JPH04285025A - Single domainization method for piezoelectric single crystals - Google Patents
Single domainization method for piezoelectric single crystalsInfo
- Publication number
- JPH04285025A JPH04285025A JP3049878A JP4987891A JPH04285025A JP H04285025 A JPH04285025 A JP H04285025A JP 3049878 A JP3049878 A JP 3049878A JP 4987891 A JP4987891 A JP 4987891A JP H04285025 A JPH04285025 A JP H04285025A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- piezoelectric single
- ferroelectric piezoelectric
- wafer
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[発明の目的][Object of the invention]
【0002】0002
【産業上の利用分野】本発明は強誘電体圧電単結晶の単
一分域化方法に関し、特にワイヤ−ソ−等の遊離砥粒加
工装置を使用し加工する強誘電体圧電単結晶の単一分域
化方法に関する。[Field of Industrial Application] The present invention relates to a method for forming a ferroelectric piezoelectric single crystal into a single region, and more particularly, to a method for forming a ferroelectric piezoelectric single crystal into a single region, and in particular to a method for processing a ferroelectric piezoelectric single crystal using a loose abrasive processing device such as a wire saw. Concerning a method for dividing into one domain.
【0003】0003
【従来の技術】従来、LiNbO 3 やLiTaO
3 など強誘電体圧電単結晶は単一分域化が必要であり
、キュ−リ−温度以上に昇温し、図2に示すように直流
電界下での冷却操作を行っていた。単一分域化処理をし
ない単結晶は割れ易くなる。しかし、この時の単結晶の
育成方向と印加する電界の方向は特に区別していなかっ
た。但し、強誘電体圧電単結晶の引上げ方向側をプラス
として単一分域化処理をすると単結晶が着色したり、割
れ易くなる場合が多かった。さらに、最近、これらの圧
電単結晶はウエハ製造時の歩留まりを上げるため、加工
歪みの少ないワイヤ−ソ−等の遊離砥粒加工方法が多く
用いられるようになった。加えてウエハの径も3”から
4”化へと進むことによって、ワイヤ−ソ−の欠点であ
る伸直度の問題が大きくなってきて、ワイヤ−ソ−の精
度の維持も困難になってきた。[Prior Art] Conventionally, LiNbO 3 and LiTaO
Ferroelectric piezoelectric single crystals such as No. 3 need to be made into a single domain, so the temperature is raised above the Curie temperature and the cooling operation is performed under a DC electric field as shown in FIG. Single crystals that are not subjected to single-segmentation treatment become more susceptible to cracking. However, at this time, no particular distinction was made between the direction of single crystal growth and the direction of the applied electric field. However, when single-segmenting treatment is performed with the pulling direction side of the ferroelectric piezoelectric single crystal as the positive side, the single crystal often becomes colored or easily cracked. Furthermore, recently, in order to increase the yield during wafer manufacturing of these piezoelectric single crystals, free abrasive processing methods such as a wire saw, which cause less processing distortion, have been increasingly used. In addition, as the diameter of wafers progresses from 3" to 4", the problem of straightness, which is a drawback of wire saws, becomes more difficult, and it becomes difficult to maintain the accuracy of wire saws. Ta.
