JPH0426570A - Method for joining ceramics and metal - Google Patents
Method for joining ceramics and metalInfo
- Publication number
- JPH0426570A JPH0426570A JP13152690A JP13152690A JPH0426570A JP H0426570 A JPH0426570 A JP H0426570A JP 13152690 A JP13152690 A JP 13152690A JP 13152690 A JP13152690 A JP 13152690A JP H0426570 A JPH0426570 A JP H0426570A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- particles
- metal
- strength
- ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 29
- 239000002184 metal Substances 0.000 title claims abstract description 29
- 239000000919 ceramic Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 21
- 238000005219 brazing Methods 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 45
- 229910052759 nickel Inorganic materials 0.000 claims description 22
- 229910052721 tungsten Inorganic materials 0.000 claims description 17
- 239000010937 tungsten Substances 0.000 claims description 17
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 16
- 239000000945 filler Substances 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 abstract description 14
- 238000007254 oxidation reaction Methods 0.000 abstract description 14
- 239000010935 stainless steel Substances 0.000 abstract description 8
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000000465 moulding Methods 0.000 abstract 3
- 239000011248 coating agent Substances 0.000 abstract 2
- 238000000576 coating method Methods 0.000 abstract 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000002407 reforming Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 11
- 238000013001 point bending Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910017770 Cu—Ag Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910017945 Cu—Ti Inorganic materials 0.000 description 1
- 229910004353 Ti-Cu Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003657 tungsten Chemical class 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、セラミックスと金属の接合方法に関するもの
である7
(従来の技術)
従来、セラミックス等の粉末成形体と金属とを接合する
方法の1つとして活性金属法かある。[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to a method for joining ceramics and metal.7 (Prior Art) Conventionally, a method for joining a powder compact such as ceramics and metal is described. One method is the active metal method.
この方紘は、セラミックスと反zし易い材料。This material is a material that easily reacts with ceramics.
すなわち、酸素等と結合し易いチタンやシルコニュムを
ろう材として使用する方法である。この活性金属法に用
いられるろう材は、チタンやシルコニュムを基本とする
合金であり、Ti −Cu −Ag系の合金かよく用い
られる。That is, this is a method in which titanium or silconium, which easily combines with oxygen, etc., is used as a brazing material. The brazing material used in this active metal method is an alloy based on titanium or silconium, and a Ti-Cu-Ag alloy is often used.
特開昭59−232693号公報には、Ti −Cu−
Ag系の合金としたセラミックスと金属の接合に使用す
るクラット型のろう材か提案されている。JP-A-59-232693 discloses Ti-Cu-
A crat-type brazing material has been proposed for use in joining metals and ceramics made of Ag-based alloys.
従来の活性金属法によるセラミックスと金属の接合方法
ては、Ti −Cu −Ag系合金によるろう材の接合
性は良好であるか、ろう材に銀を含み、銀の融点が低い
ため、300℃以上となると接合強度か急激に低下する
。In the conventional method of joining ceramics and metal using the active metal method, the bondability of the brazing filler metal using a Ti-Cu-Ag alloy is good, or because the brazing filler metal contains silver and the melting point of silver is low, If the temperature exceeds that value, the bonding strength will decrease rapidly.
この点を改善するため4本出願人は、ろう材の銀をニッ
ケルに変更し、高温強度の向上を図った発明について、
先に特許出願(特願モl−313222号)している。In order to improve this point, the applicant changed the silver of the brazing material to nickel to improve high temperature strength.
A patent application (Japanese Patent Application No. 1-313222) has been previously filed.
前記のセラミックスと金属の接合方法では、いずれも熱
応力III和材としてタングステン板を用いており、こ
のタングステン板が800℃前後の加熱、冷却により、
酸化して劣化することか判明した。In all of the above-mentioned methods for joining ceramics and metal, a tungsten plate is used as the thermal stress III material, and this tungsten plate is heated to around 800°C and cooled.
It turns out that it oxidizes and deteriorates.
したかって、大気中における耐熱性は、400℃程度し
か期待できず、エンジン燃焼室周り竿の高温環境で使用
するには問題か生ずる。Therefore, the heat resistance in the atmosphere can only be expected to be about 400° C., which poses a problem when used in the high temperature environment around the engine combustion chamber.
