JPH04210738A - Battery pack - Google Patents
Battery packInfo
- Publication number
- JPH04210738A JPH04210738A JP40110790A JP40110790A JPH04210738A JP H04210738 A JPH04210738 A JP H04210738A JP 40110790 A JP40110790 A JP 40110790A JP 40110790 A JP40110790 A JP 40110790A JP H04210738 A JPH04210738 A JP H04210738A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- nickel
- charging
- battery pack
- metal hydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
[00011 [00011
【産業上の利用分野]本発明は繰り返し充電可能な二次
電池を用いた電池パックに関する。
[0002]
【従来の技術】現在、電池パックに使用する二次電池と
してニッケルカドミウム電池が広く使用されている。
[0003]ニツケルカドミウム電池を使用した電池パ
ックの回路図と充電器を含んだ回路図を図5に示す。ニ
ッケルカドミウム電池51が電池パック52に内蔵され
ており、充電器53に直結されている。
[0004]完全放電したニッケルカドミウム電池にI
Cの定電流で充電を行った場合のニッケルカドミウム電
池の端子間電圧と表面温度の変化のグラフを図6に示す
。ここで「C」というのは電池に於いて、電流量と電池
容量の比を示す単位である。IAhの電池容量の電池に
対してIAの充電を行うことをIC充電と呼び、2Aの
充電を行うことを2C充電と呼ぶ。
[0005]図6において、ニッケルカドミウム電池の
端子間電圧は期間61の間、充電の進行と共に電池電圧
が上昇していく。この間は充電電流の電気エネルギーが
電池内部の化学エネルギーに変換され、充電が進行して
いく。
[0006]期間62になると電池は満充電状態になり
、化学エネルギーの蓄積能力が限界に達する。このため
、充電電流の電気エネルギーは、もはや化学エネルギー
には変換されず、熱エネルギーへと変換される。その結
果、電池の表面温度が上昇する。それに伴いニッケルカ
ドミウム電池では充電端子電圧が低下する特性を有して
いる。この現象は「−△V現象」と呼ばれ、充電中、満
充電時に現われるニッケルカドミウム電池の特徴である
。
[0007]ニツケルカドミウム電池を充電する時に注
意しなくてはならない問題に過充電がある。過充電を行
うと電池温度が高くなり、電池内部の有機物質が急速に
劣化し、電池寿命が著しく短くなる。
[0008]また、過大な電流で過充電を行うと、電池
内部に多量のガスが発生し、安全弁が動作して内部の電
解液が外へ漏れてしまう。その結果、電池容量が極端に
低下するだけでなく、有害物質を放出することになる。
[0009]そのため、ニッケルカドミウム電池を充電
する際には、満充電状態を検出して充電電流を減少させ
るか、満充電でも継続的に充電してよい電流量で連続し
て充電を行うかのいずれかの方法を取る必要がある。[Industrial Field of Application] The present invention relates to a battery pack using a rechargeable secondary battery. [0002] Nickel cadmium batteries are currently widely used as secondary batteries for battery packs. [0003] FIG. 5 shows a circuit diagram of a battery pack using a nickel-cadmium battery and a circuit diagram including a charger. A nickel cadmium battery 51 is built into a battery pack 52 and directly connected to a charger 53. [0004] I to a fully discharged nickel cadmium battery
FIG. 6 shows a graph of changes in terminal voltage and surface temperature of a nickel cadmium battery when charging is performed with a constant current of C. Here, "C" is a unit that indicates the ratio of current amount to battery capacity in a battery. Charging a battery with a battery capacity of IAh at IA is called IC charging, and charging at 2A is called 2C charging. [0005] In FIG. 6, the voltage between the terminals of the nickel cadmium battery increases during a period 61 as charging progresses. During this time, the electrical energy of the charging current is converted into chemical energy inside the battery, and charging progresses. [0006] At period 62, the battery becomes fully charged and its ability to store chemical energy reaches its limit. Therefore, the electrical energy of the charging current is no longer converted into chemical energy, but into thermal energy. As a result, the surface temperature of the battery increases. Along with this, nickel cadmium batteries have a characteristic that the charging terminal voltage decreases. This phenomenon is called the "-ΔV phenomenon" and is a characteristic of nickel-cadmium batteries that appears during charging and when fully charged. [0007] Overcharging is a problem that must be taken into account when charging a nickel cadmium battery. Overcharging increases battery temperature, rapidly deteriorating organic materials inside the battery, and significantly shortening battery life. [0008] Furthermore, when overcharging is performed with an excessive current, a large amount of gas is generated inside the battery, the safety valve is activated, and the electrolyte inside leaks to the outside. As a result, not only the battery capacity is drastically reduced, but also harmful substances are emitted. [0009] Therefore, when charging a nickel cadmium battery, it is necessary to decide whether to detect the fully charged state and reduce the charging current, or to continuously charge at a current amount that allows continuous charging even when fully charged. You need to use one of the methods.
