[go: up one dir, main page]

JPH04277081A - Method for sterilizing water - Google Patents

Method for sterilizing water

Info

Publication number
JPH04277081A
JPH04277081A JP3038523A JP3852391A JPH04277081A JP H04277081 A JPH04277081 A JP H04277081A JP 3038523 A JP3038523 A JP 3038523A JP 3852391 A JP3852391 A JP 3852391A JP H04277081 A JPH04277081 A JP H04277081A
Authority
JP
Japan
Prior art keywords
water
sodium hypochlorite
chlorine
pump
sterilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3038523A
Other languages
Japanese (ja)
Inventor
高木嘉造
Kazo Takagi
中村成興
Shigeoki Nakamura
松本昭彦
Akihiko Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Rubber Industry Co Ltd
Original Assignee
Daiki Rubber Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Rubber Industry Co Ltd filed Critical Daiki Rubber Industry Co Ltd
Priority to JP3038523A priority Critical patent/JPH04277081A/en
Publication of JPH04277081A publication Critical patent/JPH04277081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To sterilize water containing ammoniacal nitrogen to be recirculated and reused without generating a chlorine smell, an irritant smell, the damage of the hair of a water user and the pain of an eye and a throat while preventing the generation of scale and improving the handling properties of a sterilizing agent. CONSTITUTION:A saline solution is electrolized in a diaphragm free electrolytic cell 15 to form sodium hypochlorite 40 which is, in turn, injected in circulating pool water 21 by a pump 31 and piping 30. The concn. of free residual chlorine in the pool water 21 is measured by a sensor 34 and the injection of sodium hypochlorite due to the pump 31 is controlled so that the measured concn. is received in a predetermined range.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】本発明は用水の滅菌方法に関し、特に詳細
には、アンモニア性窒素を含んで循環使用される用水を
滅菌する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sterilizing water, and more particularly, to a method for sterilizing water that contains ammonia nitrogen and is recycled.

【0002】0002

【従来の技術】プール水、温泉水あるいは浴場水等は、
人体から種々の形で排泄されるアンモニア性窒素や大腸
菌等を含む宿命を帯びている。そこでこのような用水を
循環使用する際には、衛生上、消毒・滅菌することが必
要である。例えばプール水の場合は、遊離残留塩素を0
.4 ppm以上含むことが法規によって義務付けられ
ている。
[Prior Art] Pool water, hot spring water, bath water, etc.
It is destined to contain ammonia nitrogen and E. coli, which are excreted from the human body in various forms. Therefore, when using such water for circulation, it is necessary to disinfect and sterilize it for hygiene reasons. For example, in the case of pool water, free residual chlorine can be reduced to 0.
.. It is required by law to contain 4 ppm or more.

【0003】従来より、これらの用水の滅菌のために、
塩素系の滅菌剤が好適に利用されている。この塩素系滅
菌剤を用水に投入する場合、「空気調和・衛生工学便覧
」から引用した図2に示されるように、投入塩素量が比
較的少ないときはその投入量増大に応じて結合残留塩素
量が増大し、これがいったん減少し、そこから再び増大
に転じ(ここをブレークポイントという)てから遊離残
留塩素が現われる。殺菌力は結合形残留塩素に比べてこ
の遊離残留塩素の方が強いので、塩素系滅菌剤は上記ブ
レークポイント以上投入しなければならない。このよう
に塩素系滅菌剤を大量に投入すると、図2に示されてい
る通り、トリクロラミンの比率が増大する。このトリク
ロラミンは最も揮発性および刺激臭が強く、不快な塩素
臭や髪の傷み、目および喉の痛みの原因になっていると
いわれている。
Conventionally, in order to sterilize these water supplies,
Chlorine-based sterilizers are preferably used. When this chlorine-based sterilizer is added to water, as shown in Figure 2 taken from the "Air Conditioning and Sanitary Engineering Handbook," when the amount of chlorine added is relatively small, the combined residual chlorine increases as the amount is increased. The amount increases, once it decreases, and then starts to increase again (this is called a break point) before free residual chlorine appears. Since this free residual chlorine has a stronger sterilizing power than the combined residual chlorine, the chlorine-based sterilizing agent must be added above the above break point. When such a large amount of chlorine-based sterilizing agent is introduced, the proportion of trichloramine increases, as shown in FIG. 2. Trichloramine is the most volatile and has the strongest pungent odor, and is said to cause unpleasant chlorine odor, damage to hair, and sore eyes and throats.

