JPH04206630A - Manufacture of amorphous silicon thin film - Google Patents
Manufacture of amorphous silicon thin filmInfo
- Publication number
- JPH04206630A JPH04206630A JP2334180A JP33418090A JPH04206630A JP H04206630 A JPH04206630 A JP H04206630A JP 2334180 A JP2334180 A JP 2334180A JP 33418090 A JP33418090 A JP 33418090A JP H04206630 A JPH04206630 A JP H04206630A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- amorphous silicon
- film
- thin film
- silicon film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 title claims abstract description 47
- 239000010409 thin film Substances 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000010408 film Substances 0.000 claims abstract description 36
- 229910052724 xenon Inorganic materials 0.000 claims abstract description 18
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 239000011521 glass Substances 0.000 abstract description 11
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 43
- 238000001782 photodegradation Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 238000002156 mixing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 229910003828 SiH3 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- OLRJXMHANKMLTD-UHFFFAOYSA-N silyl Chemical compound [SiH3] OLRJXMHANKMLTD-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Silicon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
本発明は太陽電池等として供してより優れた光劣化抑制
性能をもたらす、高い安定性を示すアモルファスシリコ
ン系薄膜を効率よく製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for efficiently producing an amorphous silicon-based thin film exhibiting high stability and providing superior photodegradation suppression performance when used as a solar cell or the like.
[従来技術]
従来、アモルファスシリコン(a−Siと表ス)系膜を
形成する方法としては、プラズマCVD法、光CVD法
等で行われているものの、今日においても充分に光劣化
抑制性能を有する上記膜はなかなか得難く満足するまで
には到っていない。[Prior Art] Conventionally, methods for forming amorphous silicon (a-Si and surface) films have been carried out by plasma CVD, photo-CVD, etc., but even today, these methods do not have sufficient photodegradation suppression performance. The above-mentioned film having the above-mentioned properties is difficult to obtain and has not yet been achieved satisfactorily.
一方、キセノンガスを用いた前記CVD法の例としては
例えば、特開平1−294866号公報には、プラズマ
CVD法において、アモルファスシリコン膜形成用原料
ガスにXeガス、ことにその添加量が前記原料ガスに対
して2Vo1.%以下用いること等によって、原料ガス
を分解して活性化させることを促進し、前記膜特性を劣
化させることなく、膜の成膜速度を向上させようとする
アモルファスシリコン膜の形成方法が記載されている。On the other hand, as an example of the CVD method using xenon gas, for example, Japanese Patent Application Laid-Open No. 1-294866 discloses that in the plasma CVD method, Xe gas is added to the raw material gas for forming an amorphous silicon film, and in particular, the amount of Xe gas added to the raw material gas is 2Vo1 for gas. A method for forming an amorphous silicon film is described in which the film formation rate is improved without deteriorating the film properties by promoting the decomposition and activation of the source gas by using less than %. ing.
また、特公平1−32652号公報には、光CVD法に
おいて、シラン含有ガス混合物に感光剤となるキセノン
等の不活性ガスを添加し用いるアモルファス・シリコン
膜の製造方法が記載されている等である。Furthermore, Japanese Patent Publication No. 1-32652 describes a method for producing an amorphous silicon film using a photo-CVD method in which an inert gas such as xenon, which serves as a photosensitizer, is added to a silane-containing gas mixture. be.
前述した特開平1−294866号公報に記載の方法に
よって成膜されたアモルファスシリコン膜については、
2Vo1%以下のXeガスの添加で成膜速度を向上させ
るようにすることはできたとしてもその範囲で光劣化抑
制性能を有することについては全く記載されておらず、
その向上をも成し得ることとなるものとは必ずしも言え
ないものであり、また特公平1−32652号公報に記
載の方法は光子の吸収に対する反応体の感光度を増加さ
せようとするものであって、水分および移動性イオンの
両方に起因する環境汚染の悪影響による腐蝕および装ν
劣化を防止することによって固体装置の信頼性を増大さ
せようとするものの、やはり光劣化抑制性能を有するこ
とについては全く記載されておらずその向上をも成し得
るものとは言い難いものである。Regarding the amorphous silicon film formed by the method described in JP-A-1-294866 mentioned above,
Even if it is possible to improve the film formation rate by adding 2Vo1% or less of Xe gas, there is no mention of having photodegradation suppressing performance within that range.