【0010】満充電状態で連続的に流せる電流は普通、
最大0.2Cまでである、しかし、この充電電流では完
全放電の電池を満充電にするのに6時間以上を要する。
さらに短時間で電池を満充電にしたい場合においてはこ
の充電方法は使用できない。電池が満充電になるまでI
Cで充電し、満充電を検出後、充電電流を微少電流に変
化させるといった充電方法を行うと、完全放電状態から
1時間強で満充電にすることが出来る。満充電の検出に
はニッケルカドミウム電池の充電特性である「−△V現
象」を利用するのが普通である。ニッケルカドミウム電
池1セルあたり「−△V値」が10mVから20mVで
満充電の検出を行うのが普通である。図5の様な充電回
路においては、充電器側がこの「−△V」による満充電
検出機能を有し、満充電検出後、充電電流を微少電流に
切り換える機能を持つのが普通である。
[00111ニツケル水素電池は起電力が1セル辺り1
.2Vでニッケルカドミウム電池とほぼ同じである。
ニッケル水素電池は、単位体積当りのエネルギー密度、
単位重量当りのエネルギー密度共にニッケルカドミウム
電池を超えている。つまり、ニッケルカドミウム電池に
そのまま置き換えて使用でき、かつ、容量がニッケルカ
ドミウム電池より多いという利点がある。しかし、逆に
急速充電の制御が難しいといった欠点がある。その欠点
を以下に示す。
[0012]ニツケル水素電池のIC充電時の端子間電
圧と電池表面温度の変化のグラフを図7に示す。
[00131図7において、ニッケル水素電池の端子間
電圧は期間71の間、充電の進行と共に電池電圧が上昇
していく。この期間の動作はニッケルカドミウム電池と
同じである。
[0014]期間72になると電池は満充電状態になり
、ニッケルカドミウム電池同様、電池の表面温度が上昇
する。しかし、ニッケルカドミウム電池に比較して充電
端子電圧の「−△V電圧」が少なく、1セルあたり5m
V以下である。
[0015]このため、充電の端子電圧を監視している
だけでは正確な満充電の検出が行えず、さらに充電器、
電池パック側に電池表面温度の検出手段を持たなければ
IC充電は行えなかった。
[0016]従来のIC充電が可能なニッケル水素電池
パックと充電器の1例を図8に示す。[0010] The current that can be passed continuously in a fully charged state is usually
However, at this charging current, it takes more than 6 hours to fully charge a completely discharged battery. Furthermore, this charging method cannot be used when it is desired to fully charge the battery in a short time. I until the battery is fully charged
If a charging method is performed in which the battery is charged with C and after detecting full charge, the charging current is changed to a minute current, the battery can be fully charged from a completely discharged state in just over an hour. To detect full charge, it is common to use the "-ΔV phenomenon" which is a charging characteristic of nickel-cadmium batteries. Full charge is normally detected when the "-ΔV value" per cell of a nickel-cadmium battery is 10 mV to 20 mV. In a charging circuit like the one shown in FIG. 5, the charger side usually has a full charge detection function based on this "-ΔV" and has a function of switching the charging current to a minute current after detecting full charge. [00111 Nickel hydrogen battery has an electromotive force of 1 per cell.