【0004】0004
【発明が解決しようとする課題】LiNbO 3 やL
iTaO 3 などの強誘電体圧電単結晶はへき開性を
持ち、割れ易い単結晶である。従って、加工歪みの少な
い遊離砥粒加工方法であってもスライス精度が悪いと、
次工程のラッピングやSAW 用基板ではさらに裏面の
ホ−ニングで、部分的な応力がかかるために割れが発生
することが多い。また、4”等のウエハの大口径化によ
って伸直度がさらに悪化し、ウエハ製造時の歩留まりの
低下につながった。
この伸直度をよくするにはスライススピ−ドを遅くした
り、部品の交換を早く行うなどランニングコストが高い
きわめて効率の悪いものとなっていた。 本発明の目
的は大口径でも伸直度が良く、効率の良い強誘電体圧電
単結晶のスライスの加工方法を提供する為の単一分域化
方法を提供するものである。
[発明の構成][Problem to be solved by the invention] LiNbO 3 and L
A ferroelectric piezoelectric single crystal such as iTaO 3 has cleavability and is easily broken. Therefore, even if the free abrasive processing method has low processing distortion, if the slicing accuracy is poor,
In the next process of lapping and SAW substrates, cracks often occur due to localized stress being applied during honing of the back surface. In addition, as the diameter of wafers increased, such as 4", the straightness worsened, leading to a decrease in yield during wafer manufacturing. To improve the straightness, it was necessary to slow down the slicing speed and The running cost is high and the ferroelectric piezoelectric single crystal must be replaced quickly, making it extremely inefficient.The purpose of the present invention is to provide an efficient method for slicing a ferroelectric piezoelectric single crystal that has good elongation even with a large diameter. [Structure of the invention]
【0005】[0005]
【課題を解決するための手段】本発明は、強誘電体圧電
単結晶をキュ−リ−温度以上に昇温し直流電界下で冷却
操作を行なうことによる強誘電体圧電単結晶の単一分域
化方法において、強誘電体圧電単結晶の引上げ方向側が
分極処理時の電界印加方向をマイナスとして分極処理す
ることを特徴とする強誘電体圧電単結晶の単一分域化方
法である。強誘電体圧電単結晶には、LiNbO 3
やLiTaO 3 等があるが、本発明に好適なものは
、LiTaO 3 である。[Means for Solving the Problems] The present invention provides a method for dividing a ferroelectric piezoelectric single crystal into a single crystal by heating the ferroelectric piezoelectric single crystal to a temperature higher than the Curie temperature and cooling the ferroelectric piezoelectric single crystal under a DC electric field. In this method, the ferroelectric piezoelectric single crystal is polarized with the pulling direction side of the ferroelectric piezoelectric single crystal set in a negative direction in the electric field application direction during the polarization process. The ferroelectric piezoelectric single crystal contains LiNbO 3
, LiTaO 3 , etc., but LiTaO 3 is preferable for the present invention.
【0006】強誘電体圧電単結晶の分極処理は、図1の
様に、単結晶の引上げ方向側が分極処理時の電界印加方
向をマイナスとしてなされる。直流電界の印加方法は、
単結晶の引上げ方向側がマイナス電極であればよく特に
制限はない。As shown in FIG. 1, the polarization treatment of a ferroelectric piezoelectric single crystal is carried out with the pulling direction side of the single crystal being negative in the direction in which the electric field is applied during the polarization treatment. The method of applying the DC electric field is
There is no particular restriction as long as the negative electrode is on the pulling direction side of the single crystal.
【0007】[0007]
【作用】LiNbO 3 やLiTaO 3 などの育
成時に形成される固液界面形状は、一般に、下に凸であ
る。ワイヤ−ソ−により切断する場合、ワイヤ−が細い
ため伸直性が悪く、スライス形状は固液界面形状に影響
され同じように下に凸になる。しかし、分極処理時の電
界印加方向を単結晶の引上げ方向側をマイナスとするこ
とにより、育成軸のシ−ドがプラスの極性成分を持つ面
になる。その結果、下に凸の切断面は硬度の低いマイナ
ス面側に補正されることにより反りが少なくなり、平坦
度の良いウエハが得られる。さらに切断したウエハをラ
ップする時、図3のようにプラス面の接触面積が多くな
るため加工時間が早くなる。ラップ後マイナス面をホ−
ニング加工しても、ラップ後にも残る反りの方向が同じ
であり反りの逆転が起きないため、ウエハの割れ発生が
少なくなる。そしてホ−ニング後の大きな反りを修正す
るふっ化水素酸−硝酸エッチングを行う場合、ラップ後
にも残る反りが同じ方向であるため、反りの逆転が起き
ない。また、反りのコントロ−ルも簡単となる。[Operation] The shape of the solid-liquid interface formed during the growth of LiNbO 3 or LiTaO 3 is generally downwardly convex. When cutting with a wire saw, the wire is thin and has poor straightness, and the shape of the slice is affected by the shape of the solid-liquid interface and similarly becomes convex downward. However, by setting the electric field application direction during the polarization treatment so that the pulling direction side of the single crystal is negative, the seed of the growth axis becomes a surface having a positive polar component. As a result, the downwardly convex cut surface is corrected to the negative side with lower hardness, resulting in less warpage and a wafer with good flatness. Furthermore, when lapping the cut wafer, the contact area of the positive side increases as shown in FIG. 3, so the processing time becomes faster. After wrapping, take a look at the negative aspects.
