JPH04276602A - Interlayer insulation method for water-cooled magnet coils - Google Patents
Interlayer insulation method for water-cooled magnet coilsInfo
- Publication number
- JPH04276602A JPH04276602A JP3835691A JP3835691A JPH04276602A JP H04276602 A JPH04276602 A JP H04276602A JP 3835691 A JP3835691 A JP 3835691A JP 3835691 A JP3835691 A JP 3835691A JP H04276602 A JPH04276602 A JP H04276602A
- Authority
- JP
- Japan
- Prior art keywords
- water
- interlayer insulation
- film
- prepreg sheet
- cooled magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Insulating Of Coils (AREA)
- Electromagnets (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
[発明の目的] [Purpose of the invention]
【0001】0001
【産業上の利用分野】本発明は水冷マグネットコイルの
層間絶縁方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for interlayer insulation of water-cooled magnet coils.
【0002】0002
【従来の技術】10T以上の強磁場を発生する装置とし
ては、図5に示すように、水冷マグネットコイル1の外
側に超電導マグネットコイル2を同心状に配置して構成
される。水冷マグネットコイル1の磁界の中心部3にお
いて、両マグネットコイル1,2によって発生する磁界
の和が最大となり、例えば30T以上の強磁界を発生さ
せることができる。この水冷マグネットコイルには、ポ
リヘリックス形、ビッター形およびモノヘリックス形が
ある。2. Description of the Related Art An apparatus for generating a strong magnetic field of 10 T or more is constructed by disposing a superconducting magnet coil 2 concentrically outside a water-cooled magnet coil 1, as shown in FIG. At the center 3 of the magnetic field of the water-cooled magnet coil 1, the sum of the magnetic fields generated by both the magnet coils 1 and 2 becomes maximum, and a strong magnetic field of, for example, 30 T or more can be generated. This water-cooled magnet coil has polyhelix type, bitter type, and monohelix type.
【0003】水冷マグネットには数MWの電力が供給さ
れ、数MJという莫大な熱が発生するので、電気絶縁の
ために1MΩcm以上の固有抵抗を有する純水(脱イオ
ン水)により、冷却を行っている。[0003] A water-cooled magnet is supplied with several MW of power and generates an enormous amount of heat of several MJ, so it is cooled with pure water (deionized water) having a resistivity of 1 MΩcm or more for electrical insulation. ing.
【0004】0004
【発明が解決しようとする課題】このような水冷マグネ
ットコイルは、図6にポリヘリックス形コイルを例にし
て示すが、ヘリカル状に巻かれた導体4の間に挿入され
た層間絶縁5が、運転中に発生するジュール損による熱
、その熱により沸騰する純水、さらに層間絶縁を介して
流れる微弱な電流の相互作用により、比較的短時間に層
間絶縁に虫食い状態に穴があき、層間短絡に至り、マグ
ネットの機能を果たさなくなる不都合が生じることがあ
る。本発明は、このような事情に鑑み、層間短絡の起き
にくい水冷マグネットのコイルを提供せんとするもので
ある。
[発明の構成][Problems to be Solved by the Invention] Such a water-cooled magnetic coil is shown in FIG. 6 using a polyhelical coil as an example, and the interlayer insulation 5 inserted between the helically wound conductors 4 is Due to the interaction of the heat due to Joule loss generated during operation, the pure water that boils due to the heat, and the weak current flowing through the interlayer insulation, a moth-eaten hole forms in the interlayer insulation in a relatively short period of time, resulting in an interlayer short circuit. This may lead to the inconvenience that the magnet no longer functions properly. In view of these circumstances, the present invention aims to provide a water-cooled magnet coil in which interlayer short circuits are less likely to occur. [Structure of the invention]
【0005】[0005]
【課題を解決するための手段】本発明は、図1に断面図
で示すように、耐熱性・耐水性・電気絶縁性の優れた高
分子フィルム6の両面に、ガラス織布あるいは不織布な
どの基材7を配置し、この基材に耐熱性・耐水性・電気
絶縁性の優れた熱硬化性樹脂8を含浸し、半硬化状態と
成すことによりプリプレグシート9を得る。図2に示す
ように、このプリプレグシート9を導体4の間に挿入し
、導体間を押圧しながら加熱し、プリプレグシート中の
熱硬化性樹脂を硬化させることより成る水冷マグネット
コイルの層間絶縁方法である。[Means for Solving the Problems] As shown in the cross-sectional view in FIG. A prepreg sheet 9 is obtained by disposing a base material 7 and impregnating this base material with a thermosetting resin 8 having excellent heat resistance, water resistance, and electrical insulation properties to bring it into a semi-cured state. As shown in FIG. 2, a method for interlayer insulation of water-cooled magnet coils comprises inserting this prepreg sheet 9 between conductors 4, heating the conductors while pressing them, and curing the thermosetting resin in the prepreg sheet. It is.