【0004】なお上記図2に示されるのは、pH7で温
度10℃、そしてアンモニア性窒素を0.5 ppm含
む用水を対象とし、塩素と用水との接触時間が2時間の
場合の測定結果である。
[0004] Figure 2 above shows the measurement results for commercial water with a pH of 7, a temperature of 10°C, and containing 0.5 ppm of ammonia nitrogen, and a contact time of 2 hours between chlorine and the commercial water. be.

【0005】[0005]

【発明が解決しようとする課題】塩素系滅菌剤として具
体的には、例えばプール水用には取扱い容易な固形のも
の、すなわちサラシ粉、塩素化シアヌル酸ソーダなどが
広く使用されているが、それらはプール水に直接散布さ
れるため、その付近では塩素が過剰になって上述のトリ
クロラミンが生成しやすくなっている。
[Problems to be Solved by the Invention] Specifically, solid chlorine-based sterilizers that are easy to handle are widely used for pool water, such as white powder and chlorinated sodium cyanurate. Since they are sprayed directly into the pool water, there is an excess of chlorine in the vicinity, making it easy for the trichloramines mentioned above to form.

【0006】このような問題を解消するため、塩素系滅
菌剤として市販の次亜塩素酸ソーダを使用することもあ
る。その場合は次亜塩素酸ソーダを貯蔵しておくことに
なるから、その分解を防ぐ目的で次亜塩素酸ソーダに苛
性ソーダが添加され一般にpHが12.6以上となって
いる。しかし、このように苛性ソーダが添加されてpH
が12.6以上の次亜塩素酸ソーダをプール水等に注入
すると、水中のカルシウムイオンがpH12.6以上で
水酸化カルシウムとなるので、それがスケールとなって
滅菌剤の注入ノズルに付着する。そのためこの場合は、
例えば1ヶ月に1回程の頻度で注入系の分解清掃が必要
となり、メンテナンスに多大の費用がかかるようになる
[0006] In order to solve this problem, commercially available sodium hypochlorite is sometimes used as a chlorine-based sterilizing agent. In that case, since sodium hypochlorite is stored, caustic soda is added to the sodium hypochlorite to prevent its decomposition, and the pH is generally set to 12.6 or higher. However, when caustic soda is added in this way, the pH
When sodium hypochlorite with a pH of 12.6 or higher is injected into pool water, etc., the calcium ions in the water turn into calcium hydroxide at a pH of 12.6 or higher, which forms scale and adheres to the sterilant injection nozzle. . Therefore, in this case,
For example, it is necessary to disassemble and clean the injection system once a month, resulting in a large amount of maintenance costs.

【0007】また市販の次亜塩素酸ソーダは一般に濃度
が約12%と比較的高く、そのまま用水に注入すると、
固形の塩素系滅菌剤を用いる場合と同様に、局部的にト
リクロラミンが生成しやすくなる。それを防止するため
に市販の次亜塩素酸ソーダを水道水で希釈して拡散しや
すくすることも考えるが、そのようにすると水道水中に
含まれるカルシウムイオンが水酸化カルシウムとなり、
それが滅菌剤注入ポンプや注入配管に付着して、メンテ
ナンスがさらに面倒になる。またスケール発生を抑える
ために次亜塩素酸ソーダを塩酸で中和することも考えら
れるが、そうすると有毒な塩素が発生するので滅菌剤の
取扱性が悪くなるという問題が生じる。
[0007] Commercially available sodium hypochlorite generally has a relatively high concentration of about 12%, so if it is directly injected into water,
As with the use of solid chlorine-based sterilizers, trichloramine is likely to be generated locally. In order to prevent this, it is possible to dilute commercially available sodium hypochlorite with tap water to make it easier to diffuse, but if you do that, the calcium ions contained in the tap water will turn into calcium hydroxide.
It adheres to the sterilant injection pump and injection piping, making maintenance even more troublesome. It is also possible to neutralize sodium hypochlorite with hydrochloric acid in order to suppress the formation of scale, but this would generate toxic chlorine, causing the problem of poor handling of the sterilizing agent.