.. At 2V, it is almost the same as a nickel cadmium battery. Nickel metal hydride batteries have energy density per unit volume,
Both energy density per unit weight exceeds that of nickel-cadmium batteries. In other words, it has the advantage that it can be used as a direct replacement for a nickel-cadmium battery and has a larger capacity than a nickel-cadmium battery. However, it has the disadvantage that it is difficult to control rapid charging. Its drawbacks are shown below. [0012] FIG. 7 shows a graph of changes in terminal voltage and battery surface temperature during IC charging of a nickel-metal hydride battery. [00131 In FIG. 7, the voltage between the terminals of the nickel-metal hydride battery increases during a period 71 as charging progresses. Operation during this period is the same as a nickel-cadmium battery. [0014] In the period 72, the battery becomes fully charged, and the surface temperature of the battery rises as in the case of a nickel-cadmium battery. However, compared to nickel-cadmium batteries, the charging terminal voltage "-△V voltage" is less, and it is 5 m per cell.
V or less. [0015] For this reason, it is not possible to accurately detect full charge just by monitoring the charging terminal voltage, and furthermore, the charger,
IC charging could not be performed unless the battery pack had a means for detecting the battery surface temperature. [0016] FIG. 8 shows an example of a conventional nickel-metal hydride battery pack and charger that can be charged with an IC.
【0017】ニッケル水素電池81と温度センサ82は
それぞれ電池パック83の外部へ端子を出し、充電器8
4へと接続される。温度センサ82はニッケル水素電池
81の近傍に設置されており、ニッケル水素電池81の
表面温度を検出している。充電器84ではニッケル水素
電池の充電端子電圧とニッケル水素電池の表面温度の変
化を検出して、満充電の検出を行う。
[0018]The nickel-metal hydride battery 81 and the temperature sensor 82 each have their terminals extended to the outside of the battery pack 83, and are connected to the charger 8.
Connected to 4. The temperature sensor 82 is installed near the nickel-metal hydride battery 81 and detects the surface temperature of the nickel-metal hydride battery 81. The charger 84 detects changes in the charging terminal voltage of the nickel-metal hydride battery and the surface temperature of the nickel-metal hydride battery to detect full charge. [0018]
【発明が解決しようとする課題】しかし、以上の様にニ
ッケル水素電池独自の電池パック構成にしたり、専用の
充電器を使用すれば、ニッケル水素電池の特徴であるニ
ッケルカドミウム電池との互換性を捨てることになり、
ニッケルカドミウム電池パックの充電器は使用できなく
なる。
[0019]また、ニッケル水素電池パックと専用充電
器を接続する線が3本以上必要となり、電池パックを製
作する際の制約事項になるといった課題があった。
[00201本発明の目的は、ニッケル水素電池パック
の充電電圧特性をニッケルカドミウム電池の充電電圧特
性に類似させ、 「−△V」による満充電検出を確実に
行える様にすることにある。
[00211[Problem to be solved by the invention] However, as described above, by using a unique battery pack configuration for nickel-metal hydride batteries or by using a dedicated charger, compatibility with nickel-cadmium batteries, which is a characteristic of nickel-metal hydride batteries, can be achieved. I have to throw it away,
Chargers for nickel-cadmium battery packs will no longer be usable. [0019] Furthermore, three or more wires are required to connect the nickel-metal hydride battery pack and the dedicated charger, which poses a problem of restrictions when manufacturing the battery pack. [00201] An object of the present invention is to make the charging voltage characteristics of a nickel-metal hydride battery pack similar to those of a nickel-cadmium battery, so that full charge detection based on "-ΔV" can be reliably performed. [00211