【0006】ここで、耐熱性・耐水性・電気絶縁性の優
れた高分子フィルムとしては、ポリイミド(PI)フィ
ルム、ポリエーテルエーテルケトン(PEEK)フィル
ム、ポリエーテルスルホン(PES)フィルム、ポリフ
ェニレンサルファイド(PPS)フィルム、アラミドフ
ィルム、ポリテトラフルオロエチレン(PTFE)フィ
ルムなどがある。また、耐熱性・耐水性・電気絶縁性の
優れた熱硬化性樹脂としては、ポリイミド樹脂、ビスマ
レイミドトリアジン(BT)樹脂、エポキシ樹脂などが
ある。高分子フィルムはその両面を、サンドブラストな
どの機械的方法、コロナ放電、化学的方法などにより、
面荒らしを行うと良い。Polymer films with excellent heat resistance, water resistance, and electrical insulation properties include polyimide (PI) film, polyether ether ketone (PEEK) film, polyether sulfone (PES) film, and polyphenylene sulfide ( PPS) film, aramid film, polytetrafluoroethylene (PTFE) film, etc. Further, examples of thermosetting resins having excellent heat resistance, water resistance, and electrical insulation include polyimide resins, bismaleimide triazine (BT) resins, and epoxy resins. Both sides of the polymer film are processed by mechanical methods such as sandblasting, corona discharge, chemical methods, etc.
It is good to rough up the face.
【0007】また、ガラス織布はメタアクリレートクロ
ミッククロライド、ビニルトリクロロシラン、γ−アミ
ノプロピルトリエトシン、N−β−Nビニルベンジルア
ミノーγアミノプロピルトリメトキシシランモノヒドロ
ジエンクロライド、γ−Nフェニルアミノプロピルトリ
メトキシシランなどの界面活性剤により、表面処理を行
うことが望ましい。[0007] Glass woven fabrics also include methacrylate chromic chloride, vinyltrichlorosilane, γ-aminopropyltriethocine, N-β-N vinylbenzylamino-γ-aminopropyltrimethoxysilane monohydrodiene chloride, γ-N phenylamino It is desirable to perform surface treatment with a surfactant such as propyltrimethoxysilane.
【0008】[0008]
【作用】本発明において、導体間を押圧しながら、加熱
し、プリプレグシート中の熱硬化性樹脂を硬化させるの
は、導体間を接着させ、一体化させることにより、マグ
ネットとしての機械的強度を保つためである。[Operation] In the present invention, the thermosetting resin in the prepreg sheet is cured by heating while pressing between the conductors. By adhering and integrating the conductors, the mechanical strength as a magnet is increased. This is to preserve it.
【0009】また、熱硬化性樹脂ならびに高分子フィル
ムに、耐熱性・耐水性・電気絶縁性の優れた材料を使用
したのは、水冷マグネットが運転中に発生するジュール
損による熱、その熱により沸騰する純水、さらに層間絶
縁を介して流れる微弱な電流の相互作用により、劣化し
層間絶縁が虫食い状態に穴があき、層間短絡に至るのを
防ぐためである。[0009] Also, the reason why we used materials with excellent heat resistance, water resistance, and electrical insulation properties for the thermosetting resin and polymer film is that the heat generated by the Joule loss generated during operation of the water-cooled magnet, This is to prevent the interlayer insulation from deteriorating due to the interaction of the boiling pure water and the weak current flowing through the interlayer insulation, causing holes in the interlayer insulation to become moth-eaten, resulting in an interlayer short circuit.