本発明は、上記の課題を解決し、800℃前後の加熱、
冷却によっても接合強度の低下か起きず、安定した接合
強度を保持することかてきるセラミックスと金属の接合
方法を提供することを目的とするものである。The present invention solves the above problems and provides heating at around 800°C.
The object of the present invention is to provide a method for joining ceramics and metal, which does not cause a decrease in joint strength even when cooled and can maintain stable joint strength.
(課題を解決するためのt段及び作用)本発明は、セラ
ミックスと金属との間にタングステン粒子にニッケル粒
子を被覆して焼結した焼結板とその両側をニッケル板と
した応力緩和材を介在させ、セラミックスと前記ニッケ
ル板との間にろう材を配設し、所定の真空状態て加熱す
るセラミ・フクスと金属の接合方法である。(Steps and effects for solving the problem) The present invention uses a sintered plate in which tungsten particles are coated with nickel particles and sintered between the ceramic and the metal, and a stress relaxation material with nickel plates on both sides of the sintered plate. This is a ceramic/metal bonding method in which a brazing material is interposed between the ceramic and the nickel plate and heated in a predetermined vacuum state.
K空中での加熱により、セラミックスとニッケル板との
間のろう材か作用してセラミックスと金属か接合される
。応力緩和材のタンクステン焼結板は各タングステン粒
子かニッケル粒子て被覆されているので酸化か充分防出
され、800℃前後のMJ熱、冷却によっても接合強度
の低下か起きず安定した接合強度を保持する。By heating in K air, the brazing material between the ceramic and nickel plate acts to join the ceramic and metal. The tanksten sintered plate, which is a stress relaxation material, is coated with each tungsten particle or nickel particle, so oxidation is sufficiently prevented, and the bond strength remains stable even with MJ heat and cooling at around 800°C, with no decrease in bond strength. hold.
(実施例) 本発明の実施例を図面について説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.
第1図は、本発明の一実施例の説明図、第2図は接合時
の加熱条件を示す図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing heating conditions during bonding.
第1図に示すように、セラミックスとし・て窒化珪素(
Si、N4 )セラミ・・lクス成形体1と、金属とし
てステンレス(SUS304 )2を接合対象材に選び
、両溝の間に後記の方法で製作した厚さ1.0■■のタ
ンクステン焼結板3をはさんてその両側に厚さ1.0−
一と1.5mmのニッケル板4.5を配置し、また、セ
ラミックス成形体lとニッケル板5との間に、厚さ1.
5 u、■のチタン膜7を施した厚さ20ル爵の#4箔
6をチタン膜7かセラミックス成形体lに当接するよう
に配設する。As shown in Figure 1, silicon nitride (
Si, N4) Ceramic...lux molded body 1 and stainless steel (SUS304) 2 were selected as the materials to be joined, and between both grooves was a 1.0 mm thick tank stainless steel manufactured by the method described below. A thickness of 1.0- is placed on both sides of the connecting plate 3.
A nickel plate 4.5 with a thickness of 1.5 mm is placed between the ceramic molded body l and the nickel plate 5 with a thickness of 1.5 mm.
A #4 foil 6 with a thickness of 20 mm and coated with a titanium film 7 of 5 u, 2 is placed so as to be in contact with either the titanium film 7 or the ceramic molded body l.
タンクステン焼結板3は次の方法で製作する。The tank stainless steel sintered plate 3 is manufactured by the following method.
平均粒径1〜10uLmのタングステン粒子の表面にハ
イツリタイゼージョンシステム簿の表面改質システムを
利用して平均粒径0.1−1μ層の二・ソヶル粒子を被
覆する。この粒子を用い、3 x 10−’rurrの
真空中で次の条件で加熱焼結する。第71Aに広すよう
に、150℃、400℃、700℃にそれぞれ0.9K
s保持した後、1200℃に1.44Ks保持するウセ
ラミウクスと金属を接合するには、これらを重ね合せ、
5 X l+)−’□。、、、の真空中で加熱する。The surface of tungsten particles with an average particle diameter of 1 to 10 μLm is coated with a layer of Ni-Sogal particles with an average particle diameter of 0.1 to 1 μL using a surface modification system of the Hyturitization System. These particles are heated and sintered in a vacuum of 3 x 10-'rurr under the following conditions. 0.9K each at 150℃, 400℃, and 700℃ to spread to No. 71A
