[go: up one dir, main page]

JPH04180617A - Manufacture of large crystal grain-sized polycrystal silicon and thin film semiconductor using same - Google Patents

Manufacture of large crystal grain-sized polycrystal silicon and thin film semiconductor using same

Info

Publication number
JPH04180617A
JPH04180617A JP30996190A JP30996190A JPH04180617A JP H04180617 A JPH04180617 A JP H04180617A JP 30996190 A JP30996190 A JP 30996190A JP 30996190 A JP30996190 A JP 30996190A JP H04180617 A JPH04180617 A JP H04180617A
Authority
JP
Japan
Prior art keywords
crystal grain
grain size
poly
large crystal
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30996190A
Other languages
Japanese (ja)
Inventor
Mamoru Ishida
守 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP30996190A priority Critical patent/JPH04180617A/en
Publication of JPH04180617A publication Critical patent/JPH04180617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To solid-phase crystallize amorphous Si and manufacture large grain size polycrystal Si by using said amorphous Si whose oxygen concentration does not exceed a specific amount. CONSTITUTION:In a method which manufactures large crystal grain-sized polycrystal Si by solid-phase crystallizing the amorphous Si, amorphous alpha-Si is adopted where oxygen concentration does not exceed 1X10<18>atoms/cm<3>. More specifically, alpha-Si is deposited on an insulation board or an insulation film. In that case as the deposition speed is increased, the oxygen contained in the alpha-Si is decreased. If it is necessary to reduce the concentration of oxygen to 10<18>atoms/cm<3> and lower, at least 50Angstrom /min must be called for. The alpha-Si, thus obtained is solid-phase crystallized. This construction makes it possible to obtain a large grain sized-polycrystal Si by keeping the temperature at 550 to 600 deg.C and crystallizing it.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、大結晶粒径をもつPoly−Siを製造する
方法および前記方法により得られた大結晶粒径のPol
y−Siを半導体活性層としている薄膜半導体(以下、
TPTと略記)に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to a method for producing Poly-Si having a large crystal grain size, and a method for producing Poly-Si having a large crystal grain size obtained by the method.
A thin film semiconductor (hereinafter referred to as
(abbreviated as TPT).

〔従来技術〕[Prior art]

Poly−Siを半導体活性層とするTPTは各種デバ
イスの駆動素子あるいは回路として盛んに研究されてい
る。このPoly−SiTFTの移動度を向上させるた
めには、 Poly−Siの結晶粒径を大きくすること
が不可欠である。
TPTs using Poly-Si as a semiconductor active layer are being actively researched as drive elements or circuits for various devices. In order to improve the mobility of this Poly-Si TFT, it is essential to increase the crystal grain size of Poly-Si.

大粒径Poly−Siの製造方法としてLt、 a−S
iの固相結晶化法が提案されている(G、Negeba
ued。
Lt, a-S as a manufacturing method of large particle size Poly-Si
A solid-phase crystallization method for i has been proposed (G, Negeba
ued.

H,F、Kappert、 J、Electroche
m、Soc:5OLID−5TATESCIENCE 
 AND  TECHNOLOGY、March、19
84.P675)  。
H, F. Kappert, J. Electroche.
m,Soc:5OLID-5TATESCIENCE
AND TECHNOLOGY, March, 19
84. P675).

このa−Si固相結晶化によって、 Poly−Siの
粒径をより大きくするためには、a−Siの堆積温度を
より低くすることが好ましいことも報告されているr′
89応物学金物学会別層No27.P−c−4)。
It has also been reported that in order to increase the grain size of Poly-Si through this a-Si solid phase crystallization, it is preferable to lower the deposition temperature of a-Si.
89 Society of Physical Science and Metal Physics Classification No. 27. P-c-4).

しかし、Poly−5L粒径に及ぼすa−Siの影響は
However, the effect of a-Si on Poly-5L particle size.

単に堆積速度だけで説明できるものではなく。This cannot be explained simply by the deposition rate.

全てが明らかになっているわけではない。現に、Si、
)f、を反応ガスとして使用した場合と、SiH4を反
応ガスとして使用した場合とでは、第3図にみられると
おり、その平均結晶粒径にはかなりの差が存在する。
Not everything is clear. Actually, Si,
)f as a reaction gas and when SiH4 is used as a reaction gas, as seen in FIG. 3, there is a considerable difference in the average crystal grain size.

このように、同相結晶化させたPoly−Siの粒径を
調べるとa−5L堆積温度だけでは説明がつかない面が
存在する。
As described above, when examining the grain size of Poly-Si crystallized in the same phase, there are aspects that cannot be explained only by the a-5L deposition temperature.

