[go: up one dir, main page]

JPH0424651A - Production of start developer - Google Patents

Production of start developer

Info

Publication number
JPH0424651A
JPH0424651A JP2129669A JP12966990A JPH0424651A JP H0424651 A JPH0424651 A JP H0424651A JP 2129669 A JP2129669 A JP 2129669A JP 12966990 A JP12966990 A JP 12966990A JP H0424651 A JPH0424651 A JP H0424651A
Authority
JP
Japan
Prior art keywords
toner
mixing
developer
image formation
electrostatic charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129669A
Other languages
Japanese (ja)
Inventor
Yoshitake Shimizu
義威 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP2129669A priority Critical patent/JPH0424651A/en
Publication of JPH0424651A publication Critical patent/JPH0424651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To produce the start developer which can form always stable images by continuing agitating and mixing further after an electrostatic charge quantity attains saturation by the agitating and mixing, thereby adjusting the electrostatic charge quantity of the start developer to 65 to 90% of the satd. electrostatic charge quantity. CONSTITUTION:The agitating and mixing are further continued after the electrostatic charge quantity is satd. by the agitating and mixing, by which the electrostatic charge quantity of the start developer is adjusted to 65 to 90% of the satd. electrostatic charge quantity at the time of producing the start developer of a two-component system by compounding toners and carriers at prescribed ratios and agitating and mixing the mixture. Namely, the sensor output value with respect to a toner concn. remains nearly constant from the initial period of image formation to the stable period of the image formation when the electrostatic charge quantity after the saturation of the start developer is adjusted to 65 to 90% of the satd. electrostatic charge quantity. The sensor is eventually able to recognize always the exact toner concn. The toner replenishment from the initial period of image formation to the stable period of the image formation is, therefore, exactly executed and the generation of various kinds of image defects is prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、静電式複写機やレーサービームプリンタ等の
、いわゆるカールソンプロセスを応用した画像形成装置
に使用される、トナーとキャリヤとを所定比率で配合し
た2成分系のスタート現像剤の製造方法に関するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for preparing toner and carrier in a predetermined manner, which is used in image forming apparatuses applying the so-called Carlson process, such as electrostatic copying machines and racer beam printers. The present invention relates to a method for producing a two-component starter developer mixed in proportions.

〈従来の技術〉 上記カールソンプロセスは、感光体の表面に露光して形
成された静電潜像に、現像装置によってトナーを含む現
像剤を接触させて、上記静電潜像をトナー像として顕像
化したのち、このトナー像を、感光体表面から紙上に転
写、定着させることにより行われる。
<Prior Art> The above-mentioned Carlson process uses a developing device to bring a developer containing toner into contact with an electrostatic latent image formed by exposure to light on the surface of a photoreceptor, and visualizes the electrostatic latent image as a toner image. After being imaged, this toner image is transferred from the surface of the photoreceptor onto paper and fixed.

現像剤としては、トナーと、当該トナーを保持して現像
装置内を循環するキャリヤとを含む2成分系のものが一
般に用いられる。また、現像装置に最初に使用される現
像剤は、上記トナーとキャリヤとを所定比率で配合した
もので、スタート現像剤と呼ばれている。
A two-component developer containing a toner and a carrier that holds the toner and circulates within the developing device is generally used as the developer. The developer initially used in the developing device is a mixture of the above toner and carrier in a predetermined ratio and is called a start developer.

スタート現像剤の性能は帯電量によって決まり、帯電量
は、トナーとキャリヤとを攪拌混合する際の攪拌混合条
件(特に攪拌混合時間)によって推移するので、帯電量
を測定しなから攪拌混合して、所定の帯電量に調整する
ことか行われている。帯電量の攪拌混合による推移は、
第1図に示すように、攪拌開始後急速に上昇し、飽和点
に達した後、徐々に低下するという経過をたとる。
The performance of the start developer is determined by the amount of charge, and the amount of charge changes depending on the stirring and mixing conditions (especially the stirring and mixing time) when stirring and mixing the toner and carrier, so do not measure the amount of charge before stirring and mixing. , the amount of charge is adjusted to a predetermined amount. The change in charge amount due to stirring and mixing is as follows:
As shown in FIG. 1, the temperature rises rapidly after the start of stirring, reaches the saturation point, and then gradually falls.

〈発明か解決しようとする課題〉 従来、帯電量の好ましい範囲は、画像形成の初。<Invention or problem to be solved> Conventionally, the preferred range for the amount of charge is at the beginning of image formation.

期の段階における画像濃度やトナー飛散の発生の有無等
を基準にして設定されており、帯電量の飽和直後が好ま
しい範囲とされていた。
It is set based on the image density at the initial stage and the presence or absence of toner scattering, and the preferred range is immediately after the charge amount is saturated.

しかし、飽和直後の帯電量を有する現像剤は、画像形成
初期の段階で形成画像の画像濃度が不足し、また、30
00回程度0画像形成を繰り返して画像特性が安定する
時期(以下「画像形成安定期」という)に入ると、形成
画像にカブリやトナーの飛散等が生じたり、解像度が低
下したりするという問題があった。
However, with a developer having a charge amount immediately after saturation, the image density of the formed image is insufficient at the initial stage of image formation, and
When the image characteristics become stable after repeating 0 image formation approximately 00 times (hereinafter referred to as the "image formation stable period"), fogging, toner scattering, etc. may occur in the formed image, and the resolution may decrease. was there.

本発明は以上の事情に鑑みてなされたものであって、画
像形成初期から画像形成安定期を通じて、常に安定した
画像を形成できるスタート現像剤を製造する方法を提供
することを目的としている。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for producing a starter developer that can always form a stable image from the initial stage of image formation to the stable period of image formation.

く課題を解決するための手段および作用〉上記課題を解
決するため、本発明者らは、画像形成初期から画像形成
安定期に至る、各種画像不良の発生の原因について、種
々の観点から検討を行った。
Means and Effects for Solving the Problems In order to solve the above problems, the present inventors investigated the causes of various image defects from various viewpoints, from the initial stage of image formation to the stable period of image formation. went.

その結果、以下のことが明らかとなった。As a result, the following became clear.

現像剤中のトナー濃度は、当該現像剤の透磁率を磁気セ
ンサで測定した際の、センサの出力値と、第3図に実線
aで示す関係にあるため、現像装置においては、現像剤
の透磁率をセンサによって測定してトナー濃度を推定し
、センサの出力値か所定値を超えると、自動的にトナー
が補給されるようになっている。
The toner concentration in the developer has a relationship with the output value of the sensor when the magnetic permeability of the developer is measured using a magnetic sensor, as shown by the solid line a in FIG. Toner concentration is estimated by measuring magnetic permeability with a sensor, and when the output value of the sensor exceeds a predetermined value, toner is automatically replenished.