After holding it for 1.44Ks at 1200℃, in order to join the metal, overlap them,
5 X l+)−'□. , heated in vacuum.
第2図は横軸に時間、縦軸に加勢温度を示し昇温速度t
=0.ff4℃/secで、t、 =12QQ”Cに加
熱してT + =11.06Ks保持し、その後に温度
を1.=1150℃に下げてTz =0.6 Ks保持
し、更に、1゜=1100℃に下げてT□=3.6Ks
保持する。この加熱条件て接合させたところ、4点曲げ
強度200[’。Figure 2 shows time on the horizontal axis and applied temperature on the vertical axis, and heating rate t.
=0. ff4℃/sec, heat to t = 12QQ''C and hold T + = 11.06Ks, then lower the temperature to 1. = 1150℃ and hold Tz = 0.6Ks, and further 1° = lowered to 1100℃ T□ = 3.6Ks
Hold. When bonded under these heating conditions, the four-point bending strength was 200['.
か得られた。or obtained.
1−記の接合方法でセラミックスlとステンレス2との
間にタンクステン焼結板3及びニッケル板4.5を配設
してN1−W−Ni層を設けたのは、セラミックスと金
属との線膨張係数の相違により発生する熱応力の緩和を
図ったものであり、ニッケル板5.銅?eJ6.チタン
膜7か「N1−Cu−TiJ系のろう材として作用する
。The reason why the tank stainless sintered plate 3 and the nickel plate 4.5 are arranged between the ceramic 1 and the stainless steel 2 to form the N1-W-Ni layer in the bonding method described in 1-1 is because of the bonding between the ceramic and the metal. This is intended to alleviate thermal stress caused by differences in linear expansion coefficients, and the nickel plate 5. copper? eJ6. The titanium film 7 acts as a brazing material for the N1-Cu-TiJ system.
上記の接合条件において加熱温度t□(1tOo゛(:
)て時間T、(16Ks)保持したのは、ろう材中の銅
の拡散を運行させ。銅濃度を下げて耐熱性の向上を図っ
たものである。また、銅箔6とタングステン板IMのニ
ッケル板5の厚さの設定か重要てあり、その厚さにより
接合強度か変化する。このニッケル板5の厚さと接合強
度との関係を第3図に示す。同図において、横軸はニッ
ケル板5の厚さ、縦軸は4点曲げ強度を示す。Under the above bonding conditions, the heating temperature t□(1tOo゛(:
) and held for a time T (16Ks) to allow the diffusion of copper in the filler metal to proceed. The copper concentration was lowered to improve heat resistance. Also, the setting of the thickness of the copper foil 6 and the nickel plate 5 of the tungsten plate IM is important, and the bonding strength changes depending on the thickness. FIG. 3 shows the relationship between the thickness of the nickel plate 5 and the bonding strength. In the figure, the horizontal axis shows the thickness of the nickel plate 5, and the vertical axis shows the four-point bending strength.
図から明らかなように、ニッケル板5の厚さは1.5m
mとするのか最適であり、1.0〜1.7−−の範囲て
も4点曲げ強度2(1(llIIPaか得られる。As is clear from the figure, the thickness of the nickel plate 5 is 1.5 m.
It is optimal to set it to m, and even in the range of 1.0 to 1.7, a four-point bending strength of 2 (1 (llII Pa) can be obtained.
ろう材として銀を用いず、ニッケルを使用したrNi
−Cu −Ti J系のろう材としたことにより接合部
の耐熱性か向上する。84図に従来の「Ti −Cu
−Ag J系のろう利を使用した嚇合と、rNi −C
u −Ti J系のろう材を使用した場合の接合強度と
温度との関係を示す。rNi using nickel instead of silver as a brazing material
-Cu-Ti J-based brazing material improves the heat resistance of the joint. Figure 84 shows the conventional “Ti-Cu
-Ag J-based alloy and rNi -C
The relationship between bonding strength and temperature when using a u-Ti J brazing filler metal is shown.
rNi −Cu −Ti J系のろう材を使用した1合
(実線■)では、室温から600℃まで4点曲番・強度
20011Pa′Jt#l持するか、従来のrTi −
Cu−AgJ系のろう材を使用した場合(破線■)ζは
、400℃で4点曲げ強度か20011Pa以下と九り
、以下温度の上昇につれて接合強度が急激に低下する。In case 1 (solid line ■) using rNi -Cu -Ti J-based brazing filler metal, the 4-point bending number and strength are 20011Pa'Jt#l from room temperature to 600℃, or the conventional rTi -
When a Cu-AgJ brazing filler metal is used (broken line ■), ζ has a four-point bending strength of 20,011 Pa or less at 400°C, and the bonding strength rapidly decreases as the temperature rises below.