〔目  的〕〔the purpose〕

本発明の目的は、結晶粒径の大きなPoly−Siの新
規な製造方法を提供する点にある6本発明の他の目的は
、移動度の高いTPTを提供する点にある。
An object of the present invention is to provide a novel method for producing Poly-Si having a large crystal grain size.6 Another object of the present invention is to provide TPT with high mobility.

〔構  成〕〔composition〕

本発明者は、a−Siを固相結晶化させて大結晶粒径の
Poly−Siを得る方法について研究を重ねた結果、
 a−Si中に存在する酸素が結晶成長を阻害する原因
になっていることをつきとめ1本発明を完成するにいた
った。
As a result of repeated research on a method of solid-phase crystallizing a-Si to obtain Poly-Si with a large crystal grain size, the present inventor has found that
It was discovered that oxygen present in a-Si was the cause of inhibiting crystal growth, and the present invention was completed.

すなわち、本発明の第1は、アモルファスシリコン(以
下、a−Siと略記する)を固相結晶化させて大結晶粒
径の多結晶シリコン(以下、Poly−Siと略記する
)を製造する方法において、前記a−Siとして酸素濃
度がI X 10”atoms/am3以下のものを使
用することを特徴とする大結晶粒径のPoly−Siを
製造する方法に関する。
That is, the first aspect of the present invention is a method for manufacturing polycrystalline silicon (hereinafter abbreviated as Poly-Si) with a large crystal grain size by solid-phase crystallizing amorphous silicon (hereinafter abbreviated as a-Si). The present invention relates to a method for producing Poly-Si having a large crystal grain size, characterized in that the a-Si has an oxygen concentration of I x 10'' atoms/am3 or less.

本発明の第2は、前記酸素濃度I X 10”ato■
5acs” R下のa−Siがジシランあるいはトリシ
ラン等の水素化けい素を含む反応ガスを用いて50λ/
■in以上の堆積速度で形成されたものである請求項1
記載の大結晶粒径のPoly−Siを製造する方法に関
する。
The second aspect of the present invention is that the oxygen concentration I
5acs" a-Si under R is 50λ/
■Claim 1, which is formed at a deposition rate of at least 1.5 in.
The present invention relates to a method for producing Poly-Si having a large crystal grain size as described above.

本発明の第3は、前記酸素濃度lXl0”、好ましくは
5 X 101017ato/Cm”以下のa−Siが
LP−CVD法で500℃以下の温度で形成されたもの
である請求項1または2記載の大結晶粒径のPoly−
Siを製造する方法に関する。
A third aspect of the present invention is as set forth in claim 1 or 2, wherein the a-Si having an oxygen concentration of lXl0'', preferably 5 x 101017ato/Cm'' or less, is formed by an LP-CVD method at a temperature of 500°C or less. Poly-
The present invention relates to a method of manufacturing Si.

本発明の第4は、請求項1により得られた大結晶粒径の
Poly−Siを半導体活性層としていることを特徴と
する薄膜半導体に関する。
A fourth aspect of the present invention relates to a thin film semiconductor characterized in that the poly-Si having a large crystal grain size obtained according to claim 1 is used as a semiconductor active layer.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

絶縁性基板あるいは絶縁膜上にa−Siを堆積する。酸
素濃度の低いa−5Lを得るためには、超高真空中での
蒸着法を用いると良い、しかし、スループットを上げる
ために、LP−CVD法、スパッタ法、p−cvo法等
の方法を用いることも可能である。この場合、ガス純度
やチャンバーからのリークや汚染等には十分注意しなけ
ればならないが、堆積速度が非常に重要な条件の1つで
ある。堆積速度が高い程a−Si中の酸素は減少するが
、10”ato■s/Cm’以下の酸素濃度とするため
には、少なくとも50人/win以上である必要がある
0例えば、LP−CVD法でこの堆積速度を得るにはジ
シランやトリシラン等の反応ガスを用いる必要があり、
同時に堆積温度は500℃以下であることが好ましい。
A-Si is deposited on an insulating substrate or an insulating film. In order to obtain a-5L with a low oxygen concentration, it is best to use an evaporation method in an ultra-high vacuum.However, in order to increase the throughput, methods such as LP-CVD, sputtering, and p-cvo are recommended. It is also possible to use In this case, one of the very important conditions is the deposition rate, although sufficient attention must be paid to gas purity, leakage and contamination from the chamber, etc. The higher the deposition rate, the less oxygen in a-Si, but in order to achieve an oxygen concentration of 10"ato s/Cm' or less, it must be at least 50 people/win.0For example, LP-Si To achieve this deposition rate with the CVD method, it is necessary to use a reactive gas such as disilane or trisilane.
At the same time, the deposition temperature is preferably below 500°C.