【0010】特に、高分子フィルムは単位厚さ当りの絶
縁破壊強さが、GERP(ガラス繊維強化プラスチック
)に比べ高く、電流も流れ難い特徴を持っている。フィ
ルムは一般に接着力が劣るので、直接導体に接しないよ
う、プリプレグシートの中央に配置している。フィルム
の両面を面荒らしするとよいのは、硬化後に形成される
GFRPと高分子フィルムとの界面の接着を良くし、水
が浸透し難い構造にするためである。また、ガラス繊維
をシランカップリング剤などの界面活性剤により、表面
処理を行うとよいのは、熱硬化性樹脂とガラス繊維の界
面の濡れを良くし、接着を良くし水が浸透し難い構造に
するためである。[0010] In particular, polymer films have a higher dielectric breakdown strength per unit thickness than GERP (glass fiber reinforced plastic), and have the characteristics that it is difficult for electric current to flow through them. Since the film generally has poor adhesive strength, it is placed in the center of the prepreg sheet so that it does not come into direct contact with the conductor. The reason why it is preferable to roughen both sides of the film is to improve adhesion at the interface between the GFRP and the polymer film formed after curing, and to create a structure that is difficult for water to penetrate. In addition, it is recommended to surface-treat the glass fibers with a surfactant such as a silane coupling agent to improve wetting of the interface between the thermosetting resin and the glass fibers, improve adhesion, and create a structure that is difficult for water to penetrate. This is to make it happen.
【0011】[0011]
【実施例】本発明の一実施例について以下に図面を参照
して詳細に説明する。先ず、耐熱性・耐水性・電気絶縁
性の優れた高分子フィルムとして、厚さ25μm のポ
リイミドフィルム(商品名カプトン:東レ・デュポン社
製)、ポリエーテルエーテルケトン(PEEK)フィル
ム(商品名TALPA−2000C:三井東圧社製)を
用意する。このフィルムの両側に、厚さ30μm のγ
−Nフェニルアミノプロピルトリメトキシシラン処理し
たガラス織布を配置し、ビスマレイミドトリアジン(B
T)樹脂(商品名BTA−300:三菱瓦斯化学社製)
およびエポキシ樹脂(商品名E−23A:有沢製作所社
製)を含浸し、110 ℃にて10分間乾燥し、ガラス
織布部分の樹脂含有量が約83重量%の半硬化状のプリ
プレグシートを製作した。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. First, as polymer films with excellent heat resistance, water resistance, and electrical insulation, we used a 25 μm thick polyimide film (product name Kapton, manufactured by DuPont Toray) and polyether ether ketone (PEEK) film (product name TALPA-). 2000C (manufactured by Mitsui Toatsusha) is prepared. On both sides of this film, 30 μm thick γ
-N phenylaminopropyltrimethoxysilane treated glass fabric is placed and bismaleimidotriazine (B
T) Resin (product name BTA-300: manufactured by Mitsubishi Gas Chemical Co., Ltd.)
and epoxy resin (trade name E-23A, manufactured by Arisawa Seisakusho Co., Ltd.) and dried at 110°C for 10 minutes to produce a semi-cured prepreg sheet with a resin content of approximately 83% by weight in the glass woven fabric portion. did.
【0012】また、比較のために、厚さが100 μm
のガラス織布(商品名#30.1:有沢製作所社製)
にBTA−300を含浸し、110 ℃にて10分間乾
燥し、樹脂含有量が約45重量%の半硬化状のプリプレ
グシートを製作した。[0012] For comparison, the thickness was 100 μm.
glass woven fabric (product name #30.1: manufactured by Arisawa Seisakusho Co., Ltd.)
was impregnated with BTA-300 and dried at 110°C for 10 minutes to produce a semi-cured prepreg sheet with a resin content of about 45% by weight.
【0013】図2に示すように、これらのプリプレグシ
ート9を、導体の形状に合わせC字状でかつ、図3に示
すように、導体4よりやや大きめに切断し、これらのプ
リプレグシートが半分ずつ重なるように、周方向に順次
位置をずらすようにして配置することにより、すべての
ヘリカル状導体間に2枚のプリプレグシートが重なった
状態で、連続的に挿入する。As shown in FIG. 2, these prepreg sheets 9 are cut into a C-shape to match the shape of the conductor, and as shown in FIG. 3, cut into pieces slightly larger than the conductor 4. The two prepreg sheets are successively inserted between all the helical conductors in an overlapping state by arranging them so as to overlap each other and sequentially shift their positions in the circumferential direction.