ところか、所定のトナー濃度に対応するセンサの出力値
は、第2図に示すように、スタート現像剤製造時におけ
るトナーとキャリヤとの攪拌混合に伴って徐々に上昇す
る傾向にあり、飽和点に近い帯電量のスタート現像剤、
或いは飽和点に達する前の、攪拌混合が十分でないスタ
ート現像剤は、画像形成初期において、トナー濃度に対
応するセンサ出力値が、第3図中に二点績gbで示すよ
うに、画像形成安定期(実線a)よりも低めに出る傾向
かある。したがって、トナー濃度が実際よりも高めに判
断されるので、画像形成初期の段階では、消費量に見合
う量のトナーが補給されず、第5図に示すように、トナ
ー濃度か画像形成安定期のレヘル(同図中に二点鎖線で
示す)よりも大きく落ち込み、画像形成初期の画像濃度
が不足する。
However, as shown in Figure 2, the output value of the sensor corresponding to a predetermined toner concentration tends to gradually increase as the toner and carrier are stirred and mixed during the production of the start developer, and reaches the saturation point. Starting developer with a charge amount close to ,
Alternatively, if the starting developer is not sufficiently stirred and mixed before reaching the saturation point, the sensor output value corresponding to the toner concentration may not stabilize the image formation as shown by the two points gb in Fig. 3 in the early stage of image formation. There is a tendency for it to appear lower than the period (solid line a). Therefore, since the toner concentration is judged to be higher than the actual one, at the initial stage of image formation, the amount of toner corresponding to the consumed amount is not replenished, and as shown in FIG. The density decreases more than the level (indicated by the two-dot chain line in the figure), and the image density at the initial stage of image formation is insufficient.

この画像形成初期の画像濃度の不足は、特に帯電量が高
く、キャリヤかトナーを放出しにくい、飽和点に近い帯
電量のスタート現像剤において顕著に現れる。
This lack of image density at the initial stage of image formation is particularly noticeable in the starting developer, which has a high charge and is difficult to release carrier or toner, and whose charge is close to the saturation point.

また、第3図に二点鎖線すで示すスタート現像剤のセン
サ出力曲線は、画像形成時に、現像剤が現像装置内で循
環して攪拌されたり、トナーが補給されたりすることに
よって徐々に上昇して、実線aに近づく。このため、こ
のセンサ出力曲線の上昇期に、例えば同図中に白矢印で
示すように、トナー濃度がDlからD2まで減少した場
合のセンサの出力値は、二点鎖線すではなく、黒矢印で
示すように破線Cに沿って上昇する。したがって、両ト
ナー濃度り、、D2におけるセンサの出力値の差は、実
際の値ΔV、よりもΔ■2だけ大きいΔ■3として検知
されるので、実際よりも現像剤中のトナーの不足が強調
され、それに応じて、多量のトナーが補給される。また
、上記攪拌により、現像剤の帯電量は、第1図の曲線に
沿って低下する傾向を示し、帯電量の低下に伴って、キ
ャリヤがトナーをより多く放出するようになるため、結
果として、現像装置内に多量のトナーか放出されて、カ
ブリやトナーの飛散を生じ、解像度が低下する。
In addition, the sensor output curve for the starting developer shown by the two-dot chain line in Figure 3 gradually increases as the developer is circulated and stirred within the developing device and as toner is replenished during image formation. and approaches solid line a. Therefore, during the rising phase of this sensor output curve, when the toner concentration decreases from Dl to D2, for example as shown by the white arrow in the figure, the sensor output value will not be shown by the two-dot chain line, but by the black arrow. It rises along the broken line C as shown in . Therefore, the difference between the sensor output values at both toner concentrations and D2 is detected as Δ■3, which is larger by Δ■2 than the actual value ΔV, so the lack of toner in the developer is greater than the actual value. The image is highlighted and a large amount of toner is replenished accordingly. Furthermore, due to the above stirring, the amount of charge on the developer tends to decrease along the curve shown in Figure 1, and as the amount of charge decreases, the carrier releases more toner, resulting in , a large amount of toner is ejected into the developing device, causing fog and toner scattering, resulting in a decrease in resolution.

そこで本発明者らは、スタート現像剤の帯電量や攪拌混
合条件と、画像不良との関係についてさらに検討を行っ
た結果、本発明を完成するに至った。
Therefore, the present inventors further studied the relationship between the charge amount of the starting developer and stirring and mixing conditions and image defects, and as a result, completed the present invention.

したがって、本発明のスタート現像剤の製造方法は、ト
ナーとキャリヤとを所定比率で配合し、攪拌混合して2
成分系、のスタート現像剤を製造するに際し、攪拌混合
により帯電量が飽和した後さらに攪拌混合を続けて、ス
タート現像剤の帯電量を飽和帯電量の65〜90%に調
整することを特徴としている。
Therefore, the method for producing the start developer of the present invention involves blending toner and carrier in a predetermined ratio, stirring and mixing the two.
When producing the starting developer of the component system, after the charge amount is saturated by stirring and mixing, stirring and mixing is continued to adjust the charge amount of the start developer to 65 to 90% of the saturated charge amount. There is.

本発明製造方法において、攪拌混合により帯電量が飽和
した後、さらに帯電量が飽和帯電量の65〜90%にな
るまで攪拌を続けるのは、以下の理由による。
In the production method of the present invention, after the charge amount is saturated by stirring and mixing, stirring is continued until the charge amount reaches 65 to 90% of the saturated charge amount for the following reason.

すなわち、スタート現像剤の帯電量が、飽和帯電量の9
0%に低下するまでの段階で攪拌混合を停止した場合に
は、トナーとキャリヤとの攪拌混合が不十分であるため
、前述した理由により、画像形成初期における画像濃度
が不足すると共に、画像形成安定期に、カブリやトナー
の飛散等を生じ、解像度が低下してしまう。
That is, the charge amount of the start developer is 90% of the saturation charge amount.
If the agitation and mixing is stopped before the toner and carrier drop to 0%, the agitation and mixing of the toner and carrier will be insufficient, resulting in insufficient image density at the initial stage of image formation for the reasons mentioned above, and the image formation will be delayed. During the stable period, fogging, toner scattering, etc. occur, resulting in a decrease in resolution.

一方、スタート現像剤を、帯電量が飽和帯電量の65%
未満に低下するまで攪拌混合した場合には、トナーとキ
ャリヤとの攪拌混合が過剰で、先の場合と逆に、画像形
成初期において、トナー濃度に対するセンサ出力値が、
第4図中に二点鎖線dで示すように、画像形成安定期(
実線a)よりも高めに出る傾向がある。このため、トナ
ー濃度が実際よりも低めに判断されるので、画像形成初
期の段階において必要以上のトナーか供給されるさらに
、上記のように帯電量か低いスタート現像剤では、キャ
リヤがトナーを放出しやすいので、結果として、カブリ
やトナー飛散等が発生し、解像度が低下してしまう。
On the other hand, the charge amount of the start developer is 65% of the saturation charge amount.
If the toner and carrier are stirred and mixed until the concentration decreases to less than
As shown by the two-dot chain line d in FIG.
It tends to appear higher than the solid line a). For this reason, the toner concentration is judged to be lower than it actually is, and more toner than is needed is supplied at the initial stage of image formation.Furthermore, as mentioned above, when the starting developer has a low charge amount, the carrier releases toner. As a result, fogging, toner scattering, etc. occur, and the resolution deteriorates.