以上の方法で得られたa−Siを固相結晶化させる。結
晶化は600℃以上の温度でおこなうが。
The a-Si obtained by the above method is solid-phase crystallized. Crystallization takes place at a temperature of 600°C or higher.

温度が高すぎる(ex 700℃、800℃)と結晶核
が多数発生してしまい大粒径化ができなくなる。
If the temperature is too high (ex 700°C, 800°C), many crystal nuclei will be generated, making it impossible to increase the grain size.

このため、550〜600℃の温度に保って結晶化させ
ることが好ましい。
For this reason, it is preferable to maintain the temperature at 550 to 600°C for crystallization.

このようにして得られたPoly−SiはTEM観察に
よってその粒径を調べ大結晶化していることを確認した
。また、このPoly−Siを用いた丁FTを作製して
移動度を評価し、移動度が高いことを確認した。
The particle size of the thus obtained Poly-Si was examined by TEM observation, and it was confirmed that it was largely crystallized. Furthermore, a FT using this Poly-Si was fabricated and its mobility was evaluated, and it was confirmed that the mobility was high.

以下実施例を用いて説明する。This will be explained below using examples.

〔実施例1〕 石英基板上にLP−CVD法により基板温度500℃で
a−Siを1000人堆積した0反応ガスにはSiH4
あるいはSi、HGを使用し、堆積時の圧力を変化させ
て堆積速度を7人/win〜70人/winの範囲で変
化させた。そして、これらのa−Siを600”C,5
0時間の熱アニールによって同相結晶化させてPoly
−Siを得た。そして、 TEHによって結晶粒径を観
察した。また同時に、a−Si中の酸素濃度を調べるた
めに、単結晶Si上に前記堆積速度の異なるa−Siを
4000〜6000人堆積し、SIMS分析を行なった
。 SIMS分析において、単結晶Si基板を用いたの
は分析時のチャージアップを防ぐためであり、膜厚が厚
いのは膜表面の吸着物による分析への悪影響を取り除く
ためである。なお、分析装置はCAKECA製lN5−
4Fである。
[Example 1] 1000 a-Si layers were deposited on a quartz substrate by LP-CVD at a substrate temperature of 500°C. SiH4 was used as the reactive gas.
Alternatively, Si and HG were used, and the pressure during deposition was changed to vary the deposition rate in the range of 7 people/win to 70 people/win. Then, these a-Si were heated to 600"C,5
By thermal annealing for 0 hours, the Poly
-Si was obtained. Then, the crystal grain size was observed by TEH. At the same time, in order to examine the oxygen concentration in a-Si, 4,000 to 6,000 a-Si deposited at different deposition rates were deposited on single-crystal Si, and SIMS analysis was performed. In SIMS analysis, a single-crystal Si substrate is used to prevent charge-up during analysis, and the reason why the film is thick is to eliminate the adverse effect on analysis caused by adsorbed substances on the film surface. The analyzer is CAKECA IN5-
It is on the 4th floor.

第1図に、a−Si堆堆積度と固相結晶化Poly−S
iの平均結晶粒径との関係を示す。平均結晶粒径は、T
EM透過像について単位長さ当りに存在する結晶粒界の
数を求めることによって算呂した。
Figure 1 shows the degree of a-Si deposition and solid phase crystallization of Poly-S.
The relationship between i and the average grain size is shown. The average grain size is T
The results were calculated by determining the number of grain boundaries present per unit length in the EM transmission image.

第1図から明らかなように、堆積速度が高い程、平均結
晶粒径が大きいことが判る。また、第1表は堆積速度と
a−Si中の酸素濃度の関係である。
As is clear from FIG. 1, the higher the deposition rate, the larger the average crystal grain size. Further, Table 1 shows the relationship between the deposition rate and the oxygen concentration in a-Si.

第1表 堆積速度が高い程、酸素濃度が減少していることが明ら
かである。以上の結果から、a−Si中の酸素濃度が低
い程、粒径の大きなPoly−Siが得られていること
が明確である。
It is clear from Table 1 that the higher the deposition rate, the lower the oxygen concentration. From the above results, it is clear that the lower the oxygen concentration in a-Si, the larger the particle size of Poly-Si can be obtained.