Even after lapping, the direction of the warp that remains after lapping remains the same and the warp does not reverse, which reduces the occurrence of cracks in the wafer. When performing hydrofluoric acid-nitric acid etching to correct large warpage after honing, the warpage that remains after lapping is in the same direction, so the warpage does not reverse. In addition, warpage can be easily controlled.
【0008】[0008]
【実施例】以下、本発明の実施例について説明する。[Examples] Examples of the present invention will be described below.
【0009】実施例1
引き上げられた128 °Y 軸4”Ф x 100
mm LのLiNbO 3 単結晶にLiNbO 3
セラミックス粉末をかいし、その上にPt電極をつけ、
1150℃以上にゆっくりと加熱し、引き上げ側にマイ
ナス電圧成分として25V、底部側にプラス電圧成分と
して25Vをかけゆっくりと冷却した。Example 1 Raised 128° Y axis 4”Ф x 100
LiNbO 3 in mm L LiNbO 3 single crystal
Sprinkle ceramic powder, attach a Pt electrode on top of it,
It was slowly heated to 1150° C. or higher, and slowly cooled by applying 25 V as a negative voltage component to the pulling side and 25 V as a positive voltage component to the bottom side.
【0010】このLiNbO 3 単結晶の底部側の方
位を測定し、加工機で底部を加工した。次に丸目加工を
行い、オリエンテ−ションフラットを加工する。このボ
−ルを有機接着剤で単結晶載置台に接着し、切断装置に
設置する。三本ロ−ラ−にワイヤ−を巻き付け、結晶端
面とワイヤ−を合わせる。中央からGC#1200 番
のスラリ−を均一に流した。その後ゆっくりとワイヤ−
を送り出し切断を開始した。20時間後灯油で洗浄しな
がら結晶をワイヤ−から取り外し、接着剤剥離液につけ
ウエハを得る。[0010] The orientation of the bottom side of this LiNbO 3 single crystal was measured, and the bottom was processed using a processing machine. Next, rounding is performed and orientation flats are processed. This ball is adhered to a single crystal mounting table using an organic adhesive and placed in a cutting device. Wrap the wire around the three rollers and align the crystal end face with the wire. GC#1200 slurry was uniformly poured from the center. Then slowly wire
was sent out and cutting started. After 20 hours, the crystal was removed from the wire while being washed with kerosene, and immersed in an adhesive stripping solution to obtain a wafer.
【0011】この切断したウエハの反りを測定したとこ
ろすべて20μm以下の反りとなっていた。[0011] When the warpage of the cut wafers was measured, all of the warpages were 20 μm or less.
【0012】反りの方向もプラス面が凹となっていた。
さらにこのウエハをラッピングしたら10μm 以下の
プラス面が凹の反りとなっていた。つぎにこのウエハの
マイナス面をホ−ニング加工しRa〜2.5 以上の粗
さに加工した。このときはプラス面が凹の反りで60μ
m であった。
このウエハをふっ化水素酸−硝酸でエッチングしたとこ
ろ10μm の反りに修正された。この後プラス面を鏡
面研磨してふっ化水素酸−硝酸でエッチングしたところ
8 μm のプラス面が凹の反りに修正された。[0012] Also in the direction of warpage, the positive side was concave. Further, when this wafer was lapped, the positive surface had a concave warp of 10 μm or less. Next, the negative side of this wafer was honed to a roughness of Ra~2.5 or more. At this time, the positive side has a concave warp of 60μ
It was m. When this wafer was etched with hydrofluoric acid-nitric acid, the warp was corrected to 10 μm. Thereafter, the positive surface was mirror-polished and etched with hydrofluoric acid-nitric acid, and the positive surface was corrected to a concave warp of 8 μm.
【0013】実施例2
引き上げられたZ 軸4 ”Ф x 100 mm L
のLiNbO 3 単結晶にLiTaO 3 セラミッ
クス粉末をかいし、その上にPt電極をつけ、1150
℃以上にゆっくりと加熱し、引き上げ側にマイナス電圧
成分として25V、底部側にプラス電圧成分として25
Vをかけゆっくりと冷却した。Embodiment 2 Raised Z axis 4 ”Ф x 100 mm L
LiTaO 3 ceramic powder is applied to the LiNbO 3 single crystal of 1150
Heat slowly to above ℃, and apply 25V as a negative voltage component on the pulling side and 25V as a positive voltage component on the bottom side.