一方、熱応力緩和材としてタングステン板を使用した場
合には、これか酸化により劣化する。ン5図に、窒化珪
素セラミックス成形体とステンレスの接合に、厚さ1.
0−一のタングステン板を熱地力緩和材として使用し、
酸化温度を800℃とした場合の酸化時間と4点曲げ強
度との関係を示す。On the other hand, when a tungsten plate is used as a thermal stress relaxation material, it deteriorates due to oxidation. Figure 5 shows that a silicon nitride ceramic molded body and stainless steel are bonded to a thickness of 1.
Using 0-1 tungsten plate as a thermal geological force mitigation material,
The relationship between oxidation time and four-point bending strength when the oxidation temperature is 800°C is shown.
タングステン板か酸化して劣化し、4点曲げ強度か急速
に低下している。The tungsten plate has deteriorated due to oxidation, and its four-point bending strength is rapidly decreasing.
第6図は本発明のタングステン焼結板の酸化の影響を示
す図で、酸化温度を同じ800℃とした場合の酸化時間
と4点曲げ強度との関係を示す。図から明らかなように
、:160 Ks経過した後も4点曲げ強度の低下か見
られない。FIG. 6 is a diagram showing the influence of oxidation on the tungsten sintered plate of the present invention, and shows the relationship between oxidation time and four-point bending strength when the oxidation temperature is the same at 800°C. As is clear from the figure, no decrease in the four-point bending strength was observed even after 160 Ks had passed.
本発明では、熱応力緩和材のタングステン板をタングス
テン粒子にニッケル粒子を被覆して焼結したタングステ
ン焼結板としたことにより、タングステンの酸化か充分
防止される。特に、接合体に追加して加工を施した場合
、[々のタングステン粒子の全てかニッケル粒子で被覆
されているので、酸化による劣化の恐れか生じない。In the present invention, oxidation of tungsten is sufficiently prevented by using a tungsten plate as a thermal stress relaxation material as a tungsten sintered plate in which tungsten particles are coated with nickel particles and sintered. In particular, when additional processing is performed on the joined body, since all of the tungsten particles are coated with nickel particles, there is no risk of deterioration due to oxidation.
したがって、80(1℃前後の加熱、冷却によっても接
合強度の低下が起きず、安定した接合強度か維持でき、
エンジン燃焼室周り等の高温環境で使用することが可能
となる。Therefore, even when heated or cooled to around 80°C (1°C), the bonding strength does not decrease, and stable bonding strength can be maintained.
It can be used in high-temperature environments such as around engine combustion chambers.
E記の実施例では、接合対象の金属をステンレスとした
ものを示したが、ステンレス以外の金属とセラミックス
の接合にも適用できる。In the embodiment described in E, stainless steel is used as the metal to be joined, but the present invention can also be applied to joining metals other than stainless steel and ceramics.
(発明の効果)
本発明は、セラミックスと金属の接合部に使用する熱応
力緩和材の酸化による劣化を充分防止して安定した接合
強度か維持でき、 800 ’C前後の加熱、冷却によ
っても接合部の強度低下か起きず、セラミックスと金属
の接合体を高温環境で使用することかできる効果か有る
。(Effects of the Invention) The present invention can sufficiently prevent deterioration due to oxidation of the thermal stress relaxation material used in the joint between ceramic and metal, maintain stable joint strength, and maintain the joint even by heating and cooling at around 800'C. This has the advantage that the ceramic-metal bonded body can be used in a high-temperature environment without causing a decrease in the strength of the parts.