また、上記二点鎖線dて示すスタート現像剤のセンサ出
力曲線は、画像形成時に、現像剤が現像装置内で循環し
て攪拌されたり、トナーが補給されたりすることによっ
て、先の場合と逆に徐々に下降して実線aに近づく。こ
のため、このセンサ出力曲線の下降期に、例えば同図中
に白矢印で示すように、トナー濃度がD3からD4まで
減少した場合のセンサの出力値は、二点鎖線dてはなく
、黒矢印で示すように破線eに沿って上昇する。したが
って、両トナー濃度D3.D4におけるセンサの出力値
の差は、実際の値Δv4よりもΔV。
Furthermore, the sensor output curve of the start developer shown by the two-dot chain line d is reversed from the previous case due to the developer being circulated and stirred in the developing device and the toner being replenished during image formation. gradually descends to approach solid line a. Therefore, in the descending period of this sensor output curve, when the toner concentration decreases from D3 to D4, for example, as shown by the white arrow in the figure, the sensor output value is not the two-dot chain line d, but the black line. It rises along the broken line e as shown by the arrow. Therefore, both toner concentrations D3. The difference between the sensor output values at D4 is ΔV less than the actual value Δv4.

たけ小さいΔv6として検知されるので、実際よりもト
ナーの不足か少なめに判断され、消費量に見合う量のト
ナーが補給されなくなって、画像形成安定期に画像濃度
が不足してしまう。
Since Δv6 is detected to be as small as Δv6, it is determined that the amount of toner is insufficient or less than the actual amount, and an amount of toner corresponding to the consumed amount is not replenished, resulting in insufficient image density during the stable image formation period.

これに対し、スタート現像剤の飽和後の帯電量を、飽和
帯電量の65〜90%に調整した場合には、画像形成初
期から画像形成安定期まで、トナー濃度に対するセンサ
出力値がほぼ一定であるため、センサは、常に正確なト
ナー濃度を把握できるようになる。したがって、画像形
成初期から画像形成安定期にかけてのトナー補給が正確
に行われ、前記各種の画像不良の発生が防止される。
On the other hand, when the charge amount after saturation of the start developer is adjusted to 65 to 90% of the saturation charge amount, the sensor output value for toner density is almost constant from the initial stage of image formation to the stable stage of image formation. Therefore, the sensor can always accurately determine the toner concentration. Therefore, toner replenishment is performed accurately from the initial stage of image formation to the stable period of image formation, and the occurrence of the various image defects described above is prevented.

本発明のスタート現像剤の製造方法は、従来公知の種々
のトナーとキャリヤとの組み合わせのスタート現像剤に
適用することができる。
The method for producing a start developer of the present invention can be applied to start developers of various conventionally known combinations of toner and carrier.

トナーとしては、例えば、結着樹脂中に、着色剤、電荷
制御剤、離型剤(オフセット防止剤)等の添加剤を配合
した、粒径10M程度の着色粒子があげられる。
Examples of the toner include colored particles having a particle size of about 10 M, which are prepared by blending additives such as a coloring agent, a charge control agent, and a mold release agent (offset prevention agent) in a binder resin.

結着樹脂としては、ポリスチレン、クロロポリスチレン
、ポリ−α−メチルスチレン、スチレン−クロロスチレ
ン共重合体、スチレン−プロピレン共重合体、スチレン
−ブタジェン共重合体、スチレン−塩化ビニル共重合体
、スチレン−酢酸ビニル共重合体、スチレン−マレイン
酸共重合体、スチレン−アクリル酸エステル共重合体(
スチレン−アクリル酸メチル共重合体、スチレン−アク
リル酸エチル共重合体、スチレン−アクリル酸ブチル共
重合体、スチレン−アクリル酸オクチル共重合体、スチ
レン−アクリル酸フェニル共重合体等)、スチレン−メ
タクリル酸エステル共重合体(スチレン−メタクリル酸
メチル共重合体、スチレン−メタクリル酸エチル共重合
体、スチレン−メタクリル酸ブチル共重合体、スチレン
−メタクリル酸フェニル共重合体等) スチレン−α−
クロルアクリル酸メチル共重合体、スチレン−アクリロ
ニトリル−アクリル酸エステル共重合体等のスチレン系
樹脂(スチレンまたはスチレン置換体を含む単独重合体
または共重合体)、ポリ塩化ビニル、低分子量ポリエチ
レン、低分子量ポリプロピレン、エチレン−アクリル酸
エチル共重合体、ポリビニルブチラール、エチレン−酢
酸ビニル共重合体、ロジン変性マレイン酸樹脂、フェノ
ール樹脂、エポキシ樹脂、ポリエステル樹脂、アイオノ
マー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン
樹脂、キシレン樹脂、ポリアミド樹脂等があげられ、こ
れらか単独で、または2種以上混合して用いられる。中
でも、スチレン系樹脂、特にスチレン−(メタ)アクリ
ル酸エステル共重合体か好ましい。
As the binder resin, polystyrene, chloropolystyrene, poly-α-methylstyrene, styrene-chlorostyrene copolymer, styrene-propylene copolymer, styrene-butadiene copolymer, styrene-vinyl chloride copolymer, styrene- Vinyl acetate copolymer, styrene-maleic acid copolymer, styrene-acrylic acid ester copolymer (
Styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer, styrene-butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-phenyl acrylate copolymer, etc.), styrene-methacrylate Acid ester copolymers (styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-butyl methacrylate copolymer, styrene-phenyl methacrylate copolymer, etc.) Styrene-α-
Styrenic resins (homopolymers or copolymers containing styrene or styrene substitutes) such as methyl chloroacrylate copolymer, styrene-acrylonitrile-acrylic acid ester copolymer, polyvinyl chloride, low molecular weight polyethylene, low molecular weight Polypropylene, ethylene-ethyl acrylate copolymer, polyvinyl butyral, ethylene-vinyl acetate copolymer, rosin-modified maleic acid resin, phenol resin, epoxy resin, polyester resin, ionomer resin, polyurethane resin, silicone resin, ketone resin, xylene Examples include resins, polyamide resins, etc., and these may be used alone or in combination of two or more. Among these, styrene resins, particularly styrene-(meth)acrylate copolymers, are preferred.

着色剤としては、種々の着色顔料、体質顔料、導電性顔
料、磁性顔料、光導電性顔料等かあげられる。これらは
用途に応じて、1種または2種以上の組み合わせで使用
される。
Examples of the coloring agent include various colored pigments, extender pigments, conductive pigments, magnetic pigments, photoconductive pigments, and the like. These may be used singly or in combination of two or more depending on the purpose.

着色顔料としては、以下にあげるものか好適に使用され
る。
As the coloring pigment, the following are preferably used.