It cannot necessarily be said that this improvement can be achieved, and the method described in Japanese Patent Publication No. 1-32652 is an attempt to increase the photosensitivity of the reactant to absorption of photons. Corrosion and corrosion due to the negative effects of environmental pollution caused by both moisture and mobile ions
Although attempts are made to increase the reliability of solid-state devices by preventing deterioration, there is no mention of photo-degradation inhibiting performance, and it is difficult to say that improvements can be made. .
〔MB点を解決するための手段]
本発明は、従来のかかる欠点に鑑みて成したものであっ
て、アモルファスシリコン系膜形成用原料ガスに対しキ
セノン(Xe)ガスを特定した充分な量混合した混合物
ガスを用いて、プラズマCVD法によって基板上に成膜
するようにしたことにより、キセノンガス、ことにその
物理的なものと考えられる作用効果によって、光劣化抑
制を充分有するように成るアモルファスシリコン系S膜
の製造方法を提供するものである。[Means for solving the MB point] The present invention has been made in view of the above-mentioned drawbacks of the conventional technology, and includes mixing a specific and sufficient amount of xenon (Xe) gas with the raw material gas for forming an amorphous silicon film. By forming a film on a substrate by plasma CVD using a mixture gas of A method for manufacturing a silicon-based S film is provided.
すなわち、本発明は、アモルファスシリコン系膜形成用
原料ガスとキセノンガスの混合物を用いてプラズマCV
D法により、基板上にアモルファスシリコン系膜を形成
する方法において、体積表示で、キセノンガス/アモル
ファスシリコン系膜形成用原料ガス≧1の混合物ガスを
用いることを特徴とするアモルファスシリコン系薄膜の
製造方法を提供するものである。That is, the present invention uses a mixture of an amorphous silicon film-forming raw material gas and xenon gas to perform plasma CV
A method for forming an amorphous silicon film on a substrate by method D, characterized in that a mixture gas of xenon gas/raw material gas for forming an amorphous silicon film ≧1 in terms of volume is used. The present invention provides a method.
ここで、体積表示で、前記したキセノンガス/アモルフ
ァスシリコン系膜形成用原料カス≧1の混合物ガスを用
いることとしたのは、1未満であれば充分光劣化抑制の
作用効果を得ることができないように成るためであり、
好ましくは30≧キセノンガス/アモルファスシリコン
系膜形成用原料ガス≧2である。なおこの際、1未満で
も1に近くなるにつれ前記光劣化抑制の作用効果が次第
に高まるものの、所期の光劣化抑制を得るためには1以
上とする必要があるものである。Here, we decided to use the above-mentioned xenon gas/amorphous silicon film-forming raw material residue≧1 mixture gas in terms of volume, because if it is less than 1, sufficient effect of suppressing photodegradation cannot be obtained. so that you may become
Preferably, 30≧xenon gas/amorphous silicon film forming raw material gas≧2. In this case, even if it is less than 1, as it approaches 1, the effect of suppressing photodegradation increases gradually, but in order to obtain the desired suppression of photodegradation, it is necessary to set it to 1 or more.
また、アモルファスシリコン系膜形成用原料ガスについ
ては、例えばシラン(SiHi) 、ジシラン(SiJ
b )ならびにゲルマン(GeH4)とシランあるいは
ジシランの混合物ガス、メタン(CH,)とシランある
いはジシランの混合物ガス等であり、通常のアモルファ
スシリコン系膜形成用原料は、ことにプラズマCVD法
において用いるものは使用できるものである。In addition, regarding the raw material gas for forming an amorphous silicon film, for example, silane (SiHi), disilane (SiJ
b), a mixture gas of germane (GeH4) and silane or disilane, a mixture gas of methane (CH,) and silane or disilane, etc., and the raw materials for forming ordinary amorphous silicon films are those used especially in plasma CVD method. can be used.