【0014】このように、導体間にプリプレグシートが
挿入されたコイル10を、図4に示すように、内部に所
定の寸法Hの長さの、表面に離型のためにポリテトラフ
ルオロエチレン製のシート11を巻いた銅パイプ12を
挿入し、鋼鉄製のフランジ13、バネ座金14を介して
、ねじ棒15と6角ナット16を用いて締め付け、その
まま160 ℃の乾燥器中で16h加熱することにより
、導体が前記プリプレグシート9を押圧した状態で硬化
させる。As shown in FIG. 4, the coil 10 with the prepreg sheet inserted between the conductors has a predetermined length H inside and a polytetrafluoroethylene film on the surface for mold release. Insert the copper pipe 12 wrapped with the sheet 11, tighten it using the threaded rod 15 and hexagonal nut 16 via the steel flange 13 and spring washer 14, and heat it in a dryer at 160 °C for 16 hours. As a result, the conductor is cured while pressing the prepreg sheet 9.
【0015】上記実施例において、C字状に切断したプ
リプレグシートを、プリプレグシートが半分ずつ重なる
ように、周方向に順次位置をずらすようにして配置した
のは、ヘリカル状導体間に2枚のプリプレグシートが重
なった状態で、連続的に配置でき、厚さが均等の層間絶
縁を形成でき、また導体間に必ず1層は切れ目のないプ
リプレグシートを配置することにより、導体間の全長に
わたって弱点のないし層間絶縁を形成できる。プリプレ
グシートを導体よりやや大きめに切断したのは、導体間
の沿面距離を長くし、沿面に電流が流れにくくするため
である。[0015] In the above embodiment, the prepreg sheets cut into a C-shape are arranged so that the prepreg sheets are overlapped in half and are sequentially shifted in the circumferential direction. The prepreg sheets can be placed one on top of the other in a continuous manner to form interlayer insulation with an even thickness, and by placing at least one unbroken layer of prepreg sheets between the conductors, weak points can be avoided along the entire length between the conductors. or interlayer insulation can be formed. The reason why the prepreg sheet was cut to be slightly larger than the conductor was to increase the creeping distance between the conductors and make it difficult for current to flow along the creeping surface.
【0016】バネ座金を介して6角ナットを用いて締め
付けたのは、プリプレグシートが加熱された際に、プリ
プレグシートに含まれる樹脂が流動化し、バネ座金によ
る力で導体が押圧されているため、銅パイプで止められ
るまで、プリプレグシートが変形し、結局所定の寸法に
なった状態で硬化し一体化する。[0016] The reason why a hexagonal nut was used to tighten the spring washer was because when the prepreg sheet was heated, the resin contained in the prepreg sheet became fluid and the conductor was pressed by the force of the spring washer. , the prepreg sheet is deformed until it is stopped by the copper pipe, and eventually hardens and integrates into a predetermined size.
【0017】本実施例の高分子フィルムを中央部に配置
したプリプレグシートを用いた層間絶縁は絶縁破壊の強
さが88kV/mmに対して、基材にガラス織布を使用
したプリプレグシートによる比較例の層間絶縁が、58
kV/mmと約1.5 倍高い。The interlayer insulation using the prepreg sheet in which the polymer film of this example is placed in the center has a dielectric breakdown strength of 88 kV/mm, whereas the comparison with the prepreg sheet using glass woven fabric as the base material shows that the interlayer insulation has a dielectric breakdown strength of 88 kV/mm. The example interlayer insulation is 58
kV/mm, which is about 1.5 times higher.
【0018】これらの層間絶縁を有する水冷マグネット
を消費電力7.2 MW,中心磁場19Tの同一条件で
運転したところ、比較例の場合運転時間135 hで、
層間短絡を生じて運転不能となったのに対して、本実施
例のものはいずれも2000h以上運転しても異常が生
じなかった。次に本発明の他の実施例について以下に説
明する。When these water-cooled magnets with interlayer insulation were operated under the same conditions of power consumption of 7.2 MW and central magnetic field of 19 T, in the case of the comparative example, the operating time was 135 h;
Whereas interlayer short circuit occurred and operation became impossible, in the case of the present example, no abnormality occurred even after operation for 2000 hours or more. Next, other embodiments of the present invention will be described below.