黒色 ファーネスブラック、チャンネルブラック、サーマル、
ガスブラック、オイルブラック、アセチレンブラック等
のカーボンブラック、ランプブラック、アニリンブラッ
ク。
Furnace black, channel black, thermal,
Gas black, oil black, carbon black such as acetylene black, lamp black, aniline black.

白色 亜鉛華、酸化チタン、アンチモン白、硫化亜鉛。White Zinc white, titanium oxide, antimony white, zinc sulfide.

赤色 ベンガラ、カドミウムレッド、鉛丹、硫化水銀、パーマ
ネントレッド4R,リソールレット、ピラゾロンレッド
、ウオッチングレッドカルシウム塩、レーキレッドD1
ブリリアントカーミン6B、エオシンレーキ、ローダミ
ンレーキB1アリザリンレーキ、ブリリアントカーミノ
3B0 橙色 赤口黄鉛、モリブデンオレンジ、パーマネントオレンジ
GTR,ピラゾロオレンジ、パルカンオレンジ、インダ
ンスレンブリリアントオレンジRK1ベンジジンオレン
ジG1インダンスレンブリリアントオレンジGK0 黄色 黄鉛、亜鉛華、カドミウムイエロー、黄色酸化鉄、ミネ
ラルファストイエロー、ニラケラチタンイエロー、ネー
ブルスイエロー、ナフトールイエローS1ハンサ−イエ
ローG、ハンサーイエロー10G1ベンジジンイエロー
G1ベンジジンイエローGR,キノリンイエローレーキ
、パーマネントイエローNCG、タートラジンレーキ。
Red Red Red Garla, Cadmium Red, Red Lead, Mercury Sulfide, Permanent Red 4R, Resolelet, Pyrazolone Red, Watching Red Calcium Salt, Lake Red D1
Brilliant Carmine 6B, Eosin Lake, Rhodamine Lake B1 Alizarin Lake, Brilliant Carmino 3B0 Orange Red Yellow Lead, Molybdenum Orange, Permanent Orange GTR, Pyrazolo Orange, Palkan Orange, Indanthrene Brilliant Orange RK1 Benzidine Orange G1 Indanthrene Brilliant Orange GK0 Yellow yellow lead, zinc white, cadmium yellow, yellow iron oxide, mineral fast yellow, Nirakera titanium yellow, navels yellow, naphthol yellow S1 Hansa Yellow G, Hansa Yellow 10G1 Benzidine Yellow G1 Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake.

緑色 クロムグリーン、酸化クロム、ピグメントグリーンB1
マラカイトグリーンレーキ、ファナルイエローグリーン
G0 青色 紺青、コバルトブルー アルカリブルーレーキ、ビクト
リアブルーレーキ、フタロシアニンブルー部分塩素化物
、ファーストスカイブルー インダンスレンブル−BC
o 紫色 マンガン紫、ファーストバイオレットB、メチルバイオ
レットレーキ。
Green chrome green, chromium oxide, pigment green B1
Malachite Green Lake, Final Yellow Green G0 Blue Navy Blue, Cobalt Blue Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue Partial Chloride, First Sky Blue Indan Stremburu-BC
o Purple Manganese Purple, First Violet B, Methyl Violet Lake.

体質顔料としては、パライト粉、炭酸バリウム、クレー
 ンリカ、ホワイトカーボン、タルク、アルミナホワイ
ト等かあげられる。
Examples of extender pigments include palite powder, barium carbonate, crane lica, white carbon, talc, and alumina white.

導電性顔料としては、導電性カーボンブラックやアルミ
ニウム粉等があげられる。
Examples of the conductive pigment include conductive carbon black and aluminum powder.

磁性顔料としては、各種フェライト、例えば、四三酸化
鉄(Feig4)、 三二酸化鉄(γ−Fe2O3)、 酸化鉄亜鉛(ZTIFe204)、 酸化鉄イツトリウム(Y 3 Fe15012)酸化鉄
カドミウム(CdFe 204 )酸化鉄ガドリニウム
(Gdi Fe504 )、酸化鉄鋼(CuFe 20
4 )、 酸化鉄錯(PbFe 12019)、 酸化鉄ネオジム(NdFe O3)、 酸化鉄バリウム(BaFe 12019)酸化鉄マグネ
シウム(1’bFe 204 )酸化鉄マンガン(11
nFe 20 < )酸化鉄ランタン(LIFe O3
) 鉄粉、コバルト粉、ニッケル粉等があげられる。
Magnetic pigments include various ferrites, such as triiron tetroxide (Feig4), iron sesquioxide (γ-Fe2O3), zinc iron oxide (ZTIFe204), iron yttrium oxide (Y3Fe15012), iron cadmium oxide (CdFe204) oxide, etc. Iron gadolinium (Gdi Fe504), iron oxide (CuFe20)
4), Iron oxide complex (PbFe 12019), Neodymium iron oxide (NdFeO3), Barium iron oxide (BaFe 12019), Magnesium iron oxide (1'bFe 204), Manganese iron oxide (11
nFe 20 < ) lanthanum iron oxide (LIFe O3
) Examples include iron powder, cobalt powder, nickel powder, etc.

光導電性顔料としては、酸化亜鉛、セレン、硫化カドミ
ウム、セレン化カドミウム等かあげられる。
Examples of photoconductive pigments include zinc oxide, selenium, cadmium sulfide, and cadmium selenide.

着色剤は、結着樹脂100重量部に対して1〜20重量
部、好ましくは3〜10重量部の割合で使用される。
The colorant is used in an amount of 1 to 20 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the binder resin.

電荷制御剤としては、トナーの極性に応じて、正電荷制
御用と負電荷制御用の2種の電荷制御剤が用いられる。
As the charge control agent, two types of charge control agents are used, one for positive charge control and one for negative charge control, depending on the polarity of the toner.

正電荷制御用の電荷制御剤としては、塩基性窒素原子を
有する有機化合物、例えば塩基性染料、アミノピリン、
ピリミジン化合物、多核ポリアミノ化合物、アミノシラ
ン類等や、上記各化合物で表面処理された充填剤等があ
げられる。
As a charge control agent for positive charge control, an organic compound having a basic nitrogen atom, such as a basic dye, aminopyrine,
Examples include pyrimidine compounds, polynuclear polyamino compounds, aminosilanes, and fillers surface-treated with the above compounds.

負電荷制御用の電荷制御剤としては、カルボキシ基を含
有する化合物(例えばアルキルサリチル酸金属キレート
等)、金属錯塩染料、脂肪酸石鹸、ナフテン酸金属塩等
があげられる。
Examples of the charge control agent for negative charge control include compounds containing a carboxy group (for example, alkyl salicylic acid metal chelates, etc.), metal complex dyes, fatty acid soaps, naphthenic acid metal salts, and the like.

電荷制御剤は、結着樹脂100重量部に対して0.1〜
10重量部、好ましくは0,5〜8重量部の割合で使用
される。
The charge control agent is used in an amount of 0.1 to 100 parts by weight of the binder resin.
It is used in a proportion of 10 parts by weight, preferably 0.5 to 8 parts by weight.

