[go: up one dir, main page]

JPH0419702B2 - - Google Patents

Info

Publication number
JPH0419702B2
JPH0419702B2 JP58003264A JP326483A JPH0419702B2 JP H0419702 B2 JPH0419702 B2 JP H0419702B2 JP 58003264 A JP58003264 A JP 58003264A JP 326483 A JP326483 A JP 326483A JP H0419702 B2 JPH0419702 B2 JP H0419702B2
Authority
JP
Japan
Prior art keywords
mercury
thin film
reaction tank
vapor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58003264A
Other languages
Japanese (ja)
Other versions
JPS59127833A (en
Inventor
Yutaka Hayashi
Mitsuyuki Yamanaka
Atsuo Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP326483A priority Critical patent/JPS59127833A/en
Publication of JPS59127833A publication Critical patent/JPS59127833A/en
Publication of JPH0419702B2 publication Critical patent/JPH0419702B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)

Description

【発明の詳細な説明】 この発明は、水銀励起部分を反応槽内に備えた
励起気相析出法による薄膜の製造装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing a thin film by an excited vapor phase deposition method, which is equipped with a mercury excitation part in a reaction tank.

従来の光気相析出法による薄膜の製造装置とし
て第1図に示すようなものがある。同図に示すよ
うに、反応槽1の外に設けられた光源2からの光
は、反応槽1の側壁に設けられた窓3により反応
槽1内に導かれる。そして反応ガス導入管7から
反応槽1内に導かれた反応ガスは、この光源2の
光のうち反応ガスを励起させるに必要なエネルギ
ー(Ea)以上のエネルギーをもつた光によつて
活性化され、必要に応じて加熱されたヒータ5上
の基板6の表面に薄膜が形成され、反応が終了し
た反応ガスは排気管4により反応槽1外に排気さ
れる。
An example of a conventional thin film manufacturing apparatus using the photovapor deposition method is shown in FIG. As shown in the figure, light from a light source 2 provided outside the reaction tank 1 is guided into the reaction tank 1 through a window 3 provided on the side wall of the reaction tank 1. The reactant gas introduced into the reaction tank 1 from the reactant gas introduction pipe 7 is activated by the light from the light source 2, which has an energy greater than the energy (E a ) required to excite the reactant gas. A thin film is formed on the surface of the substrate 6 on the heater 5 which is heated as necessary, and the reaction gas after the reaction is exhausted to the outside of the reaction tank 1 through the exhaust pipe 4.

上記のような従来構造の光気相析出法による薄
膜の製造装置は、反応槽1内の反応ガスの光のエ
ネルギーによつて励起させ、反応槽1内に生成し
た反応ガス活性種により、目的の基板6上に薄膜
と形成するものであるが、基板6以外の反応槽1
の内壁および窓3の部材においても薄膜が生成
し、その薄膜の成長により励起光の窓3からの透
過率が減少し、反応槽1内の反応活性種が十分に
生成されず、目的とする基板6上の薄膜の生成速
度は徐々に下がる。窓3を構成する部材の反応槽
1側表面に薄膜がさらに成長し、光源2からの励
起光が反応槽1内に入射しなくなれば、基板6上
の薄膜の成長は止まる。したがつて、基板6上の
薄膜をさらに成長させるためには、窓3を構成す
る部材の反応槽1側表面に成長した薄膜を、エツ
チング等により取り除く必要があつた。このた
め、薄膜生成は一時中断する必要があり、薄膜生
成の生産性の低下および中断した時に薄膜の表面
への空気からの不純物吸着による膜中への不純物
混入による薄膜の特性の低下を招いていた。この
問題点は水銀蒸気を反応槽内に発生させた水銀増
感法でも全く同様であつた。さらに、この問題は
光源2を反応槽1内に持ち込んでも、光源2の管
球等の外壁へ薄膜の堆積が生じ、本質的な解決に
はならなかつた。
The thin film production apparatus using the photovapor deposition method with the conventional structure described above excites the reaction gas in the reaction tank 1 with the energy of light, and uses the active species of the reaction gas generated in the reaction tank 1 to achieve the desired goal. The thin film is formed on the substrate 6 of the reaction tank 1 other than the substrate 6.
A thin film is also generated on the inner wall of the reactor 1 and the members of the window 3, and due to the growth of the thin film, the transmittance of the excitation light from the window 3 is reduced, and the reactive active species in the reaction tank 1 are not sufficiently generated. The rate of formation of the thin film on the substrate 6 gradually decreases. When the thin film further grows on the surface of the member constituting the window 3 on the reaction tank 1 side, and the excitation light from the light source 2 no longer enters the reaction tank 1, the growth of the thin film on the substrate 6 stops. Therefore, in order to further grow the thin film on the substrate 6, it was necessary to remove the thin film grown on the surface of the member constituting the window 3 on the reaction tank 1 side by etching or the like. For this reason, thin film production needs to be temporarily interrupted, which leads to a decrease in the productivity of thin film production and a decrease in the properties of the thin film due to impurities being adsorbed from the air onto the surface of the thin film and mixing with the film. Ta. This problem was exactly the same in the mercury sensitization method in which mercury vapor was generated in the reaction tank. Furthermore, even if the light source 2 was brought into the reaction tank 1, a thin film would be deposited on the outer wall of the tube of the light source 2, and this problem was not essentially solved.

