[go: up one dir, main page]

JPH0426794B2 - - Google Patents

Info

Publication number
JPH0426794B2
JPH0426794B2 JP60284774A JP28477485A JPH0426794B2 JP H0426794 B2 JPH0426794 B2 JP H0426794B2 JP 60284774 A JP60284774 A JP 60284774A JP 28477485 A JP28477485 A JP 28477485A JP H0426794 B2 JPH0426794 B2 JP H0426794B2
Authority
JP
Japan
Prior art keywords
copper foil
nickel
layer
molybdenum
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60284774A
Other languages
Japanese (ja)
Other versions
JPS62142389A (en
Inventor
Masato Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Kinzoku Hakufun Kogyo Kk
Original Assignee
Fukuda Kinzoku Hakufun Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Kinzoku Hakufun Kogyo Kk filed Critical Fukuda Kinzoku Hakufun Kogyo Kk
Priority to JP60284774A priority Critical patent/JPS62142389A/en
Publication of JPS62142389A publication Critical patent/JPS62142389A/en
Publication of JPH0426794B2 publication Critical patent/JPH0426794B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は印刷回路用銅箔、さらに詳しくは、あ
らゆるエツチング液に可溶、特にアルカリエツチ
ング液に対しても可溶であり、エツチングにおい
てアンダーカツテイングを生じず、エツチング後
基板面の耐ブラウントランスフアー性があり、し
かも耐薬品性、耐熱性に優れる高密度配線に適し
た印刷回路溶銅箔に関するものである。 〔従来の技術〕 印刷回路板は銅箔を合成樹脂含浸基材に積層
し、高温加熱圧着後、回路を印刷して不要部分を
エツチング除去して製造するいわゆるサブトラク
テイブ法が主流である。 印刷回路板は半導体、電子機器の反転とともに
電子部品の一つとして、その地位を固め、急速に
高密度化している。導体幅及び導体間隔は狭小化
の一途をたどり、使用される銅箔に対しても基材
との接着性はもとより、エツチング性(あらゆる
エツチング液に溶けるという汎用性、及びアンダ
ーカツテイングのないこと)、エツチング後の外
観(耐ブラウントランスフアー性)、絶縁性、製
造工程中あるいは製品となつた後の耐薬品性(耐
酸性、耐アルカリ性、耐メツキ液性、耐溶剤性)、
耐熱性などの要求はますます厳しいものになつて
いる。 ここでいうアンダーカツテイングとは回路をエ
ツチング形成した時の、特に基板と銅箔の接着面
近傍のアンダーカツテイングを指し、またブラウ
ントランスフアーとはガラスエポキシ基材を用い
た印刷回路で生じるエツチング基板の着色、変
色、汚れをいう。 印刷回路用銅箔は通常、以下のごとく製造され
る。まず基本となる銅箔として、銅イオンを含む
電解浴中で陰極電解して得られる電解銅箔、そし
て他に圧延銅箔があり、これらの基本銅箔の表面
上に樹脂との投錨的接着性を向上させる為に粒状
銅や樹枝状銅等を電気分解により設ける。次ぎに
その表面上に、接着する樹脂との非反応の特性を
得る為に、異種金属あるいは銅との合金の被覆バ
リヤーを施すか、あるいはまた種々の防錆処理な
どが施こされている。 例えば特許公報昭51−35711号には銅箔面に亜
鉛、インジウム、黄銅などからなる群より選ばれ
た層を被覆すること、特許公報昭53−39376号に
は2層からなる電着銅層を設け、さらに接着すべ
き基材に対して化学的活性を有しない金属からな
る層、例えば亜鉛、真鍮、ニツケル、コバルト、
クロム、カドミウム、錫、及び青銅などの層を被
覆すること、また公表特許公報昭58−500149号に
は球状または樹枝状の亜鉛を沈着させ、かつこの
層を銅、砒素、ビスマス、真鍮、青銅、ニツケ
ル、コバルトもしくは亜鉛の一つ以上またはその
合金の被覆をすること、さらに、公開特許公報56
−155593号にはニツケル鍍金層上にクロメートの
陰極電解処理を施すことなどが提案されている。 しかしながら、従来の被覆バリヤー層に関して
は以下に示すような問題点がある。 亜鉛、真鍮、亜鉛−ニツケル等、亜鉛を主とす
る層を有する銅箔を印刷回路板に適用した場合、
銅箔と基材との接着面およびその近傍は、耐塩酸
性が非常に低く、印刷回路板製造工程において、
酸洗や各種活性処理液中に浸漬されているうち
に、その界面部分の腐食抵抗が弱いため、ピール
強度の劣化が生じ、特に最近の導体幅の狭い回路
の場合、熱的衝撃あるいは機械的衝撃などによ
り、導体の剥離、脱落現象を起こす可能性がある
かという欠点がある。また、塩化第二銅エツチン
グなどでは、やはり銅箔と基材の接着面が弱いた