離型剤(オフセット防止剤)としては、脂肪族系炭化水
素、脂肪族金属塩類、高級脂肪酸類、脂肪酸エステル類
もしくはその部分ケン化物、シリコーンオイル、各種ワ
ックス等があげられる。中でも、重量平均分子量が10
00〜10000程度の脂肪族系炭化水素が好ましい。
Examples of mold release agents (offset inhibitors) include aliphatic hydrocarbons, aliphatic metal salts, higher fatty acids, fatty acid esters or partially saponified products thereof, silicone oil, various waxes, and the like. Among them, those with a weight average molecular weight of 10
Aliphatic hydrocarbons having a molecular weight of about 00 to 10,000 are preferred.

具体的には、低分子量ポリプロピレン、低分子量ポリエ
チレン、パラフィンワックス、炭素原子数4以上のオレ
フィン単位からなる低分子量のオレフィン重合体等の1
種または2種以上の組み合わせが適当である。
Specifically, low molecular weight polypropylene, low molecular weight polyethylene, paraffin wax, low molecular weight olefin polymers consisting of olefin units having 4 or more carbon atoms, etc.
A species or a combination of two or more species are suitable.

離型剤は、結着樹脂100重量部に対して0.1〜10
重量部、好ましくは0.5〜8重量部の割合で使用され
る。
The mold release agent is used in an amount of 0.1 to 10 parts by weight per 100 parts by weight of the binder resin.
It is used in proportions of 0.5 to 8 parts by weight, preferably 0.5 to 8 parts by weight.

トナーは、以上の各成分を乾式ブレンダー ヘンシェル
ミキサー ボールミル等によって均質に予備混練して得
られた混合物を、例えばバンバリーミキサ−ロール、−
軸または二軸の押出混練機等の混練装置を用いて均一に
溶融混練した後、得られた混線物を冷却して粉砕し、必
要に応じて分級することで製造される。
The toner is prepared by pre-kneading the above components homogeneously using a dry blender, a Henschel mixer, a ball mill, etc.
It is produced by uniformly melting and kneading using a kneading device such as a axial or twin-screw extrusion kneader, and then cooling and pulverizing the obtained mixed material, and classifying as necessary.

トナーの粒径は、5〜35μm1好ましくは7〜25μ
mである。
The particle size of the toner is 5 to 35 μm, preferably 7 to 25 μm.
It is m.

キャリヤとしては、鉄、酸化処理鉄、還元鉄、マグネタ
イト、銅、ケイ素鋼、フェライト、ニッケル、コバルト
等の粒子や、これらの材料とマンガン、亜鉛、アルミニ
ウム等との合金の粒子、鉄ニツケル合金、鉄−コバルト
合金等の粒子、上記各種粒子を結着樹脂中に分散させた
粒子、酸化チタン、酸化アルミニウム、酸化銅、酸化マ
グネシウム、酸化鉛、酸化ジルコニウム、炭化ケイ素、
チタン酸マグネシウム、チタン酸バリウム、チタン酸リ
チウム、チタン酸鉛、ジルコン酸鉛、ニオブ酸リチウム
等のセラミックスの粒子、リン酸二水素アンモニウム(
NH4H2PQ、) 、リン酸二水素カリウム(KH2
PO4)、ロッシェル塩等の高誘電率物質の粒子等があ
げられる。中でも、酸化鉄、還元鉄等の鉄粉やフェライ
トが、画像特性に優れ、しかも安価であるため好ましい
Examples of carriers include particles of iron, oxidized iron, reduced iron, magnetite, copper, silicon steel, ferrite, nickel, cobalt, etc., particles of alloys of these materials with manganese, zinc, aluminum, etc., iron-nickel alloys, Particles such as iron-cobalt alloy, particles in which the above various particles are dispersed in a binder resin, titanium oxide, aluminum oxide, copper oxide, magnesium oxide, lead oxide, zirconium oxide, silicon carbide,
Ceramic particles such as magnesium titanate, barium titanate, lithium titanate, lead titanate, lead zirconate, lithium niobate, ammonium dihydrogen phosphate (
NH4H2PQ, ), potassium dihydrogen phosphate (KH2
Examples include particles of high dielectric constant substances such as PO4) and Rochelle salt. Among these, iron powder such as iron oxide and reduced iron, and ferrite are preferable because they have excellent image characteristics and are inexpensive.

また、上記キャリヤは、トナーの帯電量や極性の制御、
湿度依存性改良、フィルミング防止等の目的のため、表
面に樹脂コート層を形成することもできる。
In addition, the above-mentioned carrier can control the amount of charge and polarity of the toner,
A resin coating layer can also be formed on the surface for the purpose of improving humidity dependence, preventing filming, etc.

樹脂コート層に用いられる高分子材料としては、(メタ
)アクリル系重合体、スチレン系重合体、スチレン−(
メタ)アクリル系共重合体、オレフィン系重合体(ポリ
エチレン、塩素化ポリエチレン、ポリプロピレン等)、
ポリ塩化ビニル、ポリカーボネート、ポリエステル樹脂
、不飽和ポリエステル樹脂、ポリアミド樹脂、ポリウレ
タン樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂
(ポリテトラフルオロエチレン、ポリクロロトリフルオ
ロエチレン、ポリフッ化ビニリデン等)、フェノール樹
脂、キシレン樹脂、ジアリルフタレート樹脂等があげら
れる。中でも、トナーとの摩擦帯電性および機械的強度
の点から、(メタ)アクリル系重合体、スチレン系重合
体、スチレン−(メタ)アクリル系共重合体、シリコー
ン樹脂、またはフッ素樹脂を用いるのか好ましい。上記
高分子材料は1種または2種以上を混合して使用するこ
ともできる。
Examples of polymeric materials used for the resin coating layer include (meth)acrylic polymers, styrene polymers, and styrene-(
meth)acrylic copolymers, olefin polymers (polyethylene, chlorinated polyethylene, polypropylene, etc.),
Polyvinyl chloride, polycarbonate, polyester resin, unsaturated polyester resin, polyamide resin, polyurethane resin, epoxy resin, silicone resin, fluororesin (polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, etc.), phenolic resin, xylene resin, diallyl phthalate resin, etc. Among these, it is preferable to use a (meth)acrylic polymer, a styrene polymer, a styrene-(meth)acrylic copolymer, a silicone resin, or a fluororesin in terms of triboelectric charging properties with the toner and mechanical strength. . The above polymer materials may be used alone or in combination of two or more.

上記高分子材料からなる樹脂コート層をキャリヤの表面
に形成するコーティング方法としては、流動層法、転勤
暦法等の公知の方法か、何れも採用可能である。
As a coating method for forming the resin coating layer made of the above-mentioned polymeric material on the surface of the carrier, any known method such as a fluidized bed method or a transfer calendar method can be employed.