この発明は、上述の点にかんがみてなされたも
ので、反応槽に通ずるように放電部分を設け、こ
の放電部分に水銀蒸気を放電によつて活性化し、
活性化した水銀蒸気を反応槽内に送り込むように
した励起気相析出法による薄膜の製造装置を提供
することを目的とする。
This invention was made in view of the above-mentioned points, and includes providing a discharge portion leading to a reaction tank, activating mercury vapor in this discharge portion by discharge,
An object of the present invention is to provide a thin film manufacturing apparatus using an excited vapor phase deposition method in which activated mercury vapor is sent into a reaction tank.

この目的を達成するために、この発明では、以
下の構成をとる。すなわち、反応槽は該反応槽内
に設けられた水銀励起部分と気相析出部分とから
構成され、該水銀励起部分と気相析出部分とは水
銀蒸気が通過するように接続され、該水銀励起部
分は水銀蒸気導入手段を設けた放電領域から少な
くとも構成され、該気相析出部分は反応ガス導入
手段と基板手持手段とから少なくとも構成されて
いる。
In order to achieve this objective, the present invention adopts the following configuration. That is, the reaction tank is composed of a mercury excitation part and a vapor phase precipitation part provided in the reaction tank, and the mercury excitation part and the vapor phase precipitation part are connected so that mercury vapor passes therethrough, and the mercury excitation The part is composed of at least a discharge region provided with mercury vapor introducing means, and the vapor phase deposition part is composed of at least reactive gas introducing means and substrate holding means.

以下、この発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第2図はこの発明の一実施例をなす放電部分に
グロー放電を用いた、光気相析出法による薄膜の
製造装置の概略を示す図である。図中、11は反
応槽、12a,12bは前記反応槽11に設けら
れた排気管、13,14は前記反応槽11内に設
けられた電極、15は前記反応槽11内に設けら
れた基板支持手段兼加熱部、17は前記加熱部1
5上に設けられた基板、18は高周波電源、19
は直流電源、20は水銀蒸気を含むキヤリアガス
を反応槽11内に導くキヤリアガス導入管、21
は反応ガスを反応槽11内に導く反応ガス導入
管、22はキヤリアガスに水銀蒸気を含ませない
場合に設けられた水銀溜である。
FIG. 2 is a diagram schematically showing an apparatus for manufacturing a thin film by a photovapor deposition method, which uses glow discharge in the discharge portion, which constitutes an embodiment of the present invention. In the figure, 11 is a reaction tank, 12a and 12b are exhaust pipes provided in the reaction tank 11, 13 and 14 are electrodes provided in the reaction tank 11, and 15 is a substrate provided in the reaction tank 11. Supporting means/heating section 17 is the heating section 1
A substrate provided on 5, 18 is a high frequency power supply, 19
21 is a DC power source; 20 is a carrier gas introduction pipe for guiding carrier gas containing mercury vapor into the reaction tank 11;
Reference numeral 22 indicates a reaction gas introduction pipe for introducing the reaction gas into the reaction tank 11, and 22 a mercury reservoir provided when the carrier gas does not contain mercury vapor.