めアンダーカツテイングを生じるという欠点を有
している。 ニツケルは耐薬品性、耐熱性に優れ、一般によ
く使用される塩化第二鉄や塩化第二銅のエツチン
グ液には可溶であるものの、最近よく使用される
ようになつたアルカリエツチング液には不溶であ
り、電気絶縁性を損なうエツチング残(ステイ
ン)を生じるという重大な欠点を有している。ま
た、ニツケル鍍金層上にクロメート陰極電解処理
を施すことにより、過硫酸アンモニウムエツチン
グ液に可溶となるものの、アルカリエツチング液
には不溶であつてステインを生じる。 その他、錫、クロム、ビスマスもアルカリエツ
チング液には不溶であること、コバルトはアルカ
リエツチング液に可溶であるが耐薬品性に問題が
あること、インジウムは高価であること、真鍮、
青銅鍍金ではシアン浴が使用されるが公害上問題
であること、砒素、カドミウムなども毒性の点で
敬遠されることなど、それぞれ欠点を有してお
り、従来より提案されている樹脂に対する非反応
性に着目するだけでは印刷回路板の急速な高密度
化や多様な要求に対して、十分満足出来ない。 〔本発明が解決しようとする問題点〕 そこで、印刷回路用銅箔として従来技術の問題
点を全て解決するため、即ち各種エツチング液、
特にアルカリエツチング液にも可溶で有害なステ
インを生じず、エツチングによるアンダーカツテ
イングもなく、エツチング後基板面に対ブラウン
トランスフアー性があり、しかも回路形成後の耐
薬品性、耐熱性に優れるような銅箔のバリヤー層
について種々研究を重ねた結果、本発明を完成し
たものである。 〔問題点を解決するための手段〕 即ち、本発明は銅箔の少くとも一方の面に、モ
リブデンを含むニツケル層を有し、必要に応じて
該ニツケル−モリブデン層表面上にクロメート処
理層を形成させることを特徴とする印刷回路用銅
箔、及び、ニツケル及びモリブデンのイオンとク
エン酸あるいは酒石酸の一種以上を含む電解浴を
用い、該電解浴中で銅箔を陰極電解しニツケル−
モリブデン層を形成させた後、該層上にクロメー
ト処理層を設けることを特徴とする印刷回路用銅
箔の製造方法である。 〔作 用〕 本発明のモリブデン含有ニツケル層の厚さは
0.001〜0.5μm(約0.1〜50mg/dm2)、好ましくは
0.005〜0.2μm(約0.5〜20mg/dm2)程度が良い。
0.001μm以下の場合本発明のバリヤー効果を十分
発揮できず、一方0.5μm以上の場合は銅箔の純度
が下がり、電気伝導度が低下する。またバリヤー
層のコスト比率が高くなり不経済である。 本発明のニツケル−モリブデン層中モリブデン
含有量は21wt%以上、さらに好ましくは27wt%
以上である。21wt%以下の場合、アルカリエツ
チング液に不溶であるばかりか、過硫酸アンモニ
ウムエツチング液および塩化第二銅エツチング液
に対しても難溶かあるいは不溶である。塩化第二
鉄エツチング液に対しては、全て可溶であつた。
またモリブデン含有量が21〜27wt%の場合、ニ
ツケル−モリブデン層の不均一性があるとき、ア
ルカリエツチングに対して不溶となることがある
ため、27wt%以上がさらに好ましい。 本発明のニツケル−モリブデン層を銅箔表面上
に形成させる方法は、公知の電気鍍金法、化学鍍
金法、真空蒸着法、スパツタリング法など各種の
方法によつて可能であるが、工業上実ラインに最
適と思われるものは水溶液電気鍍金法である。そ
の電解浴として、酸性クエン酸浴、アンモニアア
ルカリクエン酸浴、アンモニアアルカリ酒石酸浴
などが好ましい。 例えばアンモニアアルカリクエン酸浴について
述べれば、ニツケルイオン源として硫酸ニツケ
ル、モリブデンイオン源としてモリブデン酸のナ
トリウム、カリウム、アンモニウム塩、クエン酸
としてクエン酸、クエン酸のナトリウム、カリウ
ム、アンモニウム塩が好ましい。これらにアンモ
ニアを添加してアルカリ性とする。モリブデンは
鉄族金属に対して誘導析出型でありニツケルイオ
ンが存在しないと析出しない。本発明のバリヤー
層では比較的モリブデンの含有量が多いことを必
要とするため、電解浴中のモリブデンイオン量は
ニツケルイオン量よりかなり多くした法が良い。
モリブデンイオン量は全金属イオン量に対してお
よそ60〜70wt%以上が好ましい。浴温はアンモ
ニアの飛散防止、またコストの面から30℃前後が
良い。電流密度は1〜20A/dm2の広範囲で適用
可能である。また陽極は不溶性陽極、ニツケル−
モリブデン合金、あるいはニツケルを使用する。 以上の条件でニツケル−モリブデン層を粗面化
された銅箔に電着させた後、一般によく使用され
るクロメート処理を施すと、基材との接着性が増
し、耐ブラウントランスフアー性も向上し、また
防食性も高められる。クロメート処理はクロム
酸、重クロム酸塩などの6価のクロム化合物を含
む水溶液中に浸漬するか、あるいは陰極電解して
も良い。 〔実施例〕 以下本発明の実施例を示す。 実施例 1 あらかじめ電解粗面化した35μ電解銅箔を用意
し、表1にも示すように、 硫酸ニツケル(6水塩) 30g/ モリブデン酸ナトリウム(2水塩) 70g/ クエン酸三ナトリウム(2水塩) 50g/ PH(アンモニアで調整) 10.5 陽 極 白金 としこの浴において銅箔を30℃、電流密度8A/
dm2、電解時間10秒間陰極電解した。この銅箔を
水洗後乾燥させた。この銅箔をFR−4グレード
のエポキシ樹脂含浸ガラス基材に積層し、成型し
て銅張積層板の各特性試験を行い、その結果を表
2に示す。またこの銅箔に形成されたニツケル−
モリブデン層の厚さは5.0mg/dm2、モリブデン
含有量は原子吸光分析により求め、38wt%を得
た。 実施例 2 あらかじめ電解粗面化した35μ電解銅箔表面上