【0008】本発明は上記の事情に鑑みてなされたもの
であり、塩素臭や刺激臭がなく、また利用者に髪の傷み
や目、喉の痛みを与えることのない用水を得ることがで
き、そしてスケール発生も極めて少なく抑えることがで
き、また滅菌剤の取扱性も良い用水の滅菌方法を提供す
ることを目的とするものである。
The present invention was made in view of the above circumstances, and it is possible to obtain drinking water that does not have chlorine odor or irritating odor, and does not cause damage to hair, eyes, or throat pain to users. The object of the present invention is to provide a method for sterilizing water that can minimize scale generation and also allows for easy handling of sterilizing agents.

【0009】[0009]

【課題を解決するための手段】本発明による用水の滅菌
方法は、前述したようにアンモニア性窒素を含んで循環
使用される用水を滅菌する方法において、◆食塩水を無
隔膜電解槽により電気分解処理して得た次亜塩素酸ソー
ダを上記用水に注入し、◆この用水における遊離残留塩
素濃度を測定し、◆この測定濃度が所定範囲に収まるよ
うに次亜塩素酸ソーダの注入を制御することを特徴とす
るものである。
[Means for Solving the Problems] The method for sterilizing commercial water according to the present invention is, as described above, in the method of sterilizing commercial water that contains ammonia nitrogen and is used for circulation. Inject the treated sodium hypochlorite into the above-mentioned water, measure the free residual chlorine concentration in this water, and control the injection of sodium hypochlorite so that the measured concentration falls within a predetermined range. It is characterized by this.

【0010】0010

【作用および発明の効果】食塩水を無隔膜電解槽で電気
分解処理して次亜塩素酸ソーダを得る場合、貯蔵してお
くものは食塩であって、次亜塩素酸ソーダを貯蔵してお
く必要はなくなる。したがって前述のように分解防止の
目的で次亜塩素酸ソーダに苛性ソーダを添加する必要が
なくなり、苛性ソーダ添加によるpH上昇でスケールが
生成しやすくなることがない。
[Operation and Effects of the Invention] When sodium hypochlorite is obtained by electrolyzing salt water in a non-diaphragm electrolytic cell, what is stored is the salt, and the sodium hypochlorite is stored. There will be no need. Therefore, as mentioned above, there is no need to add caustic soda to sodium hypochlorite for the purpose of preventing decomposition, and scale is not likely to be generated due to the pH increase due to the addition of caustic soda.

【0011】なお上記のように苛性ソーダを添加しなく
ても、次亜塩素酸ソーダの有効塩素濃度が高くてそれ自
体pHが高ければ、ある程度スケールは発生しやすくな
る。そこで次亜塩素酸ソーダの有効塩素濃度とスケール
発生との相関をプール水について調べたところ、pHが
9.1 以下ではカルシウムやマグネシウムのスケール
生成は見られず、pH9.2 を超えるとマグネシウム
のスケール生成が認められ、12.6以上でカルシウム
のスケールの生成が認められた。一方このpHが4を割
ると塩素が発生するので、本発明において用水に注入す
る次亜塩素酸ソーダは、pH4〜9.1 に保つのが好
ましい。
[0011] As mentioned above, even if caustic soda is not added, if sodium hypochlorite has a high effective chlorine concentration and a high pH itself, scale is likely to occur to some extent. Therefore, when we investigated the correlation between the effective chlorine concentration of sodium hypochlorite and scale generation in pool water, we found that no calcium or magnesium scale formation was observed when the pH was below 9.1, and when the pH exceeded 9.2, magnesium Scale formation was observed, and calcium scale formation was observed at 12.6 or higher. On the other hand, if this pH is less than 4, chlorine is generated, so it is preferable to maintain the sodium hypochlorite injected into the water in the present invention at a pH of 4 to 9.1.

【0012】以上のようにしてスケール発生を防止でき
れば、滅菌剤注入系の分解清掃が不要になり、あるいは
その頻度が非常に低下して、メンテナンス費用が著しく
低減される。
[0012] If scale generation can be prevented as described above, disassembly and cleaning of the sterilizing agent injection system becomes unnecessary, or the frequency thereof is greatly reduced, and maintenance costs are significantly reduced.