さらに、アモルファスシリコン系薄膜については、アモ
ルファスシリコン薄膜および種々のアモルファス状のシ
リコン系合金引り例えばアモルファスシリコンゲルマニ
エーム(a−5iGe) 、7%ルファスシリコンカー
ボン(a−5iC)等を総称して表したものである。Furthermore, regarding amorphous silicon-based thin films, amorphous silicon thin films and various amorphous silicon-based alloys such as amorphous silicon germanieme (a-5iGe) and 7% rufus silicon carbon (a-5iC) are collectively referred to. This is what I did.
さらにまた、前記プラズマCVD法を用いることとした
のは、プラズマCVD法を用いて前記キセノンによる作
用効果を得て成したからであって、他のアモルファスシ
リコン系薄膜の成膜法に応用し適用して前記作用効果を
得るようすることもできることは言うまでもない。なお
、基板については、ガラス、アルミニューム、ステンレ
ス等であり、特に限定されるものではない。Furthermore, the reason for using the plasma CVD method is that the effect of the xenon was obtained using the plasma CVD method, and it can be applied to other amorphous silicon thin film formation methods. It goes without saying that the above effects can also be achieved by Note that the substrate may be made of glass, aluminum, stainless steel, etc., and is not particularly limited.
前述したとおり、本発明のアモルファスシリコン系薄膜
の製造方法は、体積表示で、キセノンガス/アモルファ
スシリコン系膜形成用71ガス≧1である混合物ガスを
用いることとしたので、優れた光劣化抑制性能を有する
前記薄膜と成し得たものであり、プラズマCVD法にお
いてアモルファスシリコン系薄膜を作製する際のキセノ
ン混合の作用としては、Xeの長寿命励起種のもつエネ
ルギーは9.45eVであるから成膜反応種としてSi
H,が多くでき、所謂良い膜質が期待できるものとなる
。As mentioned above, the method for manufacturing an amorphous silicon thin film of the present invention uses a mixture gas in which the volumetric representation of xenon gas/71 gas for forming an amorphous silicon film is ≧1, so it has excellent photodegradation suppression performance. The effect of mixing xenon when producing an amorphous silicon thin film using the plasma CVD method is that the energy of the long-lived excited species of Xe is 9.45 eV. Si as membrane reactive species
A large amount of H is produced, and so-called good film quality can be expected.
すなわちSiH4+SiH3の励起エネルギーは8.7
5eVであり、5i)1.+5i)1.の励起エネルギ
ーは9.47eVであるので、悪い膜質を誘起する5i
H1の生成のためには9.47eV以上の励起エネルギ
ーを必要とするため、前記特定した値のXeを用いるこ
とで5iHzを生成しないようにし得ることとなり、X
e (m=131 )という重い物質が膜成長表面に存
在すること、ことにある特定量点在することによって成
膜ラジカル5i)13の表面でのラジカル運動を抑制す
る、このため結晶化を防げ、しかも水素原子が集まって
いるようなボイドをネットワーク中に組み込むことがで
きること等を推考し確かめるなかで、これらの作用効果
が体積表示で、Xeガス/a−5i系膜形成用原料ガス
≧1で光劣化抑制性能を発現するのに対し有効であるこ
とを見出したものであって、本発明の方法によって成膜
したアモルファスシリコン系薄膜は充分長期的な光劣化
抑制性能を有するものと成り、太陽電池を初め、アモル
ファスシリコン系薄膜を採用する各種電子物品等、広い
分野で有用なものとなる。In other words, the excitation energy of SiH4+SiH3 is 8.7
5eV, 5i)1. +5i)1. Since the excitation energy of is 9.47 eV, 5i induces poor film quality.
