周部
電磁石2bと回転体1との間隙は、内周部電磁石2bに
よる磁気軸受制御が困難な程度にまで広くなるのに対し
、外周部’&tJff石2aと回転体Iとの間隙は、外
周部電磁石2aによる磁気軸受制御に適した距離になる
。そこで、制御部5は、スイッチング回路SWを電磁石
駆動部4a側に設定して、電磁石駆動部4aを作動させ
る。これにより、各内周部電磁石2aの駆動電流が各々
に対応したギャップセンサ3の検出信号に応じて、独立
して制御されることにより、回転体1は径方向外側に向
かう吸引力によって中立状態に支持される。On the other hand, when the average gap value is smaller than the dark value of 1.0 mm, that is, when the rotating body 1 is in a high temperature state, the gap between the inner circumferential electromagnet 2b and the rotating body 1 is determined by the inner circumferential electromagnet 2b. In contrast, the gap between the outer peripheral part '&tJff stone 2a and the rotating body I becomes a distance suitable for magnetic bearing control by the outer peripheral part electromagnet 2a. Therefore, the control section 5 sets the switching circuit SW on the electromagnet drive section 4a side, and operates the electromagnet drive section 4a. As a result, the drive current of each inner circumferential electromagnet 2a is independently controlled according to the detection signal of the corresponding gap sensor 3, so that the rotating body 1 is brought into a neutral state by the attraction force directed outward in the radial direction. Supported by
なお、上述の実施例では、ギャップセンサ3によって回
転体Iの熱膨張の程度を検出し、外周部iit磁石2a
と内周部電磁石2bを切り換え制御するように構成した
が、温度センサを用いて回転体1の温度上昇を検出する
ことにより間接的ムこ回転体1の熱膨張の程度を検出し
、外周部電磁石2aと内周部!磁石2bを切り換え制御
するようにしてもよい。In the above-described embodiment, the gap sensor 3 detects the degree of thermal expansion of the rotating body I, and the outer peripheral part iit magnet 2a
The inner peripheral electromagnet 2b is switched and controlled, but by detecting the temperature rise of the rotating body 1 using a temperature sensor, the degree of thermal expansion of the rotary body 1 is indirectly detected, and the outer peripheral electromagnet 2b is Electromagnet 2a and inner circumference! The magnet 2b may be switched and controlled.
また、上述の実施例では、外周部141石2aと内周部
電磁石2bをそれぞれ4個ずつ配設するようにしたが、
電磁石の設置個数は限定されない。Furthermore, in the above embodiment, four pieces each of the outer peripheral part 141 stones 2a and the four inner peripheral part electromagnets 2b are arranged.
The number of electromagnets installed is not limited.
さらに、上述で説明した各1tit1石2a、2bと回
転体1との間隙寸法は一例であり、回転体1の大きさや
熱膨張係数、さらには上昇温度に応して、適宜に設定さ
れることは言うまでもない。Furthermore, the gap dimensions between each of the stones 2a, 2b and the rotating body 1 described above are merely examples, and may be set appropriately depending on the size, thermal expansion coefficient, and temperature rise of the rotating body 1. Needless to say.
G8発明の効果
以上の説明から明らかなように、この発明に係る磁気軸
受装置によれば、回転体の内周部と外周部に沿ってそれ
ぞれ複数個の電磁石を設け、内周部if電磁石回転体と
の間隙は、低温度状態において内周部電磁石による磁気
軸受制御が可能になるような寸法に設定し、外周部電磁
石と回転体との間隙は、高温度状態において外周部電磁
石による磁気軸受制御が可能になるような寸法に設定し
、回転体の熱膨張が小さい低温度状態では内周部電磁石
を駆動し、回転体の熱膨張が大きい高温度状態では外周
部tiff石を駆動しているので、広い温度域にわたっ
て回−転体の磁気軸受制御が可能であり、また、回転体
の熱膨張により回転体が電磁石に接触するという不都合
も回避できる。Effects of the G8 Invention As is clear from the above explanation, according to the magnetic bearing device according to the present invention, a plurality of electromagnets are provided along the inner circumference and the outer circumference of the rotating body, and the inner circumference if the electromagnet rotates. The gap between the outer electromagnet and the rotating body is set to such a size that the inner electromagnet can control the magnetic bearing in a low temperature state, and the gap between the outer electromagnet and the rotating body is such that the outer electromagnet can control the magnetic bearing in a high temperature state. The dimensions are set to enable control, and the inner peripheral electromagnet is driven in a low temperature state where the thermal expansion of the rotating body is small, and the outer peripheral tiff stone is driven in a high temperature state where the thermal expansion of the rotating body is large. Therefore, magnetic bearing control of the rotating body is possible over a wide temperature range, and the inconvenience of the rotating body coming into contact with the electromagnet due to thermal expansion of the rotating body can also be avoided.