さて、ここでa−Si中の酸素と結晶成長との関係をよ
り明確化するため、アニール時間と平均結晶粒径の関係
から結晶成長速度を求め、酸素濃度との対応を調べた。
Now, in order to clarify the relationship between oxygen in a-Si and crystal growth, the crystal growth rate was determined from the relationship between the annealing time and the average crystal grain size, and the relationship with the oxygen concentration was investigated.

結果を第2図に示す6a−Si中の酸素濃度が10”a
toms/Cm3以下で、結晶成長速度が急激に大きく
なっていることが判った・ 〔実施例2〕 実施例1で作製したPoly−3iを半導体活性層とし
てMOS−TFTを作製した。TPTの作製プロセスは
従来のC−MOSプロセスに準じ〔ゲート酸化膜はドラ
イ酸化法(1020℃、膜厚700人)とし、ソース・
ドレインはイオン注入によってセルファラインプロセス
である。〕、最後に水素プラズマ処理を行なった。
The results are shown in Figure 2. When the oxygen concentration in 6a-Si was 10”a
It was found that the crystal growth rate increased rapidly below toms/Cm3. [Example 2] A MOS-TFT was manufactured using Poly-3i manufactured in Example 1 as a semiconductor active layer. The TPT fabrication process is similar to the conventional C-MOS process [the gate oxide film is formed using the dry oxidation method (1020°C, film thickness 700°C), and the source and
The drain is a self-line process using ion implantation. ], and finally hydrogen plasma treatment was performed.

Nch−TPTの移動度を第2表に示す。a−Si中の
酸素濃度を10”atoms/cm”以下とすることで
固相結晶化Poly−Siを用いたTPTの移動度が大
幅に向上していることが判る。
Table 2 shows the mobility of Nch-TPT. It can be seen that the mobility of TPT using solid phase crystallized Poly-Si is significantly improved by setting the oxygen concentration in a-Si to 10"atoms/cm" or less.

第2表 〔効  果〕 本発明の方法により、同相結晶化における結晶成長速度
が大幅に大きくなるため、大結晶粒径Poly−Siが
得られるようになった。
Table 2 [Effects] According to the method of the present invention, the crystal growth rate in in-phase crystallization is significantly increased, so that Poly-Si with a large crystal grain size can be obtained.

また1本発明の方法により得られたPoly−SiをT
FTの活性層に用いると、結晶粒径が大きいため、TP
T移動度が大幅に向上した。
In addition, 1 Poly-Si obtained by the method of the present invention was
When used in the active layer of FT, because the crystal grain size is large, TP
T mobility was significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、a−Si堆堆積度と固相結晶化Poly−S
iの平均結晶粒径との関係を、第2図は、結晶成長速度
とa−5L中の酸素濃度との関係を示す6また、第3図
は、a−Si堆堆積度と平均結晶粒径との関係がSiH
4とSi2Hsとでは、異った関係にあることを示す。
Figure 1 shows the degree of a-Si deposition and solid phase crystallization of Poly-S.
Figure 2 shows the relationship between the average crystal grain size of i, and Figure 2 shows the relationship between the crystal growth rate and the oxygen concentration in a-5L. The relationship with the diameter is SiH
4 and Si2Hs have different relationships.

Claims (1)

【特許請求の範囲】 1、アモルファスシリコン(以下、a−Siと略記する
)を固相結晶化させて大結晶粒径の多結晶シリコン(以
下、Poly−Siと略記する)を製造する方法におい
て、前記a−Siとして酸素濃度が1×10^1^5a
toms/cm^3以下のものを使用することを特徴と
する大結晶粒径のPoly−Siを製造する方法。 2、前記酸素濃度1×10^1^5atoms/cm^
3下のa−Siが水素化けい素を含む反応ガスを用いて
50Å/min以上の堆積速度で形成されたものである
請求項1記載の大結晶粒径のPoly−Siを製造する
方法。 3、前記酸素濃度1×10^1^5atoms/cm^
3以下のa−SiがLP−CVD法で500℃以下の温
度で形成されたものである請求項1または2記載の大結
晶粒径のPoly−Siを製造する方法。 4、請求項1により得られた大結晶粒径のPoly−S
iを半導体活性層としていることを特徴とする薄膜半導
体。
[Claims] 1. In a method for producing polycrystalline silicon (hereinafter abbreviated as Poly-Si) with a large crystal grain size by solid-phase crystallizing amorphous silicon (hereinafter abbreviated as a-Si) , the oxygen concentration as the a-Si is 1×10^1^5a
A method for producing Poly-Si with a large crystal grain size, characterized by using Poly-Si with a crystal grain size of toms/cm^3 or less. 2. The oxygen concentration is 1 x 10^1^5 atoms/cm^
2. The method for producing Poly-Si with a large crystal grain size according to claim 1, wherein the a-Si under 3 is formed at a deposition rate of 50 Å/min or more using a reaction gas containing silicon hydride. 3. The oxygen concentration 1×10^1^5atoms/cm^
3. The method for producing Poly-Si with a large crystal grain size according to claim 1 or 2, wherein the a-Si having a diameter of 3 or less is formed by an LP-CVD method at a temperature of 500° C. or less. 4. Poly-S with large crystal grain size obtained according to claim 1
A thin film semiconductor characterized in that i is a semiconductor active layer.
JP30996190A 1990-11-15 1990-11-15 Manufacture of large crystal grain-sized polycrystal silicon and thin film semiconductor using same Pending JPH04180617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30996190A JPH04180617A (en) 1990-11-15 1990-11-15 Manufacture of large crystal grain-sized polycrystal silicon and thin film semiconductor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30996190A JPH04180617A (en) 1990-11-15 1990-11-15 Manufacture of large crystal grain-sized polycrystal silicon and thin film semiconductor using same