【0019】前記実施例では、耐熱性・耐水性・電気絶
縁性の優れた高分子フィルムとして、ポリイミド(PI
)フィルム、ポリエーテルエーテルケトン(PEEK)
フィルムを用いたが、ポリエーテルエーテルスルホン(
PES)フィルム、ポリフェニレンサルファイド(PP
S)フィルム、アラミドフィルム、ポリテトラフルオロ
エチレン(PTFE)フィルムを用いても良い。In the above examples, polyimide (PI) was used as a polymer film with excellent heat resistance, water resistance, and electrical insulation properties.
) Film, polyetheretherketone (PEEK)
Although a film was used, polyether ether sulfone (
PES) film, polyphenylene sulfide (PP
S) film, aramid film, and polytetrafluoroethylene (PTFE) film may also be used.
【0020】また、耐熱性・耐水性・電気絶縁性の優れ
た熱硬化性樹脂として、ビスマレイミドトリアジン(B
T)樹脂、エポキシ樹脂を用いたが、ポリイミド樹脂を
用いても良い。さらに、前記実施例では基材としてガラ
ス織布を用いたが、ガラスの不織布を用いてもよい。[0020] Bismaleimide triazine (B
T) Although resin and epoxy resin were used, polyimide resin may also be used. Furthermore, although a woven glass fabric was used as the base material in the above embodiments, a non-woven glass fabric may also be used.
【0021】[0021]
【発明の効果】以上説明したように本発明によれば、耐
熱性・耐水性・電気絶縁性の優れた高分子フィルムの両
面に、ガラス織布あるいは不織布などの基材を配置し、
この基材に耐熱性・耐水性・電気絶縁性の優れた熱硬化
性樹脂を含浸し半硬化状態としたプリプレグシートを導
体の間に挿入し、導体間を押圧しながら加熱し、プリプ
レグシート中の熱硬化性樹脂を硬化させて、水冷マグネ
ットの層間絶縁を形成しているので、マグネットが運転
中に発生するジュール損による熱、その熱により沸騰す
る純水、さらに層間絶縁を介して流れる微弱な電流の相
互作用による劣化で層間絶縁が虫食い状態に穴があき、
層間短絡に至ることが起き難くなり、長期間安定して運
転することができる。As explained above, according to the present invention, a base material such as glass woven fabric or non-woven fabric is placed on both sides of a polymer film having excellent heat resistance, water resistance, and electrical insulation.
This base material is impregnated with a thermosetting resin with excellent heat resistance, water resistance, and electrical insulation, and a semi-cured prepreg sheet is inserted between the conductors, heated while pressing between the conductors, and the prepreg sheet is heated. The thermosetting resin is hardened to form the interlayer insulation of the water-cooled magnet, so there is heat due to Joule loss generated while the magnet is operating, pure water that boils due to the heat, and a weak amount that flows through the interlayer insulation. The interlayer insulation becomes moth-eaten and has holes due to deterioration caused by the interaction of electric currents.
Interlayer short circuits are less likely to occur, allowing stable operation over a long period of time.
【図1】本発明の一実施例に用いたプリプレグシートの
構成を示す断面図[Fig. 1] A cross-sectional view showing the structure of a prepreg sheet used in an example of the present invention.
【図2】図1のプリプレグシートを切断した際の形状を
示す図[Figure 2] Diagram showing the shape when the prepreg sheet in Figure 1 is cut
【図3】導体とプリプレグシートの大きさの関係を説明
する図[Figure 3] Diagram explaining the relationship between the size of the conductor and prepreg sheet
【図4】本発明によりコイルを製作する方法を説明する
ための図[Figure 4] Diagram for explaining the method of manufacturing a coil according to the present invention
【図5】ハイブリッドマグネットの構成を説明する図[Figure 5] Diagram explaining the configuration of a hybrid magnet
【
図6】ポリヘリックス形コイルの構成を示す図[
Figure 6: Diagram showing the configuration of a polyhelical coil
1…水冷マグネットコイル 2…超電導マグ
ネットコイル1...Water-cooled magnet coil 2...Superconducting magnet coil
Claims (3)
高分子フィルムの両面に、ガラス織布あるいは不織布な
どの基材を配置し、この基材に耐熱性・耐水性・電気絶
縁性の優れた熱硬化性樹脂を含浸し半硬化状態としたプ
リプレグシートを導体の間に挿入し、導体間を押圧しな
がら加熱し、プリプレグシート中の熱硬化性樹脂を硬化
させることを特徴とする水冷マグネットコイル層間絶縁
方法。Claim 1: A base material such as glass woven fabric or non-woven fabric is placed on both sides of a polymer film with excellent heat resistance, water resistance, and electrical insulation properties, and this base material has heat resistance, water resistance, and electrical insulation properties. A semi-cured prepreg sheet impregnated with an excellent thermosetting resin is inserted between conductors, and heated while pressing between the conductors to harden the thermosetting resin in the prepreg sheet. Water-cooled magnet coil interlayer insulation method.