この実施例では、電極13,14、キヤリアガ
ス導入管20または水銀溜22からなる水銀蒸気
導入手段とで水銀励起部分が形成され、基板支持
手段兼加熱部15と反応ガス導入管21近傍が気
相析出部分となつており、この2領域間は気相
(減圧雰囲気も含めて)連続している。
In this embodiment, a mercury excitation part is formed by the electrodes 13 and 14 and the mercury vapor introduction means consisting of the carrier gas introduction pipe 20 or the mercury reservoir 22, and the vicinity of the substrate supporting means/heating part 15 and the reaction gas introduction pipe 21 is in the vapor phase. This is the precipitation area, and the gas phase (including the reduced pressure atmosphere) is continuous between these two areas.

キヤリアガスはキヤリアガス導入管20により
反応槽11内に導かれる。電極13および電極1
4に高周波電源18から高周波高電圧を印加する
と、電極13と電極14間にグロー放電が発生す
る。このグロー放電によりキヤリアガス中の水銀
蒸気または水銀溜22から蒸発した水銀蒸気が励
起され、反応ガス導入管21から導かれた反応ガ
スを励起させるのに必要なエネルギー(Ea)以
上の励起エネルギーを持つた水銀蒸気により、反
応ガスは活性化される。そして必要に応じて基板
支持手段兼加熱部15によつて加熱された基板1
7の表面に薄膜が生成される。発光ガスは電極1
3および電極14の近くの排気管12aによつて
反応槽11外に排気され、反応ガスは基板支持手
段兼加熱部15の近くの排気管12bから反応槽
11外に排気される。電極13および電極14の
近くの排気管12aと基板手持手段兼加熱部15
の近くの排気管12bはそれぞれ排気速度の異な
る排気系に接続され差動排気される。
The carrier gas is introduced into the reaction tank 11 through a carrier gas introduction pipe 20. Electrode 13 and Electrode 1
When a high frequency high voltage is applied to the electrode 4 from the high frequency power supply 18, a glow discharge is generated between the electrode 13 and the electrode 14. This glow discharge excites the mercury vapor in the carrier gas or the mercury vapor evaporated from the mercury reservoir 22, and generates an excitation energy greater than the energy (E a ) required to excite the reaction gas introduced from the reaction gas introduction tube 21. The reactant gas is activated by the retained mercury vapor. Then, the substrate 1 is heated by the substrate supporting means/heating section 15 as necessary.
A thin film is formed on the surface of 7. Luminous gas is electrode 1
The reaction gas is exhausted to the outside of the reaction tank 11 through an exhaust pipe 12a near the substrate supporting means/heating section 15. Exhaust pipe 12a near electrode 13 and electrode 14 and substrate holding means/heating section 15
The exhaust pipes 12b near the exhaust pipes 12b are connected to exhaust systems having different exhaust speeds and are differentially pumped.

第3図は、第2図と同様励起光源にグロー放電
を用いた、この発明の他の実施例をなす薄膜の製
造装置を示す概略図である。図中、第2図と同一
符号を付した部分は同一部分を示す。16は荷電
粒子が基板17上の薄膜に与える損傷を防ぐため
のシールド電極で、バイアス電源19′に接続さ
れている。
FIG. 3 is a schematic diagram showing a thin film manufacturing apparatus according to another embodiment of the present invention, which uses a glow discharge as an excitation light source, similar to FIG. 2. In the figure, parts given the same reference numerals as those in FIG. 2 indicate the same parts. A shield electrode 16 is connected to a bias power source 19' to prevent charged particles from damaging the thin film on the substrate 17.