Since an excitation energy of 9.47 eV or more is required to generate H1, by using the specified value of Xe, it is possible to avoid generating 5 iHz, and
The presence of a heavy substance called e (m = 131) on the film growth surface, especially when it is scattered in a certain amount, suppresses the radical movement of the film-forming radicals 5i) 13 on the surface, thus preventing crystallization. Moreover, while considering and confirming that it is possible to incorporate voids where hydrogen atoms are gathered into the network, we found that these effects are expressed in volume, and when Xe gas/a-5i material gas for forming a-5i film is The amorphous silicon-based thin film formed by the method of the present invention has a sufficiently long-term photodegradation inhibiting performance. It will be useful in a wide range of fields, including solar cells and various electronic products that use amorphous silicon thin films.
[実施例1
以下、本発明の一実施例を図面に基づいて説明する。但
し本発明は係る実施例に限定されるものではない。[Embodiment 1] Hereinafter, one embodiment of the present invention will be described based on the drawings. However, the present invention is not limited to these embodiments.
第1図は本発明の製造方法を用いてガラス基板上にアモ
ルファスシリコン系薄膜を成膜する平行平板型プラズマ
CVD装置の一例を示す概略図であり、該プラズマCV
D装置上は、減圧可能にして真空槽となる反応容器2と
、該容器2と同心的で上下に平行して配置された平板型
放電電極3゜3と、該電極の上部側に接続された高周波
電源10と、ガラス基板4を載置できるようになってい
て載置した下部側の前記電極内に設けられ内部から前記
ガラス基板を、例えば200〜300℃程度に加熱する
ヒータ5と、5iHa、5IJa 、Ge14等のアモ
ルファスシリコン系膜形成用原料ガス供給源6とキセノ
ンガス供給源7とから供給し、前述した特定の体積比で
混合した混合物ガスを前記反応容器2内に導入する導入
管8と、前記反応容器2を一旦高真空に排気した後供給
ガスの圧力を所定の値に保持するための排気ポンプに繋
がる排気口9とから成るものである。FIG. 1 is a schematic diagram showing an example of a parallel plate plasma CVD apparatus for forming an amorphous silicon thin film on a glass substrate using the manufacturing method of the present invention.
On the D device, there is a reaction vessel 2 that can be depressurized and serves as a vacuum chamber, a flat discharge electrode 3゜3 that is concentric with the vessel 2 and arranged vertically in parallel, and is connected to the upper side of the electrode. a high frequency power source 10 on which the glass substrate 4 can be placed, a heater 5 provided in the electrode on the lower side on which the glass substrate 4 is placed and heats the glass substrate from the inside to, for example, about 200 to 300°C; Introduction of introducing a mixture gas into the reaction vessel 2, which is supplied from a raw material gas supply source 6 for forming an amorphous silicon film such as 5iHa, 5IJa, Ge14, etc. and a xenon gas supply source 7 and mixed at a specific volume ratio as described above. It consists of a pipe 8 and an exhaust port 9 connected to an exhaust pump for maintaining the pressure of the supplied gas at a predetermined value after the reaction vessel 2 is once evacuated to a high vacuum.