に実施例1と同じ浴組成、電解条件でニツケル−
モリブデン層を形成させ、水洗し次ぎに重クロム
酸ナトリウム10g/水溶液中に10秒間浸漬後、
水洗、乾燥させた。この銅箔をFR−4グレード
のエポキシ樹脂含浸ガラス基材に積層し、成型し
て銅張積層板の各特性試験を行い、その結果を表
2に示す。 実施例 3 あらかじめ電解粗面化した35μ電解銅箔を用意
し、 硫酸ニツケル(6水塩) 30g/ モリブデン酸ナトリウム(2水塩) 100g/ クエン酸三ナトリウム(2水塩) 50g/ PH(アンモニアで調整) 10.5 陽 極 白金 この浴において銅箔を30℃、電流密度10A/d
m2、電解時間10秒間陰極電解した。この銅箔を水
洗後乾燥させた。この銅箔をFR−4グレードの
エポキシ樹脂含浸ガラス基材に積層し、成型して
銅張積層板の各特性試験を行い、その結果を表2
に示す。またこの銅箔に形成されたニツケル−モ
リブデン層の厚さは5.4mg/dm2、モリブデン含
有量は原子吸光分析により求め、41wt%を得た。 実施例 4 あらかじめ電解粗面化した35μ電解銅箔表面上
に実施例3と同じ浴組成、電解条件でニツケル−
モリブデン層を形成させ、水洗し次ぎに重クロム
酸ナトリウム10g/水溶液中に10秒間浸漬後、
水洗、乾燥させた。この銅箔をFR−4グレード
のエポキシ樹脂含浸ガラス基材に積層し、成型し
て銅張積層板の各特性試験を行い、その結果を表
2に示す。 実施例 5〜10 あらかじめ電解粗面化した35μ電解銅箔表面上
にクエン酸三ナトリウム(2水塩)50g/、PH
(アンモニアで調整)10.5、浴温30℃とし、硫酸
ニツケル(6水塩)、モリブデン酸ナトリウム
(2水塩)、電流密度、電解時間の組合せを表1の
実施例5〜10の欄に示すように種々変化させ、ニ
ツケル−モリブデン層を形成させた後、水洗し次
ぎに重クロム酸ナトリウム10g/水溶液中に10
秒間浸漬後、水洗、乾燥させた。この銅箔をFR
−4グレードのエポキシ樹脂含浸ガラス基材に積
層し、成型して銅張積層板の各特性試験を行い、
その結果を表2に示す。 実施例 11 あらかじめ電解粗面化した35μ電解銅箔を用意
し、 硫酸ニツケル(6水塩) 17g/ モリブデン酸ナトリウム(2水塩) 30 ロツセル塩 200g/ PH(アンモニアで調整) 10.5 陽 極 白金 この浴において銅箔を30℃、電流密度10A/d
m2、電解時間20秒間陰極電解した。この銅箔水洗
後乾燥させた。この銅箔をFR−4グレードのエ
ポキシ樹脂含浸ガラス基材に積層し、成型して銅
張積層板の各特性試験を行い、その結果を表2に
示す。またこの銅箔に形成されたニツケル−モリ
ブデン層の厚さは1.0mg/dm2、モリブデン含有
量は原子吸光分析により求め、58wt%を得た。 実施例 12 あらかじめ電解粗面化した35μ電解銅箔表面上
に実施例11と同じ浴組成、電解条件でニツケル−
モリブデン層を形成させ、水洗し次ぎに重クロム
酸ナトリウム10g/水溶液中で電流密度
0.5A/dm2、5秒間陰極電解後、水洗、乾燥さ
せた。この銅箔をFR−4グレードのエポキシ樹
脂含浸ガラス基材に積層し、成型して銅張積層板
の各特性試験を行い、その結果を表2に示す。 なお、実施例1〜12の硫酸ニツケル、モリブデ
ン酸ナトリウム(2水塩)、電流密度、電解時間、
Ni−Mo層中のMo含有量、クロメート処理層の
有無を表1にまとめて示す。 比較例 1 あらかじめ電解粗面化した35μ電解銅箔を用意
し、 硫酸ニツケル(6水塩) 30g/ クエン酸ナトリウム(2水塩) 50g/ PH(アンモニアで調整) 10.5 陽極 白金 この浴において銅箔を30℃、電流密度8A/dm2
電解時間10秒間陰極電解した。この銅箔を水洗
後、重クロム酸ナトリウム10g/水溶液中に10
秒間浸漬後、水洗、乾燥させた。この銅箔をFR
−4グレードのエポキシ樹脂含浸ガラス基材に積
層し、成型して銅張積層板の各特性試験を行い、
その結果を表2に示す。 比較例 2 あらかじめ電解粗面化した35μ電解銅箔を用意
し、 硫酸亜鉛 200g/ 硫酸アンモニウム 25g/ PH 3.5 陽 極 亜鉛 この浴において銅箔を30℃、電流密度2A/d
m2、電解時間20秒間陰極電解した。この銅箔を水
洗後、重クロム酸ナトリウム10g/水溶液中に
10秒間浸漬後、水洗、乾燥させた。この銅箔を
FR−4グレードのエポキシ樹脂含浸ガラス基材
に積層し、成型して銅張積層板の各特性試験を行
い、その結果を表2に示す。 比較例 3 あらかじめ電解粗面化した35μ電解銅箔を重ク
ロム酸ナトリウム10g/水溶液中に10秒間浸漬
後、水洗、乾燥させた。この銅箔をFR−4グレ
ードのエポキシ樹脂含浸ガラス基材に積層し、成
型して銅張積層板の各特性試験を行い、その結果
を表2に示す。
[Industrial Field of Application] The present invention relates to copper foil for printed circuits, more specifically, it is soluble in all etching solutions, especially soluble in alkaline etching solutions, does not cause undercutting during etching, and can be etched easily. The present invention relates to a printed circuit molten copper foil suitable for high-density wiring, which has