【課題を解決するための手段]本発明は、充電可能な二
次電池の表面温度の変化が正の温度勾配をもつ電池パッ
クにおいて、前記二次電池と直列に負の温度勾配をもつ
等価抵抗手段を接続したことを特徴とする。
[0022]
【作用】電池表面の温度変化の勾配に対して逆特性の素
子を接続して表面温度勾配をリニアに近づける。
[0023][Means for Solving the Problems] The present invention provides a battery pack in which the change in surface temperature of a rechargeable secondary battery has a positive temperature gradient, and an equivalent resistance in series with the secondary battery that has a negative temperature gradient. It is characterized by connecting means. [0022] [Operation] By connecting an element with characteristics opposite to the gradient of temperature change on the surface of the battery, the surface temperature gradient is brought closer to linearity. [0023]
【実施例】本発明の電池パックの1例を図1に示す。ニ
ッケル水素電池11に直列に等価抵抗回路12が接続さ
れ、外部に端子として出ている。等価抵抗回路12はニ
ッケル水素電池の表面温度に対して負の温度勾配を持つ
といった特徴を有する。
[0024]等価抵抗回路12の1例を図2に示す。熱
的に安定な炭素皮膜抵抗器21とサーミスタ22を並列
に接続する。サーミスタ22はニッケル水素電池11の
表面に密着している。この等価抵抗回路12の温度−抵
抗値特性を図3に示す。この特性は使用する電池の表面
温度範囲で近似的に線形である。
[0025]サーミスタの温度−抵抗値特性が非線形で
あることと、サーミスタに充電電流をすべてを流すとサ
ーミスタが発熱して正確な電池表面温度の検出ができな
いため、図2に示した様な回路構成にする。
[0026]完全放電状態のこの電池パックにICの定
電流充電を行った時の電池パック各部の電圧と電池表面
温度の変化のグラフを図4に示す。
[0027]期間41では充電動作が進行しており、ニ
ッケル水素電池11の端子間電圧VBは上昇する。電池
表面温度は一定のままである。そのため抵抗等価回路1
2の抵抗値も一定のままで、抵抗等価回路12の両端電
圧VRも一定である。このため電池パックの端子電圧■
Pは上昇する。
[0028]期間42に入るとニッケル水素電池11は
満充電になり、電池11の端子電圧VBは変化しなくな
る。電池表面温度は上昇を開始する。そのため抵抗等価
回路12の抵抗値は減少し、抵抗等価回路12の両端電
圧VRは減少する。このため電池パックの端子電圧VP
は減少する。これは[−△V特性Jに相当する。
[0029] IC定電流充電を行った時、この電池パ
ックの両端電圧VPの動きはニッケルカドミウム電池と
同等の動きをする事になる。
[00301
【発明の効果]以上の様に本発明を使用すれば、ニッケ
ル水素電池パックの充電端子電圧特性がニッケルカドミ
ウム電池の充電端子電圧特性にほぼ等しくなり、ICの
定電流充電時「−△V検出」による満充電の検出が可能
となる。
[00311その結果、ニッケル水素電池パックと充電
器を接続する線を2本にする事ができ、さらにはニッケ
ルカドミウム電池パックの充電器がそのまま使用できる
といった効果がある。
[0032]また、確実にIC定電流充電時の満充電を
検出できるため、過充電による電池の安全弁動作、電池
の劣化が防げるといった効果もある。[Embodiment] An example of the battery pack of the present invention is shown in FIG. An equivalent resistance circuit 12 is connected in series to the nickel-metal hydride battery 11 and is exposed to the outside as a terminal. The equivalent resistance circuit 12 has a feature of having a negative temperature gradient with respect to the surface temperature of the nickel-metal hydride battery. [0024] An example of the equivalent resistance circuit 12 is shown in FIG. A thermally stable carbon film resistor 21 and a thermistor 22 are connected in parallel. The thermistor 22 is in close contact with the surface of the nickel-metal hydride battery 11. FIG. 3 shows the temperature-resistance characteristic of this equivalent resistance circuit 12. This characteristic is approximately linear over the surface temperature range of the battery used. [0025] The temperature-resistance characteristic of the thermistor is non-linear, and if all the charging current is passed through the thermistor, the thermistor will generate heat, making it impossible to accurately detect the battery surface temperature. Therefore, a circuit like the one shown in Figure 2 is used. Configure. [0026] FIG. 4 shows a graph of changes in voltage at various parts of the battery pack and battery surface temperature when constant current charging of the IC is performed on this battery pack in a fully discharged state. [0027] In period 41, the charging operation is progressing, and the inter-terminal voltage VB of the nickel-metal hydride battery 11 increases. The battery surface temperature remains constant. Therefore, resistance equivalent circuit 1