前記プラズマCVD装置上において、前記下部側電極3
上にガラス基板4を装着した後、反応容器2を密閉し、
排気して該容器2内を高真空(例えば、1×10h〜1
×1011TOrr程度)に減圧し、前記電極内に配備
されているヒータ5によりガラス基板4を200〜30
0℃程度(例えば、約250℃前後)の所定温度に加熱
し、然る後、アモルファアシリコン系膜形成用原料供給
源6よりSin、ガスを約I SCCM、キセノンガス
供給源7よりXeガスを約303CCMだけそれぞれ流
量制御して流し混合した混合物ガスを導入管8から反応
容器2内に導入して、該容器内の圧力を約30mTor
rに保持した状態で、高周波電源10により100〜1
50 mW/ci(13,56MHzであり、例えば約
130mW / ci )の電力を放電電極3に付与す
ることにより、前記ガラス基板4の表面に膜厚が500
0〜6000人程度であるアモルファスシリコン薄膜が
成膜される。On the plasma CVD apparatus, the lower electrode 3
After mounting the glass substrate 4 on top, the reaction container 2 is sealed,
The inside of the container 2 is evacuated to a high vacuum (for example, 1×10 h to 1
×1011 TOrr), and the glass substrate 4 is heated to a temperature of 200 to 300
After heating to a predetermined temperature of about 0°C (for example, about 250°C), the amorphous silicon film forming raw material supply source 6 supplies Sin gas, about ISCCM gas, and the xenon gas supply source 7 supplies Xe gas. The mixed gas was introduced into the reaction vessel 2 from the introduction pipe 8 by controlling the flow rate of about 303 CCM, and the pressure inside the vessel was adjusted to about 30 mTorr.
100 to 1 by the high frequency power supply 10 while holding at r.
By applying a power of 50 mW/ci (13.56 MHz, for example, about 130 mW/ci) to the discharge electrode 3, a film thickness of 500 mW/ci is formed on the surface of the glass substrate 4.
An amorphous silicon thin film having a thickness of about 0 to 6000 is deposited.
以上のようにして得られたアモルファスシリコン薄膜に
ついて、例えば光導電率に関しては(株)スパンドニク
ス製の導電率自動測定システムによって測定して評価し
、光劣化に関しては疑似太陽光(AM −1,100m
W /Ci、ソーラーシミュレータ光照射)による約5
00時間程度までの光照射後光導電率を測定し、光照射
前の光導電率と対比することで評価した。なお以下詳述
するように他にも種々測定をした。For the amorphous silicon thin film obtained as described above, for example, the photoconductivity was measured and evaluated using an automatic conductivity measurement system manufactured by Spandonics Co., Ltd., and the photodegradation was evaluated using simulated sunlight (AM -1,100 m
Approximately 5 by W/Ci, solar simulator light irradiation)
The photoconductivity was measured after light irradiation for up to about 00 hours and evaluated by comparing it with the photoconductivity before light irradiation. In addition, various other measurements were also carried out as detailed below.
その結果、充分長期的に光劣化を抑制するようなアモル
ファスシリコン薄膜と成っているものであった。As a result, an amorphous silicon thin film was obtained that could sufficiently suppress photodeterioration over a long period of time.
第2図は第1図において示したプラズマCVD装置を用
い、その成膜条件を変え、測定評価したものであって、
Xe/SiH,と、光照射後の光導電率と最初の光導電
率との比、すなわち光導電率の変化(σ、い、/σ、。FIG. 2 shows measurements and evaluations using the plasma CVD apparatus shown in FIG. 1 and changing the film forming conditions.
Xe/SiH, and the ratio of the photoconductivity after light irradiation to the initial photoconductivity, that is, the change in photoconductivity (σ, /σ,).
、)の関係を、高周波電源出力を0.03W /ci〜
0.53讐/−に変化させた際のデータを示す。いずれ
の場合もXeの割合を増加するにつれて、光導電率の変
化量(σ(001/σ(。、)が減少し光劣化が抑制さ
れていることがわかる。すtxhちXe/SiH,を1
以上にすることにより光導電率の変化が減少し、光劣化
の抑制となる。 Xe/5in4のより好ましい範囲と
しては30≧Xe/SiH4≧1である。, ), the high frequency power supply output is 0.03W/ci ~
The data when changed to 0.53/- are shown. In either case, it can be seen that as the proportion of Xe increases, the amount of change in photoconductivity (σ(001/σ(.,)) decreases, and photodeterioration is suppressed. 1
By doing the above, changes in photoconductivity are reduced and photodeterioration is suppressed. A more preferable range of Xe/5in4 is 30≧Xe/SiH4≧1.