resistance to Brownian transfer on the rear substrate surface, as well as excellent chemical resistance and heat resistance. [Prior Art] Printed circuit boards are mainly manufactured by the so-called subtractive method, in which copper foil is laminated on a synthetic resin-impregnated base material, heat-pressed at high temperature, circuits are printed, and unnecessary portions are removed by etching. With the reversal of semiconductors and electronic devices, printed circuit boards have solidified their position as one of the electronic components, and are rapidly becoming more densely packed. Conductor width and conductor spacing continue to become narrower, and the copper foil used has not only adhesion to the base material but also etching properties (versatile, soluble in all etching solutions, and no undercutting). ), appearance after etching (brown transfer resistance), insulation, chemical resistance during the manufacturing process or after becoming a product (acid resistance, alkali resistance, plating liquid resistance, solvent resistance),
Requirements such as heat resistance are becoming increasingly strict. Undercutting here refers to undercutting when a circuit is etched, especially near the bonding surface between the board and copper foil, and brown transfer refers to the etching that occurs in printed circuits using glass epoxy base materials. Refers to discoloration, discoloration, and dirt on the board. Copper foil for printed circuits is typically manufactured as follows. First, as basic copper foils, there are electrolytic copper foils obtained by cathodic electrolysis in an electrolytic bath containing copper ions, and rolled copper foils. In order to improve the properties, granular copper, dendritic copper, etc. are provided by electrolysis. Next, in order to obtain a non-reactive property with the adhesive resin, a barrier coating of a different metal or an alloy with copper is applied to the surface, or various anti-corrosion treatments are applied. For example, Patent Publication No. 51-35711 discloses that a copper foil surface is coated with a layer selected from the group consisting of zinc, indium, brass, etc., and Patent Publication No. 53-39376 discloses that a copper foil layer is coated with a layer selected from the group consisting of zinc, indium, brass, etc. and a layer made of a metal that has no chemical activity with respect to the substrate to be bonded, such as zinc, brass, nickel, cobalt, etc.