The resistance value of resistor 2 also remains constant, and the voltage VR across the resistor equivalent circuit 12 also remains constant. Therefore, the terminal voltage of the battery pack is
P rises. [0028] When period 42 begins, the nickel-metal hydride battery 11 becomes fully charged, and the terminal voltage VB of the battery 11 does not change. The battery surface temperature begins to rise. Therefore, the resistance value of the resistance equivalent circuit 12 decreases, and the voltage VR across the resistance equivalent circuit 12 decreases. Therefore, the terminal voltage VP of the battery pack
decreases. This corresponds to [-ΔV characteristic J. [0029] When IC constant current charging is performed, the movement of the voltage VP across this battery pack is the same as that of a nickel-cadmium battery. [00301] [Effect of the invention] By using the present invention as described above, the charging terminal voltage characteristics of the nickel-metal hydride battery pack become almost equal to the charging terminal voltage characteristics of the nickel-cadmium battery, and when the IC is charged at constant current, the Full charge can be detected by "V detection". [00311 As a result, the number of wires connecting the nickel-metal hydride battery pack and the charger can be reduced to two, and furthermore, the charger for the nickel-cadmium battery pack can be used as is. [0032]Furthermore, since full charge during IC constant current charging can be reliably detected, it is possible to prevent battery safety valve operation and battery deterioration due to overcharging.
【図1】本発明を使用した電池パックの回路図である。FIG. 1 is a circuit diagram of a battery pack using the present invention.
【図2】図1に使用した等価抵抗回路の回路図である。FIG. 2 is a circuit diagram of the equivalent resistance circuit used in FIG. 1.
【図3】図2で示した等価抵抗回路の温度−抵抗値特性
を示すグラフの図である。FIG. 3 is a graph showing temperature-resistance characteristics of the equivalent resistance circuit shown in FIG. 2;
【図4】完全放電状態の図1の電池パックにICの定電
流充電を行った時の電池パック各部の電圧と電池表面温
度の変化を示すグラフの図である。FIG. 4 is a graph showing changes in voltage at various parts of the battery pack and battery surface temperature when constant current charging of an IC is performed on the battery pack of FIG. 1 in a fully discharged state.
【図5】従来技術によるニッケルカドミウム電池を使用
した電池パックの回路図である。FIG. 5 is a circuit diagram of a battery pack using a nickel-cadmium battery according to the prior art.
【図6】従来技術による完全放電状態の図5の電池パッ
クにICの定電流充電を行った時の端子電圧と電池表面
温度の変化を示すグラフの図である。6 is a graph showing changes in terminal voltage and battery surface temperature when constant current charging of an IC is performed on the battery pack of FIG. 5 in a fully discharged state according to the prior art; FIG.
【図7】従来技術による完全放電状態のニッケル水素電
池にICの定電流充電を行った時の端子電圧と電池表面
温度の変化を示すグラフの図である。FIG. 7 is a graph showing changes in terminal voltage and battery surface temperature when constant current charging of an IC is performed on a fully discharged nickel-metal hydride battery according to the prior art.