高周波電源18から櫛歯状に交互設けられた電
極13と電極14との間に高周波高電圧を印加す
ると、電極13と電極14との間にグロー放電が
発生し、このグロー放電により水銀蒸気が励起さ
れ、この励起水銀蒸気により反応ガスが活性化さ
れ、基板17の上に薄膜が形成されるのは第2図
に示す薄膜製造装置と同様である。
When a high frequency high voltage is applied from the high frequency power source 18 between the electrodes 13 and 14 which are arranged in a comb-like pattern, a glow discharge is generated between the electrodes 13 and 14, and this glow discharge causes mercury vapor to be released. The reactant gas is activated by the excited mercury vapor, and a thin film is formed on the substrate 17 in the same manner as in the thin film manufacturing apparatus shown in FIG.

上記のような構成にすることにより、薄膜の生
成に従い反応槽11の内壁にも薄膜が生成される
が、水銀励起のための光を必要としないために、
励起が内壁の薄膜に遮られず、また、水銀励起部
分と気相析出部分を差動排気によつて仕切るため
発光部分での膜の生成は抑えられ、薄膜の生成に
ともなう励起光の強度の減少は抑えることが可能
となる。
With the above configuration, a thin film is also formed on the inner wall of the reaction tank 11 as the thin film is formed, but since no light is required for mercury excitation,
The excitation is not blocked by the thin film on the inner wall, and since the mercury excitation part and the vapor phase deposition part are separated by differential pumping, the formation of a film in the light emitting part is suppressed, and the intensity of the excitation light due to the formation of the thin film is reduced. The decrease can be suppressed.

以上がこの発明の実施例であるが、次にその具
体例について説明する。
The embodiments of this invention have been described above, and next, specific examples thereof will be explained.

第2図に示す励起光源にグロー放電および水銀
増感を用いた実施例において、SiH4ガスからの
非晶質シリコン膜の生成について説明する。コー
ニング社製No.7059ガラス(20mm×100mm、厚み1
mm)を洗浄後、基板支持手段兼加熱部15上の基
板ホルダにセツトし、反応槽11内を油回転ポン
プとカニカルブースターにより絶対圧真空計
(MKSパラトロン社製)で20mTorr.まで排気し
た後、基板手持手段兼加熱部15によつて基板1
7を180℃に加熱し、さらに70℃に加熱した水銀
溜22から水銀蒸気を生成する。電極13,14
付近の絶対圧力は60mTorr.電極13,14間に
13.56MHzの高周波高電圧を50W重量してグロー
放電を起こした。そして、基板手持手段兼加熱部
15の中央の反応ガス導入管21によりSiH4
スを毎分20c.c.の速度で反応槽11内に供給し、基
板17付近の絶対圧力を0.2Torr.で、光気相析出
を100分間行い、前記7059ガラス上に膜厚3000Å
の膜厚を形成した。なお、励起部分の圧力調整の
ためにキヤリアガスを流すこともできる。この場
合、キヤリアガスのグロー放電による発光により
水銀蒸気を活性化させ、水銀増感反応により
SiH4ガスを分解することも可能であり、この場
合、発光ガスには水銀を活性化させるのに必要な
波長2537Å以下の光のエネルギーを多く発光する
ものが必要であり、また、薄膜の特性に悪影響を
与えない発光ガスが必要である。He、Ne、Ar、
Xeなどの希ガスおよびH2等膜質に与える影響の
少ないガスが望ましい。
The production of an amorphous silicon film from SiH 4 gas will be described in an example using glow discharge and mercury sensitization as the excitation light source shown in FIG. Corning No.7059 glass (20mm x 100mm, thickness 1
mm) was cleaned, set in the substrate holder on the substrate support/heating unit 15, and the inside of the reaction tank 11 was evacuated to 20 mTorr using an oil rotary pump and a canonical booster using an absolute pressure vacuum gauge (manufactured by MKS Paratron). After that, the substrate 1 is held by the substrate holding means/heating section 15.
7 is heated to 180°C, and mercury vapor is generated from the mercury reservoir 22 which is further heated to 70°C. Electrodes 13, 14
The absolute pressure in the vicinity is 60 mTorr. Between electrodes 13 and 14
A glow discharge was generated using a 13.56MHz high frequency high voltage of 50W. Then, SiH 4 gas is supplied into the reaction tank 11 at a rate of 20 c.c. per minute through the reaction gas introduction pipe 21 in the center of the substrate holding means/heating section 15, and the absolute pressure near the substrate 17 is set to 0.2 Torr. , photovapor phase deposition was performed for 100 minutes, and a film thickness of 3000 Å was obtained on the 7059 glass.
A film thickness of . Note that a carrier gas can also be flowed to adjust the pressure in the excitation part. In this case, mercury vapor is activated by light emission caused by glow discharge of the carrier gas, and a mercury sensitization reaction occurs.
It is also possible to decompose SiH 4 gas, and in this case, the luminescent gas must be one that emits a lot of light energy with a wavelength of 2537 Å or less, which is necessary to activate mercury, and the characteristics of the thin film must be A luminescent gas is needed that does not have a negative impact on the environment. He, Ne, Ar,
Gases that have little effect on film quality, such as rare gases such as Xe and H2 , are desirable.