キャリヤの粒径は30〜200μm1好ましくは50〜
130偉程度が良い。
The particle size of the carrier is 30 to 200 μm, preferably 50 to 200 μm.
About 130 yen is good.

トナーとキャリヤとの配合割合は、従来と同して良い。The blending ratio of toner and carrier may be the same as before.

また、スタート現像剤の流動性を向上させるために、上
記トナーとキャリヤに、さらに、コロイダルシリカ等の
流動化剤を配合することもできる。
Further, in order to improve the fluidity of the start developer, a fluidizing agent such as colloidal silica may be further added to the toner and carrier.

本発明を実施するだめの混合装置としては、ナウターミ
キサ−、ボールミル、■型混合機等が例示される。
Examples of mixing devices for carrying out the present invention include a Nauta mixer, a ball mill, and a type mixer.

本発明のスタート現像剤の製造方法は、トナーキャリヤ
、さらに必要に応じて前記流動化剤等を、帯電量を測定
しながら、上記例示の混合装置を用いて攪拌混合するこ
とで実施される。帯電量の測定には、ブローオフ等の、
従来公知の帯電量測定装置を使用することができる。
The method for producing the start developer of the present invention is carried out by stirring and mixing the toner carrier and, if necessary, the fluidizing agent and the like using the above-mentioned mixing device while measuring the amount of charge. To measure the amount of charge, blow-off, etc.
A conventionally known charge amount measuring device can be used.

帯電量は、前記のように主として攪拌混合時間に依存す
るが、混合装置のトルクや、攪拌混合時の雰囲気温度等
の他の条件にも依存する。例えば雰囲気温度が高いと、
帯電量が低下する。したがって、本発明においては、上
記トルクや雰囲気温度等の条件を調整することにより、
攪拌混合時間を短縮したり、或いは逆に延長したりする
ことができる。
The amount of charge mainly depends on the stirring and mixing time as described above, but it also depends on other conditions such as the torque of the mixing device and the ambient temperature during stirring and mixing. For example, if the ambient temperature is high,
The amount of charge decreases. Therefore, in the present invention, by adjusting the conditions such as the torque and ambient temperature,
The stirring and mixing time can be shortened or conversely extended.

〈実施例〉 以下に、本発明を、実施例並びに比較例に基づいて説明
する。
<Examples> The present invention will be described below based on Examples and Comparative Examples.

実施例1,2、比較例3 下記組成のトナーおよびキャリヤを、重量比3.5:9
6.5の割合で配合し、ナウターミキサ−(ホソカワミ
クロン社製の商品名NX−5)中に投入した。
Examples 1 and 2, Comparative Example 3 Toner and carrier having the following composition were mixed at a weight ratio of 3.5:9.
6.5 and put into a Nauta mixer (trade name: NX-5, manufactured by Hosokawa Micron).

*トナー(中心粒径10坤) スチレン−アクリル共重合体:100重量部カーボンブ
ラック     二8.5重量部モノアゾ系染料   
      2重量部低分子量ポリプロピレン    
 3重量部*キャリヤ(中心粒径100岬) 鉄粉          :99.7重量部スチレン−
アクリル共重合体二0.3重量部次に、ブローオフによ
って帯電量を測定しながら、雰囲気温度20℃の条件で
攪拌混合を行い、帯電量を一旦飽和させた後、さらに攪
拌混合を続けて、表1に示す帯電量のスタート現像剤を
製造した。なお、攪拌混合時の飽和帯電量は28.0で
あった。
*Toner (center particle size: 10 kon) Styrene-acrylic copolymer: 100 parts by weight Carbon black 28.5 parts by weight Monoazo dye
2 parts by weight low molecular weight polypropylene
3 parts by weight *Carrier (center particle size 100 cape) Iron powder: 99.7 parts by weight Styrene
0.3 parts by weight of acrylic copolymer 2 Next, stirring and mixing was performed at an ambient temperature of 20° C. while measuring the amount of charge by blow-off, and after once the amount of charge was saturated, stirring and mixing was continued. A starting developer having the charge amount shown in Table 1 was manufactured. Note that the saturated charge amount during stirring and mixing was 28.0.

比較例1 帯電量か飽和する前に攪拌混合を終了させたこと以外は
、上記実施例1,2、比較例3と同様にしてスタート現
像剤を製造した。
Comparative Example 1 A starter developer was produced in the same manner as in Examples 1 and 2 and Comparative Example 3, except that the stirring and mixing was completed before the charge amount was saturated.

比較例2 帯電量が飽和した直後に攪拌混合を終了させたこと以外
は、上記実施例1,2、比較例3と同様にしてスタート
現像剤を製造した。
Comparative Example 2 A starter developer was produced in the same manner as in Examples 1 and 2 and Comparative Example 3, except that the stirring and mixing was terminated immediately after the charge amount was saturated.

実施例3,4、比較例6 下記組成のトナーおよびキャリヤを、重量比3.5:9
6.5の割合で配合し、ナウターミキサ−(ホソカヮミ
クロン社製の商品名NX−5)中に投入した。
Examples 3 and 4, Comparative Example 6 Toner and carrier having the following composition were mixed at a weight ratio of 3.5:9.
6.5 and put into a Nauta mixer (trade name: NX-5, manufactured by Hosoka Micron Co., Ltd.).

*トナー(中心粒径1oμm) スチレン−アクリル共重合体 ;9o重量部パーマネン
トレッド     = 5重量部モノアゾ系染料   
    : 5重量部低分子量ポリプロピレン   :
 2重量部*キャリヤ 中心粒径100μmの鉄粉 次に、ブローオフによって帯電量を測定しながら、雰囲
気温度20℃の条件で攪拌混合を行い、帯電量を一旦飽
和させた後、さらに攪拌混合を続けて、表2に示す帯電
量のスタート現像剤を製造した。なお、攪拌混合時の飽
和帯電量は31.0であった。
*Toner (center particle size 1oμm) Styrene-acrylic copolymer; 9o parts by weight Permanent red = 5 parts by weight monoazo dye
: 5 parts by weight low molecular weight polypropylene :
2 parts by weight * Iron powder with a carrier center particle size of 100 μm Next, stirring and mixing was performed at an ambient temperature of 20°C while measuring the amount of charge by blow-off, and once the amount of charge was saturated, stirring and mixing was continued. A starting developer having the charge amount shown in Table 2 was produced. Note that the saturated charge amount during stirring and mixing was 31.0.

比較例4 帯電量か飽和する前に攪拌混合を終了させたこと以外は
、上記実施例3,4、比較例6と同様にしてスタート現
像剤を製造した。
Comparative Example 4 A starter developer was produced in the same manner as in Examples 3 and 4 and Comparative Example 6, except that the stirring and mixing was completed before the charge amount was saturated.

比較例5 帯電量か飽和した直後に攪拌混合を終了させたこと以外
は、上記実施例3,4、比較例6と同様にしてスタート
現像剤を製造した。
Comparative Example 5 A starter developer was produced in the same manner as in Examples 3 and 4 and Comparative Example 6, except that the stirring and mixing was terminated immediately after the charge amount was saturated.