【0013】また、用水の遊離残留塩素濃度を測定し、
それに基づいて次亜塩素酸ソーダの注入を制御すれば、
この濃度を、前記図2に示されたブレークポイント近辺
の値に保って、トリクロラミンの発生を極力抑えること
が可能となる。そうなれば、前述した塩素臭や刺激臭、
そして用水利用者の髪の傷みや目、喉の痛みの問題をす
べて解消することができる。
[0013] Also, the free residual chlorine concentration of the water was measured,
If you control the injection of sodium hypochlorite based on that,
By keeping this concentration close to the breakpoint shown in FIG. 2, it is possible to suppress the generation of trichloramine as much as possible. If that happens, the chlorine smell and pungent smell mentioned above,
In addition, it can eliminate all problems of hair damage, eyes, and sore throats for water users.

【0014】また本発明においては、次亜塩素酸ソーダ
を塩素で中和するようなことは必要ないから、滅菌剤の
取扱性も良いものとなる。
Further, in the present invention, since it is not necessary to neutralize sodium hypochlorite with chlorine, the sterilizing agent can be easily handled.

【0015】なお食塩を無隔膜電解槽で電気分解して得
た次亜塩素酸ソーダを消毒・滅菌のために利用すること
自体は、例えば上水や下水を対象として従来から行なわ
れている。しかし上水は本来アンモニア性窒素をあまり
含まないものであり、また下水においてはクロラミンが
発生しても通常それが人体に触れることはないので、本
願発明が解決しようとする問題は何ら起こることがない
[0015] The use of sodium hypochlorite obtained by electrolyzing common salt in a non-diaphragm electrolytic cell for disinfection and sterilization has been practiced for example for tap water and sewage. However, tap water does not inherently contain much ammonia nitrogen, and even if chloramine is generated in sewage, it does not normally come into contact with the human body, so the problem that the present invention seeks to solve will not occur. do not have.

【0016】それに対してアンモニア性窒素を含んで循
環使用される用水においては、先に説明したトリクロラ
ミン発生およびスケール発生の問題が生じる。この問題
に対して従来は、発生したトリクロラミンをオゾンや活
性炭で分解させたり、発生したスケールを清掃する方法
で対処していた。すなわち従来は、この種の用水に対し
て、スケール生成を積極的に抑えることは考えられてお
らず、食塩を無隔膜電解槽で電気分解して得た次亜塩素
酸ソーダを滅菌剤として用いることは全く考えられてい
なかった。
On the other hand, when water containing ammonia nitrogen is used for circulation, the above-mentioned problems of trichloramine generation and scale generation occur. Conventionally, this problem has been dealt with by decomposing the generated trichloramine with ozone or activated carbon, or by cleaning the generated scale. In other words, in the past, active suppression of scale formation was not considered for this type of water, and sodium hypochlorite obtained by electrolyzing table salt in a non-diaphragm electrolytic tank was used as a sterilizing agent. That had not been thought of at all.

【0017】[0017]

【実施例】以下、図面に基づいて本発明を詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to the drawings.

【0018】図1は、本発明の方法により、一例として
プール水を消毒・滅菌するシステムのフローダイヤグラ
ムである。図示されるように食塩10は食塩溶解槽11
に投入され、そこに配管9を通して供給された水に溶解
される。得られた飽和食塩水は、配管12を通して電解
装置13に送られる。電解装置13においてはポンプ1
4により飽和食塩水が無隔膜電解槽15に定量供給され
、またポンプ14’により希釈水が電解槽15に定量供
給されて約3%の食塩水が調製され、この食塩水が電気
分解されて次亜塩素酸ソーダが生成される。得られた次
亜塩素酸ソーダは配管16を通して次亜塩素酸ソーダ貯
槽17に送られ、そこに貯留される。
FIG. 1 is a flow diagram of a system for disinfecting and sterilizing pool water, by way of example, according to the method of the present invention. As shown in the figure, the salt 10 is stored in a salt dissolving tank 11.
and is dissolved in water supplied there through piping 9. The obtained saturated saline solution is sent to the electrolyzer 13 through the pipe 12. In the electrolyzer 13, the pump 1
4, a saturated salt solution is supplied in a constant quantity to the non-diaphragm electrolytic cell 15, and dilution water is supplied in a fixed quantity to the electrolytic cell 15 by a pump 14' to prepare an approximately 3% salt solution, and this salt water is electrolyzed. Sodium hypochlorite is produced. The obtained sodium hypochlorite is sent to the sodium hypochlorite storage tank 17 through piping 16 and stored there.