さらに、水銀蒸気は上記水銀溜22からではな
く、別途ガス混合装置内に設けられた水銀溜か
ら、キヤリアガス導入管20を通して電極13,
14間に供給してもよい。
Furthermore, mercury vapor is not supplied from the mercury reservoir 22, but from a mercury reservoir separately provided in the gas mixing device, and is passed through the carrier gas introduction pipe 20 to the electrode 13,
It may be supplied for 14 hours.

また、この発明の水銀蒸気の放電スペースは光
そのものを基板に照射する必要がないので小さく
てよく、第2図の実施例では放電電極の収容され
る部分は、基板が収容される反応槽11へ通ずる
小さな放電槽でよい。
Furthermore, the mercury vapor discharge space of the present invention can be small since it is not necessary to irradiate the substrate with the light itself, and in the embodiment shown in FIG. A small discharge tank leading to the

以上の実施例では適用される膜は非晶質シリコ
ン膜が実例として開示されたが、シリコン窒化
膜、酸化膜、金属膜等各種薄膜に適用可能であ
る。
In the above embodiments, an amorphous silicon film was disclosed as an example of the applied film, but the present invention can be applied to various thin films such as a silicon nitride film, an oxide film, and a metal film.

以上説明したように、この発明に係る励起気相
析出法による薄膜の製造装置は、反応槽内に水銀
励起部分を有し、活性化された水銀蒸気を反応ガ
スに直接照射させるようにしたので、膜の生成に
従い反応槽の内壁においても薄膜が生成される
が、窓を持たない水銀の励起は遮られることはな
く、薄膜の生産性の向上および薄膜の特性の向上
に極めて優れた効果を有する。
As explained above, the apparatus for producing thin films by the excited vapor deposition method according to the present invention has a mercury excitation part in the reaction tank, and the activated mercury vapor is directly irradiated onto the reaction gas. As the film is formed, a thin film is also formed on the inner wall of the reaction tank, but the excitation of mercury, which does not have a window, is not blocked, and this has an extremely excellent effect on improving thin film productivity and properties. have

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光気相析出法による薄膜の製造
装置の概略構成図、第2図および第3図ははこの
発明の光気相析出法による薄膜の製造装置の実施
例をそれぞれ示す概略構成図である。 図中、11は反応槽、12は排気管、13,1
4は電極、15は基板支持部兼加熱部、16はシ
ールド電極、17は基板、18は高周波電源、1
9は直流電源、19′はバイアス電源、20はキ
ヤリアガス導入管、21は反応ガス導入管、22
は水銀溜である。
FIG. 1 is a schematic configuration diagram of a conventional thin film manufacturing apparatus using the photovapor deposition method, and FIGS. 2 and 3 are schematic diagrams showing an embodiment of the thin film manufacturing apparatus using the photovapor deposition method of the present invention. FIG. In the figure, 11 is a reaction tank, 12 is an exhaust pipe, 13,1
4 is an electrode, 15 is a substrate support/heating section, 16 is a shield electrode, 17 is a substrate, 18 is a high frequency power source, 1
9 is a DC power supply, 19' is a bias power supply, 20 is a carrier gas introduction pipe, 21 is a reaction gas introduction pipe, 22
is a mercury reservoir.