Coating with a layer of chromium, cadmium, tin, bronze, etc., or depositing spherical or dendritic zinc and coating this layer with copper, arsenic, bismuth, brass, bronze, etc. , coating with one or more of nickel, cobalt or zinc or an alloy thereof;
No. 155593 proposes applying chromate cathode electrolytic treatment to the nickel plating layer. However, conventional coated barrier layers have the following problems. When a copper foil with a layer mainly made of zinc, such as zinc, brass, or zinc-nickel, is applied to a printed circuit board,
The adhesive surface between the copper foil and the base material and its vicinity have very low hydrochloric acid resistance, and in the printed circuit board manufacturing process,
While being immersed in pickling or various activation treatment solutions, the peel strength deteriorates due to the weak corrosion resistance at the interface, and especially in the case of recent circuits with narrow conductor widths, thermal shock or mechanical The drawback is that there is a possibility that the conductor may peel off or fall off due to impact or the like. In addition, cupric chloride etching and the like still have the disadvantage of causing undercutting because the adhesive surface between the copper foil and the base material is weak. Nickel has excellent chemical and heat resistance, and although it is soluble in commonly used ferric chloride and cupric chloride etching solutions, it is soluble in alkaline etching solutions that have recently become popular. It has the serious drawback that it is insoluble and produces etching residue (stain) that impairs electrical insulation. Further, by subjecting the nickel plating layer to a chromate cathode electrolytic treatment, the layer becomes soluble in ammonium persulfate etching solution, but is insoluble in alkaline etching solution and produces stain. In addition, tin, chromium, and bismuth are also insoluble in alkaline etching solutions, cobalt is soluble in alkaline etching solutions but has problems with chemical resistance, indium is expensive, brass,
Cyanide baths are used in bronze plating, but they each have their own drawbacks, such as the problem of pollution, and arsenic and cadmium are also avoided due to their toxicity. Merely focusing on performance cannot fully satisfy the rapidly increasing density and diverse demands of printed circuit boards. [Problems to be solved by the present invention] Therefore, in order to solve all the problems of the conventional technology as a copper foil for printed circuits, various etching solutions,
In particular, it is soluble in alkaline etching solutions, does not produce harmful stains, does not cause undercutting due to etching, has brown transfer resistance on the substrate surface after etching, and has excellent chemical resistance and heat resistance after circuit formation. The present invention was completed as a result of various studies on copper foil barrier layers. [Means for solving the problem] That is, the present invention has a nickel layer containing molybdenum on at least one side of a copper foil, and optionally a chromate treatment layer on the surface of the nickel-molybdenum layer. Using an electrolytic bath containing nickel and molybdenum ions and one or more of citric acid or tartaric acid, the copper foil is cathodically electrolyzed in the electrolytic bath to form a nickel-coated circuit.
This is a method for producing copper foil for printed circuits, which comprises forming a molybdenum layer and then providing a chromate treatment layer on the layer. [Function] The thickness of the molybdenum-containing nickel layer of the present invention is
0.001 to 0.5 μm (approximately 0.1 to 50 mg/dm 2 ), preferably
Approximately 0.005 to 0.2 μm (approximately 0.5 to 20 mg/dm 2 ) is preferable.
If the thickness is 0.001 μm or less, the barrier effect of the present invention cannot be sufficiently exhibited, while if the thickness is 0.5 μm or more, the purity of the copper foil decreases and the electrical conductivity decreases. Moreover, the cost ratio of the barrier layer increases, making it uneconomical. The molybdenum content in the nickel-molybdenum layer of the present invention is 21 wt% or more, more preferably 27 wt%
That's all. If it is less than 21 wt%, it is not only insoluble in alkaline etching solutions, but also sparingly soluble or insoluble in ammonium persulfate etching solutions and cupric chloride etching solutions. All were soluble in the ferric chloride etching solution.
Further, when the molybdenum content is 21 to 27 wt%, the nickel-molybdenum layer may become insoluble in alkali etching when there is non-uniformity, so it is more preferably 27 wt% or more. The nickel-molybdenum layer of the present invention can be formed on the surface of copper foil by various known methods such as electroplating, chemical plating, vacuum evaporation, and sputtering. The most suitable method for this purpose is aqueous electroplating. As the electrolytic bath, an acidic citric acid bath, an ammonia-alkali citric acid bath, an ammonia-alkali tartaric acid bath, etc. are preferable. For example, regarding an ammonia alkaline citric acid bath, nickel sulfate is preferred as the nickel ion source, sodium, potassium, or ammonium salts of molybdate are preferred as the molybdenum ion source, and citric acid and sodium, potassium, or ammonium salts of citric acid are preferred as the citric acid. Ammonia is added to these to make them alkaline. Molybdenum is an induced precipitation type for iron group metals, and does not precipitate in the absence of nickel ions. Since the barrier layer of the present invention requires a relatively high content of molybdenum, it is preferable that the amount of molybdenum ions in the electrolytic bath be considerably greater than the amount of nickel ions.