第3図は光照射時間と光導電率の変化の関係を示す図で
あり、破線(−−−−)がSiH,のみで作製したa−
5i I膜の場合であり、口および園の実線は×e/5
iH4=5として作製したa −S i IIIであっ
て、口は高周波電源出力が0.39W /C!+1、園
は前記出力が0.53W /−である場合のものである
。FIG. 3 is a diagram showing the relationship between the light irradiation time and the change in photoconductivity, and the broken line (---) indicates the a-
This is the case of 5i I membrane, and the solid lines at the top and the bottom are ×e/5
It is a-S i III manufactured with iH4=5, and the high frequency power output of the mouth is 0.39W/C! +1, Sono is for the case where the output is 0.53W/-.
χeガスを所定量混合してa −S i 1111[を
作製することにより、長時間の光照射に対し、光導電率
の変化の小さいlI膜が得られており、a−Sil膜の
光劣化が抑制されていることがわかる。By mixing a predetermined amount of χe gas to prepare a-S i 1111, an lI film with a small change in photoconductivity under long-term light irradiation was obtained, and the photodegradation of the a-Sil film was It can be seen that this is suppressed.
本発明によれば、プラズマCVD法において特定した体
積量比で充分キセノンガスを供給混合するようにしアモ
ルファスシリコン系薄膜を成膜するようにしたので、実
質的に光劣化がないアモルファスシリコン系薄膜と成し
得ることができ、例えばアモルファスシリコン太陽電池
における最大の課題の一つである光劣化の抑制ができる
ことと成り、その実用化で普及に貢献しうる有用なアモ
ルファスシリコン系薄膜の製造方法を提供するものであ
る。According to the present invention, since an amorphous silicon thin film is formed by sufficiently supplying and mixing xenon gas at a specified volume ratio in the plasma CVD method, an amorphous silicon thin film with substantially no photodeterioration can be formed. For example, it is possible to suppress photodegradation, which is one of the biggest challenges in amorphous silicon solar cells, and we provide a method for producing a useful amorphous silicon thin film that can contribute to its widespread use by putting it into practical use. It is something to do.
第1図は本発明のアモルファスシリコン系ll膜の製造
方法を実施する平行平板型プラズマCVD装置の一例を
示す概略図、第2図は本発明の製造方法で得たa−Si
系薄膜に光照射した際におけるキセノンガスの混合比と
光導電率の変化(σ、い、/σ(。、)との関係を示す
図、第3図は本発明の製造方法で 得たa−3i系薄膜
における光照射時間と光導電率の変化の関係を示す図で
ある。
上−m−平行平板型プラズマCVD装置2−−一反応容
器 3.3−−一放電電極4−−−ifラス基板 6−
−−アモルファスシリコン系膜形成用原料ガス供給源
7−−−キセノンガス供給源FIG. 1 is a schematic diagram showing an example of a parallel plate type plasma CVD apparatus for implementing the method of manufacturing an amorphous silicon-based II film of the present invention, and FIG.