Publications (1)

Publication Number Publication Date
JPH04180617A true JPH04180617A (en) 1992-06-26

Family

ID=17999447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30996190A Pending JPH04180617A (en) 1990-11-15 1990-11-15 Manufacture of large crystal grain-sized polycrystal silicon and thin film semiconductor using same

Country Status (1)

Country Link
JP (1) JPH04180617A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104432A (en) * 1992-09-18 1994-04-15 Semiconductor Energy Lab Co Ltd Film-shaped semiconductor device and its manufacture
EP0663697A4 (en) * 1993-07-26 1997-11-26 Seiko Epson Corp THICK LAYER SEMICONDUCTOR ARRANGEMENT, THEIR PRODUCTION AND DISPLAY SYSTEM.
US6271066B1 (en) 1991-03-18 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US6562672B2 (en) 1991-03-18 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271066B1 (en) 1991-03-18 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US6562672B2 (en) 1991-03-18 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
JPH06104432A (en) * 1992-09-18 1994-04-15 Semiconductor Energy Lab Co Ltd Film-shaped semiconductor device and its manufacture
EP0663697A4 (en) * 1993-07-26 1997-11-26 Seiko Epson Corp THICK LAYER SEMICONDUCTOR ARRANGEMENT, THEIR PRODUCTION AND DISPLAY SYSTEM.

Similar Documents

Publication Publication Date Title
KR970006723B1 (en) Method for producing polycrystalline silicon thin film with large particle size
JPH05343316A (en) Manufacture of semiconductor device
JP2954039B2 (en) Method for forming SiGe thin film
Kim et al. Polycrystalline Si films formed by Al-induced crystallization (AIC) with and without Al oxides at Al/a-Si interface
Park et al. Effect of hydrogen plasma precleaning on the removal of interfacial amorphous layer in the chemical vapor deposition of microcrystalline silicon films on silicon oxide surface
JP3197036B2 (en) Method for forming crystalline silicon thin film
WO2022158148A1 (en) Method for manufacturing epitaxial wafer
US6309951B1 (en) Method for crystallizing amorphous silicon
JP3965215B2 (en) Manufacturing method of semiconductor substrate
JP3886085B2 (en) Manufacturing method of semiconductor epitaxial substrate
JP3220864B2 (en) Method for manufacturing semiconductor device
JPH04180617A (en) Manufacture of large crystal grain-sized polycrystal silicon and thin film semiconductor using same
JP4185575B2 (en) Epitaxial crystallization process
JPH01270310A (en) Semiconductor manufacturing method
JP3116403B2 (en) Method for manufacturing thin film transistor
JP2004281591A (en) Semiconductor epitaxial wafer and its manufacturing method, semiconductor device and its manufacturing method
KR100222913B1 (en) Process for forming polycrystalline silicon
JP2822394B2 (en) Method for manufacturing semiconductor device
JP3707287B2 (en) Manufacturing method of semiconductor device
JPH0888172A (en) Method for producing polycrystalline silicon film
KR0151821B1 (en) Process for chemical vapor deposition of silicon with suppressed particle formation
JPH05259458A (en) Manufacture of semiconductor device
JP2592984B2 (en) Manufacturing method of silicon thin film
KR100275195B1 (en) Method for fabrication thin film of poly silicon using solid phase crystallization of silicon thin film including nucleation prevention layer
JPH0660401B2 (en) Silicon thin film manufacturing method