Claims (1)

【特許請求の範囲】[Claims] 1 反応槽内に反応ガスを導き、この反応ガスを
活性化した水銀蒸気により活性化させ基板上に薄
膜を形成する励起気相析出法による薄膜の製造装
置において、前記反応槽は該反応槽内に設けられ
た水銀励起部分と気相析出部分とから構成され、
該水銀励起部分と気相析出部分とは水銀蒸気が通
過するように接続され、該水銀励起部分は水銀蒸
気導入手段を設けた放電領域から少なくとも構成
され、該気相析出部分は反応ガス導入手段と基板
支持手段とから少なくとも構成されたことを特徴
とする励起気相析出法による薄膜の製造装置。
1. In an apparatus for producing a thin film by an excited vapor phase deposition method in which a reaction gas is introduced into a reaction tank and the reaction gas is activated by activated mercury vapor to form a thin film on a substrate, the reaction tank is It consists of a mercury excitation part and a vapor phase precipitation part provided in
The mercury excitation part and the vapor phase deposition part are connected so that mercury vapor passes therethrough, the mercury excitation part is comprised of at least a discharge area provided with a mercury vapor introducing means, and the vapor phase precipitation part is constituted by a reaction gas introduction means. 1. An apparatus for producing a thin film by an excited vapor deposition method, characterized in that the apparatus comprises at least the following: and a substrate support means.
JP326483A 1983-01-12 1983-01-12 Thin film manufacturing device according to excited vapor phase deposition Granted JPS59127833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP326483A JPS59127833A (en) 1983-01-12 1983-01-12 Thin film manufacturing device according to excited vapor phase deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP326483A JPS59127833A (en) 1983-01-12 1983-01-12 Thin film manufacturing device according to excited vapor phase deposition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15487989A Division JPH0637705B2 (en) 1989-06-16 1989-06-16 Equipment for thin film production by direct excitation vapor deposition

Publications (2)

Publication Number Publication Date
JPS59127833A JPS59127833A (en) 1984-07-23
JPH0419702B2 true JPH0419702B2 (en) 1992-03-31

Family

ID=11552601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP326483A Granted JPS59127833A (en) 1983-01-12 1983-01-12 Thin film manufacturing device according to excited vapor phase deposition

Country Status (1)

Country Link
JP (1) JPS59127833A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218721A (en) * 1983-05-27 1984-12-10 Ushio Inc Film formation method
JPH01239919A (en) * 1988-03-22 1989-09-25 Semiconductor Energy Lab Co Ltd Method and apparatus for plasma treatment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130369A (en) * 1974-04-01 1975-10-15
JPS56124229A (en) * 1980-03-05 1981-09-29 Matsushita Electric Ind Co Ltd Manufacture of thin film
JPS57202740A (en) * 1981-06-05 1982-12-11 Mitsubishi Electric Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS59127833A (en) 1984-07-23

Similar Documents

Publication Publication Date Title
US6984595B1 (en) Layer member forming method
US4509451A (en) Electron beam induced chemical vapor deposition
US5427824A (en) CVD apparatus
US6013338A (en) CVD apparatus
US6786997B1 (en) Plasma processing apparatus
JP3415207B2 (en) Metal thin film formation method by chemical vapor deposition
US5185179A (en) Plasma processing method and products thereof
JPH08279498A (en) Line plasma vapor deposition apparatus and method
JPH0419702B2 (en)
JPS60245217A (en) Thin film formation equipment
JP2626339B2 (en) Thin film forming equipment
JPH0637705B2 (en) Equipment for thin film production by direct excitation vapor deposition
JPH0543393A (en) Method for preparing carbon material
JP2003281991A (en) Hot cathode and discharge device using the same
JP3522738B2 (en) Metal thin film formation method by chemical vapor deposition
JPS61216318A (en) Photo chemical vapor deposition device
JP2562662B2 (en) Method for forming amorphous silicon film
JP4034841B2 (en) Carbon nitride and method for producing the same
JPS63241185A (en) Method of depositing metal thin films
JPS6138268B2 (en)
JPS61143585A (en) Thin film forming method
JPH04105314A (en) Manufacture of amorphous silicon
JPH0573046B2 (en)
JPH0941147A (en) Plasma CVD method
JPS61196528A (en) Thin film forming apparatus