V was applied and the mixture was slowly cooled.
【0014】このLiNbO 3 単結晶の底部側の方
位を測定し、加工機で底部を加工した。次に丸目加工を
行い、オリエンテ−ションフラットを加工する。このボ
−ルを有機接着剤で単結晶載置台に接着し、切断装置に
設置する。三本ロ−ラ−にワイヤ−を巻き付け、結晶端
面とワイヤ−を合わせる。中央からGC#1200 番
のスラリ−を均一に流した。その後ゆっくりとワイヤ−
を送り出し切断を開始した。20時間後灯油で洗浄しな
がら結晶をワイヤ−から取り外し、接着剤剥離液につけ
ウエハを得る。[0014] The orientation of the bottom side of this LiNbO 3 single crystal was measured, and the bottom part was processed using a processing machine. Next, rounding is performed and orientation flats are processed. This ball is adhered to a single crystal mounting table using an organic adhesive and placed in a cutting device. Wrap the wire around the three rollers and align the crystal end face with the wire. GC#1200 slurry was uniformly poured from the center. Then slowly wire
was sent out and cutting started. After 20 hours, the crystal was removed from the wire while being washed with kerosene, and immersed in an adhesive stripping solution to obtain a wafer.
【0015】この切断したウエハの反りを測定したとこ
ろすべて20μm以下の反りとなっていた。When the warpage of the cut wafers was measured, all of the warpages were 20 μm or less.
【0016】反りの方向もプラス面が凹となっていた。
さらにこのウエハをラッピングしたら10μm 以下の
プラス面が凹の反りとなっていた。つぎにこのウエハの
マイナス面をホ−ニング加工しRa〜2.5 以上の粗
さに加工した。このときは、プラス面が凹の反りで60
μm であった。このウエハをふっ化水素酸−硝酸でエ
ッチングしたところ12μm の反りに修正された。こ
の後プラス面を鏡面研磨してふっ化水素酸−硝酸でエッ
チングしたところ8 μm のプラス面が凹の反りに修
正された。[0016] Also in the direction of warpage, the positive side was concave. Further, when this wafer was lapped, the positive surface had a concave warp of 10 μm or less. Next, the negative side of this wafer was honed to a roughness of Ra~2.5 or more. At this time, the positive side has a concave warp of 60
It was μm. When this wafer was etched with hydrofluoric acid-nitric acid, the warp was corrected to 12 μm. Thereafter, the positive surface was mirror-polished and etched with hydrofluoric acid-nitric acid, and the positive surface was corrected to a concave warp of 8 μm.
【0017】実施例3
引き上げられた36°Y 軸3”Ф x 100 mm
LのLiTaO 3 単結晶の引き上げ部と底部にA
gペ−ストを電極としてつけ、750 ℃以上にゆっく
りと加熱し、引き上げ側にマイナス電圧成分として80
V、底部側にプラス電圧成分として80Vをかけゆっく
りと冷却した。このLiTaO 3 単結晶の底部側の
方位を測定し、加工機で底部を加工した。次に丸目加工
を行い、オリエンテ−ションフラットを加工する。この
ボ−ルを有機接着剤で単結晶載置台に接着し、切断装置
に設置する。三本ロ−ラ−にワイヤ−を巻き付け、結晶
端面とワイヤ−を合わせる。中央からGC#1200
番のスラリ−を均一に流した。その後ゆっくりとワイヤ
−を送り出し切断を開始した。20時間後灯油で洗浄し
ながら結晶をワイヤ−から取り外し、接着剤剥離液につ
けウエハを得る。Example 3 Raised 36° Y axis 3”Ф x 100 mm
A on the pulled part and bottom of the LiTaO 3 single crystal of L
Attach G paste as an electrode, heat slowly to 750℃ or higher, and apply 80℃ as a negative voltage component to the pulling side.