【0019】一方プール20に貯えられるプール水21
は、底部から配管22によって抜かれ、あるいはオーバ
ーフローしてバランシングタンク23に集水され、そこ
から配管24を通して循環ポンプ25によって吸い上げ
られ、濾過器26で濾過されてから配管27を通してプ
ール20に戻される。
On the other hand, pool water 21 stored in the pool 20
The water is extracted from the bottom through piping 22 or overflows and collected in a balancing tank 23, from which it is sucked up through piping 24 by a circulation pump 25, filtered by a filter 26, and then returned to the pool 20 through piping 27.

【0020】上記の濾過器出口配管27には次亜塩素酸
ソーダ注入配管30の一端が接続され、この配管30の
他端は次亜塩素酸ソーダ注入ポンプ31の吐出口に接続
されている。次亜塩素酸ソーダ注入ポンプ31は前述の
貯槽17に貯留している次亜塩素酸ソーダ40を、配管
30を通して循環プール水中に注入する。一方濾過器入
口配管24には配管32が接続され、濾過前のプール水
21がこの配管32を通して残留塩素モニター33の残
留塩素センサー34に送られる。
One end of a sodium hypochlorite injection pipe 30 is connected to the filter outlet pipe 27, and the other end of this pipe 30 is connected to a discharge port of a sodium hypochlorite injection pump 31. The sodium hypochlorite injection pump 31 injects the sodium hypochlorite 40 stored in the aforementioned storage tank 17 into the circulation pool water through the piping 30. On the other hand, a pipe 32 is connected to the filter inlet pipe 24, and the pool water 21 before filtration is sent through the pipe 32 to a residual chlorine sensor 34 of a residual chlorine monitor 33.

【0021】残留塩素モニター33は、上記プール水2
1の遊離残留塩素濃度を測定し、その測定濃度を示す信
号Sをポンプ制御盤35に送る。次亜塩素酸ソーダ注入
ポンプ31はポンプ動力ケーブル36により電力供給さ
れて作動するが、ポンプ制御盤35は、上記信号Sが示
す遊離残留塩素濃度に応じてこのポンプ31の作動をO
N、OFFする。
The residual chlorine monitor 33 monitors the pool water 2.
1 and sends a signal S indicating the measured concentration to the pump control panel 35. The sodium hypochlorite injection pump 31 is operated by being supplied with electric power by the pump power cable 36, but the pump control panel 35 controls the operation of the pump 31 according to the free residual chlorine concentration indicated by the signal S.
N, turn off.

【0022】本例においては、上記遊離残留塩素濃度が
0.45ppm以下のときに次亜塩素酸ソーダ注入ポン
プ31を作動させ、0.5 ppmに達したならば該ポ
ンプ31を停止させて次亜塩素酸ソーダ注入を中止する
。また次亜塩素酸ソーダ注入ポンプ31の容量は100
0cc/分、プール水循環水量は90m3 /時である
。そして電解装置13の主な仕様は以下の通りである。
In this example, the sodium hypochlorite injection pump 31 is operated when the free residual chlorine concentration is 0.45 ppm or less, and when it reaches 0.5 ppm, the pump 31 is stopped and the next operation is performed. Discontinue sodium chlorite injection. Also, the capacity of the sodium hypochlorite injection pump 31 is 100
0cc/min, pool water circulation amount is 90m3/hour. The main specifications of the electrolyzer 13 are as follows.

【0023】           電解総電流          
          160 A          
陽極材質                     
 Ti板にPt(50%)Pd           
                         
            (50%)合金を被覆   
                     次亜塩素
酸ソーダ生成能力      150 g/時    
                         
   生成次亜塩素酸ソーダ濃度      1050
0 ppm                    
          生成次亜塩素酸ソーダのpH  
  9.1                    
         上述のように次亜塩素酸ソーダ注入
を制御することにより、プール水21中の遊離残留塩素
濃度は0.4 ppmから0.7 ppmの範囲に保た
れ、そしてトリクロラミンの濃度は0.1 ppm未満
に抑えられた。このときプール20の周辺で塩素臭は感
じられなかった。またこのシステムを1年間稼動させた
後も、次亜塩素酸ソーダ40を注入するための各配管に
おいてスケールトラブルは発生しなかった。
[0023] Total electrolysis current
160A
Anode material
Pt (50%) Pd on Ti plate

(50%) coated alloy
Sodium hypochlorite production capacity 150 g/hour

Generated sodium hypochlorite concentration 1050
0 ppm
pH of generated sodium hypochlorite
9.1
By controlling the sodium hypochlorite injection as described above, the free residual chlorine concentration in the pool water 21 is kept in the range of 0.4 ppm to 0.7 ppm, and the trichloramine concentration is 0.1 It was suppressed to less than ppm. At this time, no chlorine odor was felt around pool 20. Further, even after operating this system for one year, no scale trouble occurred in each piping for injecting sodium hypochlorite 40.