【図8】従来技術によるニッケル水素電池を使用したI
C充電が可能な電池パックと充電器の回路図。[Figure 8] I using a nickel-metal hydride battery according to the prior art
A circuit diagram of a battery pack and charger capable of C charging.
11.81 ニッケル水素電池
12・・・ 等価抵抗回路
21・・・ 炭素皮膜抵抗器
22・・・ サーミスタ
51・・・ ニッケルカドミウム電池53.84
充電器
82・・・ 温度センサ11.81 Nickel metal hydride battery 12... Equivalent resistance circuit 21... Carbon film resistor 22... Thermistor 51... Nickel cadmium battery 53.84
Charger 82... Temperature sensor
【図1】[Figure 1]
Claims (1)
の温度勾配をもつ電池パックにおいて、前記二次電池と
直列に負の温度勾配をもつ等価抵抗手段を接続したこと
を特徴とする電池パック。1. A battery pack in which the change in surface temperature of a rechargeable secondary battery has a positive temperature gradient, characterized in that an equivalent resistance means having a negative temperature gradient is connected in series with the secondary battery. battery pack.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP40110790A JP3173012B2 (en) | 1990-12-10 | 1990-12-10 | Battery pack, charging device and charging method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP40110790A JP3173012B2 (en) | 1990-12-10 | 1990-12-10 | Battery pack, charging device and charging method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH04210738A true JPH04210738A (en) | 1992-07-31 |
| JP3173012B2 JP3173012B2 (en) | 2001-06-04 |
Family
ID=18510964
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP40110790A Expired - Fee Related JP3173012B2 (en) | 1990-12-10 | 1990-12-10 | Battery pack, charging device and charging method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3173012B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5714868A (en) * | 1995-05-29 | 1998-02-03 | Nec Corporation | Battery pack and charger arrangement which intermittently monitors battery temperature during recharging and a method thereof |
-
1990
- 1990-12-10 JP JP40110790A patent/JP3173012B2/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5714868A (en) * | 1995-05-29 | 1998-02-03 | Nec Corporation | Battery pack and charger arrangement which intermittently monitors battery temperature during recharging and a method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3173012B2 (en) | 2001-06-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101689684B (en) | In-cell shortcircuit detection device and method and cell pack | |
| US6504344B1 (en) | Monitoring battery packs | |
| KR100230586B1 (en) | Fast charging device and fast charging method of nickel-cadmium battery | |
| JP4079871B2 (en) | Pack battery | |
| KR102633756B1 (en) | battery pack and battery pack charging method | |
| CA2038160A1 (en) | Charging circuits for rechargeable batteries and cells | |
| EP1798100A2 (en) | Battery management system | |
| JP3258818B2 (en) | Charge control method for sealed nickel storage battery and charger using this method | |
| KR102470882B1 (en) | Unit battery module and measuring for state of health thereof | |
| CN101192758A (en) | Charger | |
| CN101425692A (en) | Protection circuit for battery pack and battery pack having the same | |
| JPH04229027A (en) | Charger and charging method | |
| KR100782101B1 (en) | Protective circuit and battery pack including same | |
| JPS5942538B2 (en) | Devices and systems for indicating and controlling the state of charge of secondary batteries | |
| KR960701490A (en) | Sealed Rechargeable Battery | |
| JP2003009406A (en) | Rechargeable battery status calculator | |
| US6097176A (en) | Method for managing back-up power source | |
| JP3774995B2 (en) | Lithium ion secondary battery charging method and charging device therefor | |
| JPS6255274B2 (en) | ||
| JPH04210738A (en) | Battery pack | |
| JP2004342551A (en) | Portable fuel cell | |
| JP3132798B2 (en) | Storage battery charge control device | |
| KR101429771B1 (en) | Battery pack | |
| JPH1032020A (en) | Charge / discharge control method for sealed lead-acid battery | |
| JP2006170867A (en) | Calculation method of remaining capacity of battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080330 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090330 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090330 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 9 |
|
| LAPS | Cancellation because of no payment of annual fees |