The amount of molybdenum ions is preferably about 60 to 70 wt% or more based on the total amount of metal ions. The bath temperature is preferably around 30℃ to prevent ammonia from scattering and to reduce costs. The current density can be applied over a wide range of 1 to 20 A/dm 2 . In addition, the anode is an insoluble anode, nickel-
Use molybdenum alloy or nickel. After electrodepositing a nickel-molybdenum layer on a roughened copper foil under the above conditions, applying the commonly used chromate treatment increases adhesion to the base material and improves brown transfer resistance. Moreover, corrosion resistance is also improved. The chromate treatment may be performed by immersion in an aqueous solution containing a hexavalent chromium compound such as chromic acid or dichromate, or by cathodic electrolysis. [Example] Examples of the present invention will be shown below. Example 1 A 35μ electrolytic copper foil that had been electrolytically roughened in advance was prepared, and as shown in Table 1, 30 g of nickel sulfate (hexahydrate) / 70 g of sodium molybdate (dihydrate) / trisodium citrate (2 water salt) 50g / PH (adjusted with ammonia) 10.5 Anode Copper foil was heated at 30℃ in a platinum bath at a current density of 8A /
Cathode electrolysis was carried out at dm 2 and electrolysis time for 10 seconds. This copper foil was washed with water and then dried. This copper foil was laminated onto a FR-4 grade epoxy resin-impregnated glass substrate, molded, and subjected to various characteristic tests of the copper-clad laminate. The results are shown in Table 2. Also, the nickel formed on this copper foil
The thickness of the molybdenum layer was 5.0 mg/dm 2 , and the molybdenum content was determined by atomic absorption spectrometry to be 38 wt%. Example 2 Nickel was deposited on the surface of a 35μ electrolytic copper foil, which had been electrolytically roughened in advance, using the same bath composition and electrolytic conditions as in Example 1.
After forming a molybdenum layer, washing with water, and immersing it in a 10 g/aqueous solution of sodium dichromate for 10 seconds,
Washed with water and dried. This copper foil was laminated onto a FR-4 grade epoxy resin-impregnated glass substrate, molded, and subjected to various characteristic tests of the copper-clad laminate. The results are shown in Table 2. Example 3 Prepare a 35μ electrolytic copper foil that has been electrolytically roughened in advance, and add 30 g of nickel sulfate (hexahydrate) / 100 g of sodium molybdate (dihydrate) / 50 g of trisodium citrate (dihydrate) / PH (ammonia) 10.5 Anode Platinum In this bath, the copper foil was heated at 30℃ and the current density was 10A/d.
m 2 and cathodic electrolysis for 10 seconds. This copper foil was washed with water and then dried. This copper foil was laminated onto a FR-4 grade epoxy resin-impregnated glass base material, molded, and various characteristic tests were conducted on the copper-clad laminate. The results are shown in Table 2.
Shown below. The thickness of the nickel-molybdenum layer formed on this copper foil was 5.4 mg/dm 2 , and the molybdenum content was determined by atomic absorption spectrometry to be 41 wt%. Example 4 Nickel was deposited on the surface of a 35μ electrolytic copper foil, which had been electrolytically roughened in advance, using the same bath composition and electrolytic conditions as in Example 3.
After forming a molybdenum layer, washing with water, and immersing it in a 10 g/aqueous solution of sodium dichromate for 10 seconds,
Washed with water and dried. This copper foil was laminated onto a FR-4 grade epoxy resin-impregnated glass substrate, molded, and subjected to various characteristic tests of the copper-clad laminate. The results are shown in Table 2. Examples 5 to 10 Trisodium citrate (dihydrate) 50g/PH on the surface of 35μ electrolytic copper foil which has been electrolytically roughened
(Adjusted with ammonia) 10.5, the bath temperature was 30°C, and the combinations of nickel sulfate (hexahydrate), sodium molybdate (dihydrate), current density, and electrolysis time are shown in the columns of Examples 5 to 10 in Table 1. After forming a nickel-molybdenum layer in various ways, it was washed with water, and then 10 g of sodium dichromate was added to the aqueous solution.
After being immersed for a second, it was washed with water and dried. FR this copper foil
- Laminated on 4 grade epoxy resin impregnated glass substrate, molded and tested various properties of copper clad laminates,
The results are shown in Table 2. Example 11 Prepare a 35 μ electrolytic copper foil that has been electrolytically roughened in advance, and add 17 g of nickel sulfate (hexahydrate) / 30 g of sodium molybdate (dihydrate) / 200 g of Rothsell's salt / PH (adjusted with ammonia) 10.5 anode platinum Copper foil in a bath at 30℃, current density 10A/d
m 2 and cathodic electrolysis for 20 seconds. This copper foil was washed with water and then dried. This copper foil was laminated onto a FR-4 grade epoxy resin-impregnated glass substrate, molded, and subjected to various characteristic tests of the copper-clad laminate. The results are shown in Table 2. The thickness of the nickel-molybdenum layer formed on this copper foil was 1.0 mg/dm 2 , and the molybdenum content was determined by atomic absorption spectrometry to be 58 wt%. Example 12 Nickel was deposited on the surface of a 35μ electrolytic copper foil, which had been electrolytically roughened in advance, using the same bath composition and electrolytic conditions as in Example 11.