【0024】なお上記実施例の無隔膜電解槽15と、こ
の無隔膜電解槽15の陽極(これを陽極Aとする)に代
えて、Ti板にPt、Irの合金を被覆した陽極Bを用
いた電解槽と、Ti板にPtを被覆した陽極Cを用いた
電解槽をそれぞれ使用した場合の、生成次亜塩素酸ソー
ダの有効塩素濃度とpHとの関係を調べた。その結果を
図3に示す。図示されるようにpH9.1 で生成させ
るには、陽極Aを使用する場合は生成次亜塩素酸ソーダ
の有効塩素濃度が10.5g/lであり、陽極Bを使用
する場合は3.5 g/l、陽極Cでは1.0 g/l
となる。トリクロラミンの生成およびスケール発生防止
の要求は、陽極A、陽極B、陽極Cとも満足するが、食
塩の原単位が小さい方が経済性が良いので、この陽極A
を使用するのが望ましい。
In place of the diaphragmless electrolytic cell 15 of the above embodiment and the anode of this diaphragmless electrolytic cell 15 (this is referred to as anode A), an anode B in which a Ti plate is coated with an alloy of Pt and Ir is used. The relationship between the effective chlorine concentration and pH of the produced sodium hypochlorite was investigated using an electrolytic cell using an anode C having a Ti plate coated with Pt and an electrolytic cell using an anode C in which a Ti plate was coated with Pt. The results are shown in FIG. As shown in the figure, in order to generate at pH 9.1, the effective chlorine concentration of the generated sodium hypochlorite is 10.5 g/l when using anode A, and 3.5 g/l when using anode B. g/l, 1.0 g/l for anode C
becomes. Although the requirements for trichloramine production and scale prevention are satisfied with Anode A, Anode B, and Anode C, it is more economical to use a smaller unit of salt, so Anode A
It is preferable to use

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の方法を実施するプール用水滅菌システ
ムを示すフローダイヤグラム
FIG. 1 is a flow diagram showing a pool water sterilization system implementing the method of the present invention.

【図2】本発明に関連する、用水への投入塩素量と残留
塩素量とアンモニア性窒素との関係を示すグラフ
[Figure 2] Graph showing the relationship between the amount of chlorine input to water, the amount of residual chlorine, and ammonia nitrogen related to the present invention

【図3
】次亜塩素酸ソーダの有効塩素濃度とpHとの関係を、
電解槽の陽極材料毎に示すグラフ
[Figure 3
] The relationship between the effective chlorine concentration and pH of sodium hypochlorite,
Graphs shown for each anode material of the electrolytic cell

【符号の説明】[Explanation of symbols]

10    食塩 11    食塩溶解槽 9,12,16,22,24,27,30,32   
 配管13    電解装置 15    無隔膜電解槽 21    プール水 25    プール水循環ポンプ 31    次亜塩素酸ソーダ注入ポンプ33    
残留塩素モニター 34    ポンプ制御盤 40    次亜塩素酸ソーダ
10 Salt 11 Salt dissolving tank 9, 12, 16, 22, 24, 27, 30, 32
Piping 13 Electrolyzer 15 Diaphragmless electrolytic cell 21 Pool water 25 Pool water circulation pump 31 Sodium hypochlorite injection pump 33
Residual chlorine monitor 34 Pump control panel 40 Sodium hypochlorite