トリアジンまたはエポキシを用いたことを特徴とする請
求項1記載の水冷マグネットコイルの層間絶縁方法。2. The interlayer insulation method for a water-cooled magnet coil according to claim 1, wherein bismaleimide triazine or epoxy is used as the thermosetting resin.
エーテルケトンフィルムまたはポリイミドフィルムを用
いたことを特徴とする請求項1記載の水冷マグネットコ
イルの層間絶縁方法。3. The interlayer insulation method for a water-cooled magnet coil according to claim 1, wherein a polyetheretherketone film or a polyimide film is used as the polymer film.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3835691A JPH04276602A (en) | 1991-03-05 | 1991-03-05 | Interlayer insulation method for water-cooled magnet coils |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3835691A JPH04276602A (en) | 1991-03-05 | 1991-03-05 | Interlayer insulation method for water-cooled magnet coils |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04276602A true JPH04276602A (en) | 1992-10-01 |
Family
ID=12523005
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3835691A Pending JPH04276602A (en) | 1991-03-05 | 1991-03-05 | Interlayer insulation method for water-cooled magnet coils |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04276602A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002515180A (en) * | 1996-03-06 | 2002-05-21 | ケルシ・ヘイズ、カムパニ | Solenoid coil without bobbin |
-
1991
- 1991-03-05 JP JP3835691A patent/JPH04276602A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002515180A (en) * | 1996-03-06 | 2002-05-21 | ケルシ・ヘイズ、カムパニ | Solenoid coil without bobbin |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5483043A (en) | Induction heating of polymer matrix composites in a mold press | |
| US2938992A (en) | Heaters using conductive woven tapes | |
| JPH0790606B2 (en) | Method for manufacturing laminated board used as reinforced laminated synthetic resin printed circuit board | |
| CN114727471B (en) | A microwave resonant cavity | |
| US20250250393A1 (en) | Fiber reinforced polymer composite structures and electromagnetic induction process for making same | |
| JPH04276602A (en) | Interlayer insulation method for water-cooled magnet coils | |
| JP4116236B2 (en) | Laminated member and rotating electric machine using the same | |
| JPS6213010A (en) | Superconductive electromagnet | |
| US5357085A (en) | Induction heating of polymer matrix composite fiber strands | |
| KR900000433B1 (en) | Water cooling winding for electronic stirring device | |
| CA2344771A1 (en) | High-voltage insulation system | |
| US20020132738A1 (en) | Power lead for superconductive magnet | |
| CN115819921A (en) | Preparation method and application of interface modified aramid fiber/epoxy resin composite material | |
| JP3060547B2 (en) | Superconducting coil manufacturing method | |
| JP2622053B2 (en) | Manufacturing method of coil for electromagnet | |
| JP2656381B2 (en) | Manufacturing method of coil for electromagnet | |
| JP2009268274A (en) | Method of manufacturing coil for rotary electric machine and coil for rotary electric machine | |
| JP2013026535A (en) | Method for manufacturing permanent current switch, and permanent current switch | |
| JP7531806B2 (en) | Composite material molding device and composite material molding method | |
| JPH02199806A (en) | Superconducting coil and prepreg semicured tape | |
| JPS6013445A (en) | High voltage coil of rotating electric machine | |
| JPH07241920A (en) | Fiber-reinforced thermoplastic resin pipe and manufacture thereof | |
| JP3103257B2 (en) | Low temperature current lead | |
| JPS61193411A (en) | Thin-leaf insulator, its manufacturing method, and resin molded coil using this thin-leaf insulator | |
| JPH04336235A (en) | Fiber reinforced thermoplastic resin pipe |