Form a molybdenum layer, wash with water, and then apply current density in 10 g of sodium dichromate/aqueous solution.
After cathodic electrolysis at 0.5 A/dm 2 for 5 seconds, it was washed with water and dried. This copper foil was laminated onto a FR-4 grade epoxy resin-impregnated glass substrate, molded, and subjected to various characteristic tests of the copper-clad laminate. The results are shown in Table 2. In addition, nickel sulfate, sodium molybdate (dihydrate), current density, electrolysis time,
Table 1 summarizes the Mo content in the Ni-Mo layer and the presence or absence of a chromate treatment layer. Comparative Example 1 Prepare a 35μ electrolytic copper foil that has been electrolytically roughened in advance, and add nickel sulfate (hexahydrate) 30g/sodium citrate (dihydrate) 50g/PH (adjusted with ammonia) 10.5 anode platinum in this bath. at 30℃, current density 8A/ dm2 ,
Cathodic electrolysis was performed for an electrolysis time of 10 seconds. After washing this copper foil with water, add 10 g of sodium dichromate/10 g of sodium dichromate to an aqueous solution.
After dipping for a second, it was washed with water and dried. FR this copper foil
- Laminated on 4 grade epoxy resin impregnated glass substrate, molded and tested various properties of copper clad laminates,
The results are shown in Table 2. Comparative Example 2 A 35μ electrolytic copper foil that had been electrolytically roughened in advance was prepared, and the copper foil was heated in this bath at 30℃ and a current density of 2A/d.
m 2 and cathodic electrolysis for 20 seconds. After washing this copper foil with water, put it in 10g of sodium dichromate/aqueous solution.
After immersing for 10 seconds, it was washed with water and dried. This copper foil
The copper-clad laminate was laminated onto a FR-4 grade epoxy resin-impregnated glass base material, molded, and subjected to various characteristic tests, and the results are shown in Table 2. Comparative Example 3 A 35μ electrolytic copper foil whose surface had been electrolytically roughened in advance was immersed in a 10 g/aqueous solution of sodium dichromate for 10 seconds, washed with water, and dried. This copper foil was laminated onto an FR-4 grade epoxy resin-impregnated glass substrate, molded, and various characteristic tests of the copper-clad laminate were conducted, and the results are shown in Table 2.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上記述した通り、本発明により得られた印刷
回路用銅箔の特性は極めて優れている。 即ち、塩化第二鉄、塩化第二銅、過硫酸アンモ
ニウム、アルカリエツチングとあらゆるエツチン
グ液に可溶で汎用性を持つており、また本発明ニ
ツケル−モリブデン層は銅とほぼ同速度でエツチ
ング液に溶けるため、アンダーカツテイングが生
じず、またエツチング後の耐ブラウントランスフ
アー性についても、変色等がほとんどみられず、
シミの発生もない。さらに塩酸浸漬後接着力はほ
とんど劣化せず、液の浸み込みも全く認められな
い。また180℃48hrといつた高温長時間加熱処理
後においてもほとんど劣化しないという極めて優
れた特性を保持しており、薬品や熱の影響により
回路が剥がれるといつた心配がない。従つて、狭
小化の著しいプリント回路、特に高密度回路にお
いてその性能を発揮すると考えられる。 以上、エツチング液に対する制約がなく、エツ
チングによるアンダーカツテイングもなく、耐ブ
ラウントランスフアー性も良く、しかも耐薬品、
耐熱性が優れる本発明印刷回路用銅箔は、一般の
印刷回路板はもとより、高密度、超高密度のマル
チレイヤー印刷回路板に適するものである。
As described above, the properties of the copper foil for printed circuits obtained by the present invention are extremely excellent. That is, it is soluble and versatile in all kinds of etching solutions, including ferric chloride, cupric chloride, ammonium persulfate, and alkaline etching, and the nickel-molybdenum layer of the present invention dissolves in etching solutions at approximately the same rate as copper. Therefore, undercutting does not occur, and there is almost no discoloration in terms of brown transfer resistance after etching.