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  アンモニア性窒素を含んで循環使用さ
れる用水を滅菌する方法であって、食塩水を無隔膜電解
槽により電気分解処理して得た次亜塩素酸ソーダを前記
用水に注入し、この用水における遊離残留塩素濃度を測
定し、この測定濃度が所定範囲に収まるように前記次亜
塩素酸ソーダの注入を制御することを特徴とする用水の
滅菌方法。
Claim 1: A method for sterilizing circulating water containing ammonia nitrogen, which comprises injecting sodium hypochlorite obtained by electrolyzing saline water in a non-diaphragm electrolytic cell into the water. A method for sterilizing drinking water, comprising: measuring the concentration of free residual chlorine in the drinking water; and controlling the injection of the sodium hypochlorite so that the measured concentration falls within a predetermined range.
【請求項2】  前記無隔膜電解槽の陽極として、パラ
ジウムを含む金属電極を用いることを特徴とする請求項
1記載の用水の滅菌方法。
2. The method for sterilizing water according to claim 1, wherein a metal electrode containing palladium is used as the anode of the membraneless electrolytic cell.
JP3038523A 1991-03-05 1991-03-05 Method for sterilizing water Pending JPH04277081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038523A JPH04277081A (en) 1991-03-05 1991-03-05 Method for sterilizing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038523A JPH04277081A (en) 1991-03-05 1991-03-05 Method for sterilizing water

Publications (1)

Publication Number Publication Date
JPH04277081A true JPH04277081A (en) 1992-10-02

Family

ID=12527637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038523A Pending JPH04277081A (en) 1991-03-05 1991-03-05 Method for sterilizing water

Country Status (1)

Country Link
JP (1) JPH04277081A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404948B1 (en) * 1999-12-14 2003-11-10 산요덴키가부시키가이샤 Water processing equipment
KR100404949B1 (en) * 1999-12-16 2003-11-10 산요덴키가부시키가이샤 Water processing equipment
KR100421256B1 (en) * 2001-07-12 2004-03-09 주식회사 이림테크 Sterilizing Processing Apparatus for Swimming Pool Using Artificiality Salt Water
JP2007185579A (en) * 2006-01-12 2007-07-26 Mitsubishi Heavy Ind Ltd Water treatment method and system
JP7688441B1 (en) * 2024-10-23 2025-06-04 Wota株式会社 Water quality judgment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404948B1 (en) * 1999-12-14 2003-11-10 산요덴키가부시키가이샤 Water processing equipment
KR100404949B1 (en) * 1999-12-16 2003-11-10 산요덴키가부시키가이샤 Water processing equipment
KR100421256B1 (en) * 2001-07-12 2004-03-09 주식회사 이림테크 Sterilizing Processing Apparatus for Swimming Pool Using Artificiality Salt Water
JP2007185579A (en) * 2006-01-12 2007-07-26 Mitsubishi Heavy Ind Ltd Water treatment method and system
JP7688441B1 (en) * 2024-10-23 2025-06-04 Wota株式会社 Water quality judgment system

Similar Documents

Publication Publication Date Title
JP4410155B2 (en) Electrolyzed water ejection device
US20040037737A1 (en) Method of and equipment for washing, disinfecting and/or sterilizing health care devices
US20150125344A1 (en) Bactericidal water generating system and method of bactericidal washing
WO2005094904A1 (en) Disinfectant solutions
JP2002104908A (en) Disinfectant agricultural electrolytic water and production unit therefor
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
WO2013077303A1 (en) Air purifying device
US20110290740A1 (en) Waste treatment and disinfection unit
JPH04277081A (en) Method for sterilizing water
JP3870482B2 (en) Water purification equipment
JP2009279532A (en) Method and apparatus for water treatment with chlorine dioxide
KR101826102B1 (en) Electrolytic Sterilization System and method of operation thereof
KR102057093B1 (en) Disinfection water supply system by electrolysis and method
JP3553242B2 (en) Hemodialysis equipment Weakly acidic electrolyzed acidic water generator for sterilization
WO2021189103A1 (en) Water sanitisation device, system and method
KR100323337B1 (en) Purification equipment for swimming pools and baths
JPH1177055A (en) Bath water sterilizer
JP3220355B2 (en) Electrochemical treatment method for water to be treated
JP3870479B2 (en) Water purification equipment
JPH07155770A (en) Infection preventing method, device therefor and production of sterilized drinking water and sterilized air-conditioning cooling water utilizing the device
KR20040065761A (en) Water purification and sterilization using salt water electrolysis
JPH11123383A (en) Water purification device
JP3887969B2 (en) Water purification equipment
CN210065943U (en) High oxidation water generating equipment
US20230183107A1 (en) Water sanitisation device, system and method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991005