A positive voltage component of 80 V was applied to the bottom side of the sample to slowly cool it down. The orientation of the bottom side of this LiTaO 3 single crystal was measured, and the bottom was processed using a processing machine. Next, rounding is performed and orientation flats are processed. This ball is adhered to a single crystal mounting table using an organic adhesive and placed in a cutting device. Wrap the wire around the three rollers and align the crystal end face with the wire. GC#1200 from the center
The slurry was poured uniformly. After that, the wire was slowly fed out and cutting started. After 20 hours, the crystal was removed from the wire while being washed with kerosene, and immersed in an adhesive stripping solution to obtain a wafer.
【0018】この切断したウエハの反りを測定したとこ
ろすべて15μm以下の反りとなっていた。When the warpage of the cut wafers was measured, all of the warpages were 15 μm or less.
【0019】反りの方向もプラス面が凹となっていた。
さらにこのウエハをラッピングしたら8 μm 以下の
プラス面が凹の反りとなっていた。つぎにこのウエハの
マイナス面をホ−ニング加工しRa〜1.5 以上の粗
さに加工した。このときはプラス面が凹の反りで30μ
m であった。
このウエハをふっ化水素酸−硝酸でエッチングしたとこ
ろ7 μm の反りに修正された。この後プラス面を鏡
面研磨してふっ化水素酸−硝酸でエッチングしたところ
6 μm のプラス面が凹の反りに修正された。[0019] Also in the direction of warpage, the positive side was concave. Furthermore, when this wafer was lapped, the positive surface had a concave warp of less than 8 μm. Next, the negative side of this wafer was honed to a roughness of Ra~1.5 or more. At this time, the positive side has a concave warp of 30μ
It was m. When this wafer was etched with hydrofluoric acid-nitric acid, the warp was corrected to 7 μm. Thereafter, the positive surface was mirror-polished and etched with hydrofluoric acid-nitric acid, and the positive surface was corrected to a concave warp of 6 μm.
【0020】比較例
引き上げられた128 °Y 軸4”Ф x 100
mm LのLiNbO 3 単結晶にLiNbO 3
セラミックス粉末をかいし、その上にPt電極をつけ、
1150℃以上にゆっくりと加熱し、底部側にマイナス
電圧成分として25V、引き上げ側にプラス電圧成分と
して25Vをかけゆっくりと冷却した。このLiNbO
3 単結晶の底部側の方位を測定し、加工機で底部を
加工した。次に丸目加工を行い、オリエンテ−ションフ
ラットを加工する。このボ−ルを有機接着剤で単結晶載
置台に接着し、切断装置に設置する。三本ロ−ラ−にワ
イヤ−を巻き付け、結晶端面とワイヤ−を合わせる。中
央からGC#1200 番のスラリ−を均一に流した。
その後ゆっくりとワイヤ−を送り出し切断を開始した。
20時間後灯油で洗浄しながら結晶をワイヤ−から取り
外し、接着剤剥離液につけウエハを得る。Comparative Example Raised 128° Y-axis 4”Ф x 100
LiNbO 3 in mm L LiNbO 3 single crystal
Sprinkle ceramic powder, attach a Pt electrode on top of it,
It was slowly heated to 1150° C. or higher, and slowly cooled by applying 25 V as a negative voltage component to the bottom side and 25 V as a positive voltage component to the pulling side. This LiNbO
3. The orientation of the bottom side of the single crystal was measured, and the bottom was processed using a processing machine. Next, rounding is performed and orientation flats are processed. This ball is adhered to a single crystal mounting table using an organic adhesive and placed in a cutting device. Wrap the wire around the three rollers and align the crystal end face with the wire. GC#1200 slurry was uniformly poured from the center. After that, the wire was slowly fed out and cutting started. After 20 hours, the crystal was removed from the wire while being washed with kerosene, and immersed in an adhesive stripping solution to obtain a wafer.