第1図は1本発明の一実施例の説明図、第2図は接合時
の加熱条件を示す図、第3図はニッケル板の厚さと接合
強度との関係を示す図、第4図は接合強度と温度の関係
を示す図、第5図は従来方法による製品の酸化による曲
げ強度の低下を示す図、@6図は本発明の接合方法によ
る製品の酸化の影響を示す図、M47図はタングステン
焼結板の焼結条件を示す図である。Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is a diagram showing the heating conditions during bonding, Fig. 3 is a diagram showing the relationship between the thickness of the nickel plate and the bonding strength, and Fig. 4 is a diagram showing the relationship between the thickness of the nickel plate and the bonding strength. Figure 5 is a diagram showing the relationship between bonding strength and temperature. Figure 5 is a diagram showing the decrease in bending strength due to oxidation of products by the conventional method. Figure @6 is a diagram showing the influence of oxidation on products by the joining method of the present invention. Figure M47. FIG. 2 is a diagram showing sintering conditions for a tungsten sintered plate.
Claims (1)
ル粒子を被覆して焼結した焼結板とその両側をニッケル
板とした応力緩和材を介在させ、セラミックスと前記ニ
ッケル板との間にろう材を配設し、所定の真空状態で加
熱することを特徴とするセラミックスと金属の接合方法
。A sintered plate made of tungsten particles coated with nickel particles and sintered, and a stress relaxation material with nickel plates on both sides are interposed between the ceramic and the metal, and a brazing filler metal is placed between the ceramic and the nickel plate. A method for joining ceramics and metal, which is characterized by heating in a predetermined vacuum state.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2131526A JP3041383B2 (en) | 1990-05-21 | 1990-05-21 | Joining method of ceramics and metal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2131526A JP3041383B2 (en) | 1990-05-21 | 1990-05-21 | Joining method of ceramics and metal |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0426570A true JPH0426570A (en) | 1992-01-29 |
| JP3041383B2 JP3041383B2 (en) | 2000-05-15 |
Family
ID=15060129
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2131526A Expired - Fee Related JP3041383B2 (en) | 1990-05-21 | 1990-05-21 | Joining method of ceramics and metal |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3041383B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115213561A (en) * | 2022-07-29 | 2022-10-21 | 苏州大学 | Method for realizing laser sealing of glass and stainless steel by adding titanium as transition layer |
-
1990
- 1990-05-21 JP JP2131526A patent/JP3041383B2/en not_active Expired - Fee Related
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115213561A (en) * | 2022-07-29 | 2022-10-21 | 苏州大学 | Method for realizing laser sealing of glass and stainless steel by adding titanium as transition layer |
| CN115213561B (en) * | 2022-07-29 | 2023-11-24 | 苏州大学 | Laser sealing method for glass and stainless steel by adding titanium as transition layer |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3041383B2 (en) | 2000-05-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7758970B2 (en) | Different materials bonded member and production method thereof | |
| JPH0936540A (en) | Ceramic circuit board | |
| JP2528718B2 (en) | How to join ceramics and metal | |
| JPH02175673A (en) | Joined body of ceramics and metal | |
| JP3892965B2 (en) | Manufacturing method of joined body and joined body | |
| JPH0367985B2 (en) | ||
| JP3949459B2 (en) | Joined body of different materials and manufacturing method thereof | |
| JP2000219578A (en) | Ceramic member-metallic member joined body and its production | |
| JPH0729859B2 (en) | Ceramics-Metal bonding material | |
| JPH0426570A (en) | Method for joining ceramics and metal | |
| JPH0520392B2 (en) | ||
| JPH08148726A (en) | Thermoelectric conversion element and its manufacture | |
| JPH02108493A (en) | Ceramic bonding material | |
| JPH0930870A (en) | Ceramic-metal bonded body and accelerator duct | |
| JP3041531B2 (en) | Joining method of ceramics and metal | |
| JP2851881B2 (en) | Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof | |
| TWI634220B (en) | Brazing material composition and manufacturing method thereof | |
| JP2818210B2 (en) | Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof | |
| JP2001048670A (en) | Ceramic-metal joint | |
| JP3872379B2 (en) | Package for housing semiconductor element and manufacturing method thereof | |
| JP2848867B2 (en) | Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof | |
| JPH0571544B2 (en) | ||
| JPH0142914B2 (en) | ||
| JPH0649620B2 (en) | Method for joining ceramic member and metal member | |
| JP3176015B2 (en) | Joint of ceramic and metal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080310 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090310 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090310 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 10 |
|
| LAPS | Cancellation because of no payment of annual fees |