上記各実施例並びに比較例で得られたスタート現像剤に
ついて、下記の各試験を行った。
The following tests were conducted on the start developers obtained in each of the above Examples and Comparative Examples.

センサ出力測定 上記スタート現像剤を、電子写真複写機(三田工業株式
会社製の型番DC−5585)に使用し、各実施例、比
較例で用いたトナーを補給用トナーとして使用して、原
稿の連続複写を行った。そして、複写初期(1〜10枚
程度複写時)と、実施例1,2、比較例1〜3について
は10万枚複写後、実施例3,4、比較例4〜6につい
ては5000枚複写後の画像形成安定期に、電子写真複
写機の現像装置に装着されたセンサに24Vの入力電圧
を印加しつつ、トナー濃度3%の現像剤におけるセンサ
の出力電圧(V)を測定した。
Sensor output measurement The above starting developer was used in an electrophotographic copying machine (model number DC-5585, manufactured by Sanda Kogyo Co., Ltd.), and the toner used in each example and comparative example was used as a replenishment toner. Continuous copying was performed. Then, at the initial stage of copying (when copying about 1 to 10 sheets), after 100,000 copies for Examples 1 and 2 and Comparative Examples 1 to 3, and after 5000 copies for Examples 3 and 4 and Comparative Examples 4 to 6. During the subsequent stable image formation period, an input voltage of 24 V was applied to the sensor attached to the developing device of the electrophotographic copying machine, and the output voltage (V) of the sensor was measured for a developer with a toner concentration of 3%.

画像濃度測定 上記スタート現像剤を、前記と同じ電子写真複写機に使
用し、各実施例、比較例で用いたトナーを補給用トナー
として使用して、黒べた原稿の連続複写を行った。そし
て、反射濃度計(東京電色株式会社製の商品名TC−6
D)を用いて、複写初期(1〜10枚目)、100枚目
、並びに、実施例1,2、比較例1〜3については10
万枚目、実施例3,4、比較例4〜6については500
0000枚目画像の濃度を測定した。
Image Density Measurement Using the above-described starting developer in the same electrophotographic copying machine as described above, and using the toner used in each Example and Comparative Example as a replenishment toner, a black solid original was continuously copied. Then, a reflection densitometer (product name TC-6 manufactured by Tokyo Denshoku Co., Ltd.)
D) for the initial stage of copying (1st to 10th sheets), 100th sheet, and Examples 1 and 2 and Comparative Examples 1 to 3.
500 for the 10,000th sheet, Examples 3 and 4, and Comparative Examples 4 to 6
The density of the 0000th image was measured.

カブリ濃度測定 上記スタート現像剤を、前記と同じ電子写真複写機に使
用し、各実施例、比較例で用いたトナーを補給用トナー
として使用して、黒白原稿の連続複写を行った。そして
、反射濃度計(東京電色株式会社製の商品名TC−6D
)を用いて、複写初期(1〜10枚目)、並びに、実施
例1,2、比較例1〜3については10万枚目、実施例
3,4、比較例4〜6については5000000枚目画
像の余白部分の濃度を測定して、カブリ濃度とした。
Fog Density Measurement Using the above starting developer in the same electrophotographic copying machine as above, and using the toner used in each Example and Comparative Example as a replenishment toner, black and white originals were continuously copied. Then, a reflection densitometer (product name TC-6D manufactured by Tokyo Denshoku Co., Ltd.)
) for the initial stage of copying (1st to 10th sheets), the 100,000th sheet for Examples 1 and 2 and Comparative Examples 1 to 3, and the 5,000,000th sheet for Examples 3 and 4 and Comparative Examples 4 to 6. The density of the margin part of the eye image was measured and used as the fog density.

解像度測定 上記スタート現像剤を、前記と同じ電子写真複写機に使
用し、各実施例、比較例で用いたトナーを補給用トナー
として使用して、JIS  B7174−1962の規
定に準拠する解像度測定用図票の連続複写を行った。そ
して、実施例1,2、比較例1〜3については10万枚
目、実施例3゜4、比較例4〜6については50000
00枚目画像の解像度(本/關)を求めた。
Resolution measurement The above starting developer was used in the same electrophotographic copying machine as above, and the toner used in each example and comparative example was used as a replenishment toner to measure resolution in accordance with the provisions of JIS B7174-1962. Continuous copying of charts was carried out. The 100,000th sheet for Examples 1 and 2 and Comparative Examples 1 to 3, and the 50,000th sheet for Example 3°4 and Comparative Examples 4 to 6.
The resolution (book/screen) of the 00th image was determined.

トナー飛散性試験 上記解像度測定に用いた各複写画像の余白部分と、実施
例1.2、比較例1〜3については10万枚、実施例3
,4、比較例4〜6については5000枚の複写を行っ
た後の複写機内部とを観察した。そして、トナーの飛散
が、複写画像の余白部分並びに複写機内部の何れにもほ
とんど観察されなかった場合をO1複写画像の余白部分
および複写機内部の少なくとも一方に観察されたものを
×として評価した。
Toner scattering test The margins of each copy image used for the resolution measurement above, 100,000 sheets for Examples 1.2 and Comparative Examples 1 to 3, and 100,000 sheets for Example 3.
, 4, and Comparative Examples 4 to 6, the inside of the copying machine was observed after 5000 copies were made. Cases in which toner scattering was hardly observed anywhere in the margins of the copied image or inside the copying machine were evaluated as O1; cases in which toner scattering was observed in at least one of the margins of the copied image and the interior of the copying machine were evaluated as ×. .

以上の結果を、各スタート現像剤の帯電量のデータ、並
びに、上記帯電量の飽和帯電量に対する割合[帯電比(
%)]のデータと共に表1、表2に示す。
The above results are combined with data on the charge amount of each starting developer, as well as the ratio of the above charge amount to the saturated charge amount [charging ratio (
%)] are shown in Tables 1 and 2 together with the data.

上記表1、表2の比較例1.4の結果に示すように、帯
電量が飽和する前に攪拌混合を終了させた場合には、帯
電量が飽和帯電量の65〜90%の範囲内であっても攪
拌混合が不十分て、画像形成初期のセンサ出力が低いた
め、画像形成開始から100枚程度の画像濃度に大きな
落ち込みかみられる他、攪拌混合が不十分であることに
起因するとみられるカブリが発生する。また、画像形成
初期から安定期にかけてセンサ出力が大幅に上昇するた
め、画像形成安定期にカブリやトナーの飛散が発生し、
安定期の画像の解像度が悪い。
As shown in the results of Comparative Example 1.4 in Tables 1 and 2 above, when stirring and mixing are completed before the charge amount is saturated, the charge amount is within the range of 65 to 90% of the saturated charge amount. However, due to insufficient stirring and mixing and low sensor output at the beginning of image formation, there is a large drop in image density after about 100 sheets from the start of image formation, and this is thought to be due to insufficient stirring and mixing. Fog occurs. In addition, since the sensor output increases significantly from the initial stage of image formation to the stable stage, fogging and toner scattering occur during the stable stage of image formation.
The resolution of the image during the stable period is poor.