第1図および第2図は、この発明の一実施例の説明に係
り、第1図は磁気軸受装置の概略構成を示したブロック
図、第2図は低温度状態および高温度状態における回転
体と各1を磁石との間隙の説明図である。
第3図ないし第6図は従来例の説明に係り、第3図は外
周部電磁石を備えた磁気軸受装置の説明図、第4図は内
周部NN石を備えた磁気軸受装置の説明図、第5図は第
3圓に示した磁気軸受装置における回転体と電磁石との
間隙の説明図、第6図は第4回に示した磁気軸受装置に
おける回転体と電磁石との間隙の説明図である。
■・・・回転体 2a・・・外周部電磁石2b
・・・内周部電磁石 3・・・キャンプセンサ4a、4
b・・・電磁石駆動部
5・・・制御部
SW・・・スイッチング回路
特許出願人 株式会社 島津製作所1 and 2 relate to the explanation of one embodiment of the present invention, FIG. 1 is a block diagram showing a schematic configuration of a magnetic bearing device, and FIG. 2 is a rotating body in a low temperature state and a high temperature state. FIG. 3 is an explanatory diagram of the gap between the magnet and the magnet. 3 to 6 relate to the explanation of conventional examples, FIG. 3 is an explanatory diagram of a magnetic bearing device equipped with an outer peripheral electromagnet, and FIG. 4 is an explanatory diagram of a magnetic bearing device equipped with an inner peripheral part NN stone. , Fig. 5 is an explanatory diagram of the gap between the rotating body and the electromagnet in the magnetic bearing device shown in the third round, and Fig. 6 is an explanatory diagram of the gap between the rotating body and the electromagnet in the magnetic bearing device shown in the fourth round. It is. ■...Rotating body 2a...Outer electromagnet 2b
... Inner peripheral electromagnet 3 ... Camp sensor 4a, 4
b...Electromagnet drive unit 5...Control unit SW...Switching circuit Patent applicant Shimadzu Corporation
Claims (1)
域において、前記回転体の内周部との間隙が磁気軸受制
御可能な距離になるように、前記回転体の内周部に沿っ
て近接配置された複数個の内周部電磁石と、高温度域に
おいて、前記回転体の外周部との間隙が磁気軸受制御可
能な距離になるように、前記回転体の外周部に沿って近
接配置された複数個の外周部電磁石と、前記回転体の熱
膨張の程度を検出する熱膨張検出手段と、前記熱膨張検
出手段からの検出信号に基づき、低温度域では前記内周
部電磁石を駆動し、高温度域では前記外周部電磁石を駆
動する切り換え制御手段とを備えたことを特徴とする磁
気軸受装置。(1) An annular rotating body formed of a magnetic material and an inner circumferential portion of the rotating body such that the gap between the inner circumferential portion of the rotating body is a distance that allows magnetic bearing control in a low temperature range. A plurality of inner circumference electromagnets arranged close to each other along the outer circumference of the rotary body are arranged so that the gap between the outer circumference of the rotor and the outer circumference of the rotor is a distance that allows magnetic bearing control in a high temperature range. a plurality of outer peripheral electromagnets arranged close to each other, a thermal expansion detection means for detecting the degree of thermal expansion of the rotary body, and a detection signal from the thermal expansion detection means. A magnetic bearing device comprising switching control means for driving an electromagnet and for driving the outer peripheral electromagnet in a high temperature range.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP31637490A JPH04185911A (en) | 1990-11-20 | 1990-11-20 | magnetic bearing device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP31637490A JPH04185911A (en) | 1990-11-20 | 1990-11-20 | magnetic bearing device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04185911A true JPH04185911A (en) | 1992-07-02 |
Family
ID=18076384
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP31637490A Pending JPH04185911A (en) | 1990-11-20 | 1990-11-20 | magnetic bearing device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04185911A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6123522A (en) * | 1997-07-22 | 2000-09-26 | Koyo Seiko Co., Ltd. | Turbo molecular pump |
| US6429561B1 (en) * | 2000-06-07 | 2002-08-06 | Mainstream Engineering Corporation | Magnetic bearing system and method of controlling magnetic bearing system |
| JP2003042155A (en) * | 2001-07-30 | 2003-02-13 | Shimadzu Corp | Magnetic bearing device |
-
1990
- 1990-11-20 JP JP31637490A patent/JPH04185911A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6123522A (en) * | 1997-07-22 | 2000-09-26 | Koyo Seiko Co., Ltd. | Turbo molecular pump |
| US6429561B1 (en) * | 2000-06-07 | 2002-08-06 | Mainstream Engineering Corporation | Magnetic bearing system and method of controlling magnetic bearing system |
| JP2003042155A (en) * | 2001-07-30 | 2003-02-13 | Shimadzu Corp | Magnetic bearing device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7144225B2 (en) | Device for controlling the actuating shaft of means for recirculating a cooling fluid in vehicle engines | |
| US6268674B1 (en) | Magnetic bearing apparatus | |
| US5065420A (en) | Arrangement for controlling focal spot position in X-ray tube | |
| EP0459585B1 (en) | Scanning device comprising a rotatable mirror and drive unit for use in the scanning device. | |
| US20080206079A1 (en) | Turbo-molecular pump and touchdown bearing device | |
| JP2001093967A (en) | Substrate spinner | |
| JPH10184685A (en) | Magnetic bearing | |
| JPH04185911A (en) | magnetic bearing device | |
| JPS61165072A (en) | Magnetic fluid sealing device for multistage shaft of coaxis | |
| JP2001311473A (en) | Shaft sealing apparatus | |
| JPH04223099A (en) | Magnetic coupling device | |
| JP2010271069A (en) | Encoder and method for manufacturing encoder | |
| US20040174080A1 (en) | Magnetic bearing | |
| JP2001146917A (en) | Thrust magnetic bearing using both of electromagnet and permanent magnet | |
| JPH11325075A (en) | Magnetic bearing | |
| JP2002257136A (en) | Magnetic bearing | |
| KR940008403B1 (en) | Optical scanning unit | |
| JPWO2006098500A1 (en) | Magnetic device | |
| JP2006083923A (en) | Magnetic bearing device and turbomolecular pump equipped with the magnetic bearing device | |
| WO2005039019A1 (en) | Actuator | |
| JP6448354B2 (en) | Rotor sensor target for magnetic bearings | |
| JPS5941269B2 (en) | rotating anode x-ray tube | |
| JP3658655B2 (en) | air pump | |
| US6738340B2 (en) | Device for reducing the radial and axial play of a motor shaft in a deck for playing information discs | |
| JP2002257137A (en) | Magnetic bearing device |