No stains occur. Furthermore, the adhesive strength hardly deteriorates after immersion in hydrochloric acid, and no liquid seepage is observed at all. In addition, it maintains an extremely excellent property of hardly deteriorating even after being heated for a long time at a high temperature of 180℃ for 48 hours, so there is no need to worry about the circuit peeling off due to the effects of chemicals or heat. Therefore, it is thought that its performance will be demonstrated in printed circuits that are becoming significantly smaller, particularly in high-density circuits. As mentioned above, there are no restrictions on the etching solution, no undercutting due to etching, good brown transfer resistance, and chemical resistance.
The copper foil for printed circuits of the present invention, which has excellent heat resistance, is suitable for not only general printed circuit boards but also high-density and ultra-high-density multilayer printed circuit boards.

Claims (1)

【特許請求の範囲】 1 銅箔の少なくとも一方の面にモリブデンを含
むニツケル層を有することを特徴とする印刷回路
用銅箔。 2 ニツケル−モリブデン層表面上にクロメート
処理層を形成させることを特徴とする特許請求の
範囲第1項記載の印刷回路用銅箔。 3 ニツケル及びモリブデンのイオンとクエン酸
あるいは酒石酸の一種以上を含む電解浴を用い、
該電解浴中で銅箔を陰極電解しニツケル−モリブ
デン層を形成させた後、該層上にクロメート処理
層を設けることを特徴とする印刷回路用銅箔の製
造方法。
[Scope of Claims] 1. A copper foil for printed circuits, comprising a nickel layer containing molybdenum on at least one surface of the copper foil. 2. The copper foil for printed circuits according to claim 1, characterized in that a chromate treatment layer is formed on the surface of the nickel-molybdenum layer. 3 Using an electrolytic bath containing nickel and molybdenum ions and one or more types of citric acid or tartaric acid,
A method for manufacturing a copper foil for printed circuits, which comprises cathodically electrolyzing the copper foil in the electrolytic bath to form a nickel-molybdenum layer, and then providing a chromate treatment layer on the layer.
JP60284774A 1985-12-17 1985-12-17 Copper foil for printed circuit and manufacture of the same Granted JPS62142389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60284774A JPS62142389A (en) 1985-12-17 1985-12-17 Copper foil for printed circuit and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60284774A JPS62142389A (en) 1985-12-17 1985-12-17 Copper foil for printed circuit and manufacture of the same

Publications (2)

Publication Number Publication Date
JPS62142389A JPS62142389A (en) 1987-06-25
JPH0426794B2 true JPH0426794B2 (en) 1992-05-08

Family

ID=17682838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60284774A Granted JPS62142389A (en) 1985-12-17 1985-12-17 Copper foil for printed circuit and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS62142389A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654829B2 (en) * 1990-08-14 1994-07-20 株式会社ジャパンエナジー Method of treating copper foil for printed circuits
JP2005206915A (en) * 2004-01-26 2005-08-04 Fukuda Metal Foil & Powder Co Ltd Copper foil for printed circuited board, and its production method
MY204478A (en) 2018-03-27 2024-08-30 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, copper-cladded laminate, and manufacturing method for printed wiring board

Also Published As

Publication number Publication date
JPS62142389A (en) 1987-06-25

Similar Documents

Publication Publication Date Title
JP2717911B2 (en) Copper foil for printed circuit and manufacturing method thereof
US4387006A (en) Method of treating the surface of the copper foil used in printed wire boards
JPH0224037B2 (en)
US4483906A (en) Copper foil for a printed circuit and a method for the production thereof
JP2620151B2 (en) Copper foil for printed circuits
JP2920083B2 (en) Copper foil for printed circuit and manufacturing method thereof
JP2717910B2 (en) Copper foil for printed circuit and manufacturing method thereof
US7344785B2 (en) Copper foil for printed circuit board, method for fabricating same, and trivalent chromium conversion treatment solution used for fabricating same
JP3564460B2 (en) Copper foil for printed wiring board and method for producing the same
JP3222002B2 (en) Copper foil for printed circuit and manufacturing method thereof
JPS5912039B2 (en) Copper foil for printed circuits and its manufacturing method
JPH0426794B2 (en)
US5304428A (en) Copper foil for printed circuit boards
JP3709142B2 (en) Copper foil for printed wiring board and method for producing the same
JP2739507B2 (en) Copper foil electrolytic treatment method
JP2631061B2 (en) Copper foil for printed circuit and method of manufacturing the same
JP2684164B2 (en) Surface treatment method for copper foil for printed circuits
JP3768619B2 (en) Copper foil for printed wiring boards
EP0269208A1 (en) A process for the treatment of copper foil
JPH0259639B2 (en)
JP3900116B2 (en) Surface-treated copper foil for electronic circuit board and manufacturing method thereof
JPH06237078A (en) Manufacture of copper foil for printed circuit
JP4034586B2 (en) Copper foil for printed wiring board and method for producing the same
JPS6133906B2 (en)
JP3201850B2 (en) Copper foil for printed circuit and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term