上記表1、表2の比較例2.5の結果に示すように、帯
電量か飽和した直後に攪拌混合を終了させた場合におい
ても攪拌混合が未だ不十分で、前記と同様に、画像形成
初期のセンサ出力が低いため、画像形成開始から100
枚程度の画像濃度に大きな落ち込みかみられる。また、
帯電量が高いため、画像形成初期の画像濃度が著しく低
い。さらには、画像形成初期から安定期にかけてセンサ
出力か大幅に上昇するため、画像形成安定期にカブリや
トナーの飛散が発生し、安定期の画像の解像度が悪い。
As shown in the results of Comparative Example 2.5 in Tables 1 and 2 above, even when the stirring and mixing was terminated immediately after the charge amount was saturated, the stirring and mixing was still insufficient, and the image formation Because the initial sensor output is low, it takes 100 seconds from the start of image formation.
There is a significant drop in image density for approximately one sheet. Also,
Since the amount of charge is high, the image density at the initial stage of image formation is extremely low. Furthermore, since the sensor output increases significantly from the initial stage of image formation to the stable stage, fogging and toner scattering occur during the stable stage of image formation, and the resolution of the image during the stable stage is poor.

一方、比較例3,6の結果に示すように、帯電量が飽和
した後の攪拌が長ずざると、画像形成初期から安定期に
かけてセンサ出力が大幅に低下するため、画像形成安定
期に画像濃度の不足が生しる。また、帯電量が低いため
、画像形成初期にカブリがみられる。
On the other hand, as shown in the results of Comparative Examples 3 and 6, if the stirring after the charge amount is saturated is not continued for a long time, the sensor output will decrease significantly from the initial stage of image formation to the stable stage. This results in a lack of concentration. Furthermore, since the amount of charge is low, fogging is observed at the initial stage of image formation.

これに対し、実施例1〜4で得られたスタート現像剤は
、何れも、画像形成初期から安定期にがけてのセンサ出
力かほぼ一定しており、常に安定した画像濃度が得られ
る上、カブリやトナーの飛散等が発生せず、解像度が高
い。このことから、帯電量か飽和した後の攪拌混合によ
り、帯電量を飽和帯電量の65〜90%の範囲内に調整
する本発明製造方法によれば、画像形成初期から安定期
にかけて、常に安定した画像を形成できるスタト現像剤
を得られることが判明した。
On the other hand, in all of the start developers obtained in Examples 1 to 4, the sensor output was almost constant from the initial stage of image formation to the stable period, and stable image density was always obtained. High resolution without fogging or toner scattering. Therefore, according to the manufacturing method of the present invention, in which the charge amount is adjusted within the range of 65 to 90% of the saturated charge amount by stirring and mixing after the charge amount is saturated, the image is always stable from the initial stage of image formation to the stable period. It has been found that it is possible to obtain a stat developer capable of forming images.

〈発明の効果〉 本発明のスタート現像剤の製造方法は、以上のように構
成されているため、画像形成初期から画像形成安定期を
通じて、常に安定した画像を形成できるスタート現像剤
を製造することが可能となる。
<Effects of the Invention> Since the method for producing a start developer of the present invention is configured as described above, it is possible to produce a start developer that can always form a stable image from the initial stage of image formation to the stable period of image formation. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は攪拌混合による帯電量の推移を示すグラフ、第
2図は攪拌混合によるセンサ出力の推移を示すグラフ、
第3図および第4図は現像剤のトナー濃度とセンサ出力
との関係を示すグラフ、第5図は連続的な画像形成に伴
うトナー濃度の推移を示すグラフである。
Figure 1 is a graph showing changes in the amount of charge due to stirring and mixing, Figure 2 is a graph showing changes in sensor output due to stirring and mixing,
3 and 4 are graphs showing the relationship between the toner concentration of the developer and the sensor output, and FIG. 5 is a graph showing the transition of the toner concentration accompanying continuous image formation.

Claims (1)

【特許請求の範囲】[Claims] 1、トナーとキャリヤとを所定比率で配合し、攪拌混合
して2成分系のスタート現像剤を製造する方法において
、攪拌混合により帯電量が飽和した後さらに攪拌混合を
続けて、スタート現像剤の帯電量を飽和帯電量の65〜
90%に調整することを特徴とするスタート現像剤の製
造方法。
1. In the method of manufacturing a two-component start developer by blending toner and carrier in a predetermined ratio and stirring and mixing, after the amount of charge is saturated by stirring and mixing, stirring and mixing is continued to create a starting developer. The amount of charge is 65 to the saturation charge amount.
A method for producing a start developer, which comprises adjusting the starting developer to 90%.
JP2129669A 1990-05-19 1990-05-19 Production of start developer Pending JPH0424651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129669A JPH0424651A (en) 1990-05-19 1990-05-19 Production of start developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129669A JPH0424651A (en) 1990-05-19 1990-05-19 Production of start developer

Publications (1)

Publication Number Publication Date
JPH0424651A true JPH0424651A (en) 1992-01-28

Family

ID=15015224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129669A Pending JPH0424651A (en) 1990-05-19 1990-05-19 Production of start developer

Country Status (1)

Country Link
JP (1) JPH0424651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054331A1 (en) 2010-06-10 2011-12-15 Mitsubishi Electric Corp. Internal combustion engine control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054331A1 (en) 2010-06-10 2011-12-15 Mitsubishi Electric Corp. Internal combustion engine control system

Similar Documents

Publication Publication Date Title
JP3157037B2 (en) Electrophotographic toner and manufacturing method
JPH0424651A (en) Production of start developer
JPH06118700A (en) Electrophotographic toner
JP2604893B2 (en) Electrophotographic developer
JP2581599B2 (en) Dry two-component developer for electrophotography
JP2876877B2 (en) Toner for developing electrostatic images
JP2604894B2 (en) Electrophotographic developer
JP2604895B2 (en) Electrophotographic developer
JP2637309B2 (en) Start developer
JP3185352B2 (en) Toner for developing electrostatic images
JPH04280255A (en) Electrophotographic toner
US5240804A (en) Electrophotographic developer comprising resin coated carrier
JP3098054B2 (en) Start developer and toner concentration control method
JP3098081B2 (en) Electrophotographic toner
US5683846A (en) Electrophotographic developer having a specific voltage-dependant index
JP2679516B2 (en) Developer for developing electrostatic images
JP3098080B2 (en) Electrophotographic toner
JP3286863B2 (en) Two-color electrophotographic image forming method
JP2867781B2 (en) Developer for developing electrostatic images
JP2701970B2 (en) Electrophotographic toner
JP3253376B2 (en) Electrophotographic developer
JPH0527483A (en) Electrophotographic toner
JPH03294867A (en) Electrophotographic toner
JPH11102084A (en) Development method
JPH06148946A (en) Magnetic particle