【0021】この切断したウエハの反りを測定したとこ
ろ70μm 以下の反りとなっていた。反りの方向はプ
ラス面が凸となっていた。さらにこのウエハをラッピン
グしたら40μm 以下のプラス面が凸の反りとなって
いた。つぎにこのウエハのマイナス面をホ−ニング加工
しRa〜2.5 以上の粗さに加工した。このときはプ
ラス面が凹の反りで60μm であった。このウエハを
ふっ化水素酸−硝酸でエッチングしたところ1分で40
μm の反りに修正された。この後プラス面を鏡面研磨
して80μm の反りとなったウエハをふっ化水素酸−
硝酸でエッチングしたところ40μm のプラス面が凸
の反りに修正された。このときの研磨歩留りは70%
と悪化した。When the warpage of this cut wafer was measured, it was found to be less than 70 μm. In the direction of warpage, the positive side was convex. Further, when this wafer was lapped, the positive surface had a convex warp of 40 μm or less. Next, the negative side of this wafer was honed to a roughness of Ra~2.5 or more. At this time, the positive side had a concave warp of 60 μm. When this wafer was etched with hydrofluoric acid and nitric acid, the etching rate was 40% in 1 minute.
The warpage was corrected to μm. After this, the positive side was polished to a mirror finish, and the wafer, which had a warp of 80 μm, was exposed to hydrofluoric acid.
When etched with nitric acid, the 40 μm positive surface was corrected to a convex warp. The polishing yield at this time is 70%
It got worse.
【0022】[0022]
【発明の効果】以上の実施例から明らかなように本発明
により、大口径である4 ”Фの弾性表面波用強誘電体
圧電単結晶ウエハでも、10μm 以下の反りの極めて
少ないウエハが歩留まり良く製作できる。[Effects of the Invention] As is clear from the above embodiments, the present invention can produce wafers with extremely low warpage of 10 μm or less with a high yield even for large diameter ferroelectric piezoelectric single crystal wafers for surface acoustic waves of 4”Ф. Can be manufactured.
【図1】本発明による128 °Y 軸LiNbO 3
の単一分域化方法を示す。FIG. 1: 128° Y-axis LiNbO 3 according to the present invention
We show a single domainization method.
【図2】従来の128 °Y 軸LiNbO 3 の単
一分域化方法を示す。FIG. 2 shows a conventional 128° Y-axis LiNbO 3 single domainization method.
【図3】両面ラップ加工図を示す。FIG. 3 shows a diagram of double-sided lapping.
1……シ−ド 2……Pt電極 3……セラミックス粉末 4……結晶 5……ウエハ 6……キャリア 7……マイナス面 8……プラス面 1...seed 2...Pt electrode 3...Ceramics powder 4...Crystal 5...Wafer 6...Career 7... Negative aspects 8...Positive side
Claims (2)
以上に昇温し直流電界下で冷却操作を行なうことによる
強誘電体圧電単結晶の単一分域化方法において、強誘電
体圧電単結晶の引上げ方向側が分極処理時の電界印加方
向をマイナスとして分極処理することを特徴とする強誘
電体圧電単結晶の単一分域化方法。Claim 1. A method for dividing a ferroelectric piezoelectric single crystal into a single domain by heating the ferroelectric piezoelectric single crystal to a temperature higher than the Curie temperature and cooling the ferroelectric piezoelectric single crystal under a direct current electric field. A method for making a ferroelectric piezoelectric single crystal into a single domain, characterized in that the pulling direction side of the piezoelectric single crystal is polarized with the electric field application direction during the polarization treatment being negative.