Figure 3 shows the relationship between the mixing ratio of xenon gas and the change in photoconductivity (σ, i, /σ(.,) when the system thin film is irradiated with light. - It is a diagram showing the relationship between light irradiation time and change in photoconductivity in a 3i-based thin film. Top-m-Parallel plate plasma CVD apparatus 2--One reaction vessel 3.3--One discharge electrode 4-- if lath board 6-
--Source of raw material gas for forming amorphous silicon film
7---Xenon gas source
Claims (1)
ンガスの混合物ガスを用いてプラズマCVD法により、
基板上にアモルファスシリコン系膜を形成する方法にお
いて、体積表示で、キセノンガス/アモルファスシリコ
ン系膜形成用原料ガス≧1の混合物ガスを用いることを
特徴とするアモルファスシリコン系薄膜の製造方法1) By plasma CVD method using a mixture gas of raw material gas for amorphous silicon film formation and xenon gas,
A method for producing an amorphous silicon thin film on a substrate, the method comprising using a mixture gas of xenon gas/raw material gas for forming an amorphous silicon film ≧1 in terms of volume.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2334180A JPH06101448B2 (en) | 1990-11-30 | 1990-11-30 | Method for manufacturing amorphous silicon thin film |
| DE69103251T DE69103251T2 (en) | 1990-11-30 | 1991-11-25 | Process for forming an amorphous silicon thin film using plasma CVD. |
| EP91120065A EP0488112B1 (en) | 1990-11-30 | 1991-11-25 | Method of forming thin film of amorphous silicon by plasma CVD |
| US07/797,987 US5246744A (en) | 1990-11-30 | 1991-11-26 | Method of forming thin film of amorphous silicon by plasma cvd |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2334180A JPH06101448B2 (en) | 1990-11-30 | 1990-11-30 | Method for manufacturing amorphous silicon thin film |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH04206630A true JPH04206630A (en) | 1992-07-28 |
| JPH06101448B2 JPH06101448B2 (en) | 1994-12-12 |
Family
ID=18274434
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2334180A Expired - Lifetime JPH06101448B2 (en) | 1990-11-30 | 1990-11-30 | Method for manufacturing amorphous silicon thin film |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH06101448B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6391690B2 (en) | 1995-12-14 | 2002-05-21 | Seiko Epson Corporation | Thin film semiconductor device and method for producing the same |
-
1990
- 1990-11-30 JP JP2334180A patent/JPH06101448B2/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6391690B2 (en) | 1995-12-14 | 2002-05-21 | Seiko Epson Corporation | Thin film semiconductor device and method for producing the same |
| US6660572B2 (en) | 1995-12-14 | 2003-12-09 | Seiko Epson Corporation | Thin film semiconductor device and method for producing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH06101448B2 (en) | 1994-12-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU594107B2 (en) | Method for preparation of multi-layer structure film | |
| CN101842875A (en) | Plasma treatment between deposition processes | |
| JP2533639B2 (en) | Method for producing amorphous silicon doped with P-type carbon | |
| US7960252B2 (en) | Method for forming a semiconductor film including a film forming gas and decomposing gas while emitting a laser sheet | |
| JPH04206630A (en) | Manufacture of amorphous silicon thin film | |
| JP2588446B2 (en) | Semiconductor device | |
| JPH07221026A (en) | Method for forming high quality semiconductor thin film | |
| JPH04342122A (en) | Method for producing hydrogenated amorphous silicon thin film | |
| JPH0817738A (en) | Method for forming crystalline semiconductor thin film | |
| JPH1187751A (en) | Polycrystalline silicon thin film, photoelectric conversion element, and manufacturing method thereof | |
| JP2975942B2 (en) | Preparation of amorphous silicon based thin film | |
| EP3125305A1 (en) | Method for manufacturing germanium based thin film solar cells with improved light induced degradation properties | |
| JP3040247B2 (en) | Manufacturing method of silicon thin film | |
| Chu et al. | Improvement of film stability of a-Si: H deposited by RPCVD using SiH/sub 2/Cl/sub 2 | |
| JP3126176B2 (en) | Semiconductor thin film | |
| JP2000232073A (en) | Polycrystalline silicon film | |
| Hori et al. | Hydrogen radical-injection plasma fabricated microcrystalline silicon thin film for solar cells | |
| JPS63234513A (en) | Deposited film formation method | |
| WO2023112171A1 (en) | Method for forming silicon boride film | |
| Suzuki | Effect of Higher Silanes in Silane Plasmas on Properties of Hydrogenated Amorphous Silicon Films | |
| JPH0364019A (en) | semiconductor thin film | |
| EP3125304A1 (en) | Method for manufacturing silicon based thin film solar cells with improved light induced degradation properties | |
| JPH06326043A (en) | Amorphous silicon film and manufacture thereof | |
| JPH09275222A (en) | Amorphous semiconductor device | |
| JPS61227173A (en) | Semiconductor thin film formation method |