単結晶であることを特徴とする請求項1記載の強誘電
体圧電単結晶の単一分域化方法。[Claim 2] The ferroelectric piezoelectric single crystal is LiNbO 3
2. The method for dividing a ferroelectric piezoelectric single crystal into a single domain according to claim 1, wherein the ferroelectric piezoelectric single crystal is a single crystal.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3049878A JPH04285025A (en) | 1991-03-14 | 1991-03-14 | Single domainization method for piezoelectric single crystals |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3049878A JPH04285025A (en) | 1991-03-14 | 1991-03-14 | Single domainization method for piezoelectric single crystals |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04285025A true JPH04285025A (en) | 1992-10-09 |
Family
ID=12843304
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3049878A Withdrawn JPH04285025A (en) | 1991-03-14 | 1991-03-14 | Single domainization method for piezoelectric single crystals |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04285025A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100502825B1 (en) * | 2002-11-13 | 2005-07-22 | 기성금속 주식회사 | Piezoelectric ceramics crystal-oriented under electric field and method of manufacturing the same |
| US8082640B2 (en) * | 2004-08-31 | 2011-12-27 | Canon Kabushiki Kaisha | Method for manufacturing a ferroelectric member element structure |
| US20120177815A1 (en) * | 2009-02-26 | 2012-07-12 | Fujifilm Corporation | Sputtered Piezoelectric Material |
| CN103266354A (en) * | 2013-06-08 | 2013-08-28 | 西安交通大学 | Polarization method for obtaining single-domain relaxor-based ferroelectric crystal |
| CN104313696A (en) * | 2014-09-11 | 2015-01-28 | 西安交通大学 | Processing method of ferroelectric single crystal material free of dielectric dispersion in microwave frequency range |
-
1991
- 1991-03-14 JP JP3049878A patent/JPH04285025A/en not_active Withdrawn
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100502825B1 (en) * | 2002-11-13 | 2005-07-22 | 기성금속 주식회사 | Piezoelectric ceramics crystal-oriented under electric field and method of manufacturing the same |
| US8082640B2 (en) * | 2004-08-31 | 2011-12-27 | Canon Kabushiki Kaisha | Method for manufacturing a ferroelectric member element structure |
| US20120177815A1 (en) * | 2009-02-26 | 2012-07-12 | Fujifilm Corporation | Sputtered Piezoelectric Material |
| CN103266354A (en) * | 2013-06-08 | 2013-08-28 | 西安交通大学 | Polarization method for obtaining single-domain relaxor-based ferroelectric crystal |
| CN104313696A (en) * | 2014-09-11 | 2015-01-28 | 西安交通大学 | Processing method of ferroelectric single crystal material free of dielectric dispersion in microwave frequency range |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI462170B (en) | Silicon wafer wiping device and silicon wafer manufacturing method and by etching silicon wafer | |
| JP7271875B2 (en) | Method for manufacturing oxide single crystal substrate | |
| US4412886A (en) | Method for the preparation of a ferroelectric substrate plate | |
| JP6025179B2 (en) | Method for producing lithium tantalate single crystal substrate for surface acoustic wave device | |
| JPH04285025A (en) | Single domainization method for piezoelectric single crystals | |
| JP2020105046A (en) | Method for manufacturing single crystal wafer | |
| JP4492293B2 (en) | Manufacturing method of semiconductor substrate | |
| JP5892552B2 (en) | Method for manufacturing lithium tantalate single crystal substrate for surface acoustic wave device and lithium tantalate single crystal substrate for surface acoustic wave device | |
| JP2014040339A (en) | Method for manufacturing piezoelectric oxide single crystal wafer | |
| TW201834002A (en) | Wafer manufacturing method | |
| JP2002198762A (en) | Single crystal wafer and method for manufacturing the same | |
| CN105141271B (en) | For the processing method for the crystal substrate for manufacturing quartz-crystal resonator | |
| CN111834519B (en) | Method for improving thickness uniformity of single crystal piezoelectric film | |
| JP7472546B2 (en) | Method for manufacturing piezoelectric oxide single crystal substrate | |
| JP2022068747A (en) | Oxide single crystal wafer, composite substrate wafer, composite substrate, oxide single crystal wafer processing method, oxide single crystal wafer manufacturing method, composite substrate wafer manufacturing method, and composite substrate manufacturing method | |
| JP2022100895A (en) | Edge polishing method for piezoelectric oxide single crystal wafer, and manufacturing method for piezoelectric oxide single crystal wafer | |
| KR102508006B1 (en) | Substrate for surface acoustic wave device and manufacturing method thereof | |
| JP2025075773A (en) | Method for manufacturing piezoelectric oxide single crystal substrate | |
| US2091249A (en) | Method of and apparatus for working materials | |
| JP2022068748A (en) | Oxide single crystal wafer, composite substrate wafer, composite substrate, oxide single crystal wafer processing method, oxide single crystal wafer manufacturing method, composite substrate wafer manufacturing method, and composite substrate manufacturing method | |
| US4154025A (en) | Method for preparing oxide piezoelectric material wafers | |
| JP2025091608A (en) | Method for manufacturing piezoelectric oxide single crystal substrate | |
| JPH10163543A (en) | Polarization method for piezoelectric ceramics | |
| JP7443808B2 (en) | Method for manufacturing piezoelectric oxide single crystal substrate | |
| JP7533310B2 (en) | Method for manufacturing piezoelectric oxide single crystal substrate |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |