JPH04280906A - Manufacture of ultra-fine particle - Google Patents
Manufacture of ultra-fine particleInfo
- Publication number
- JPH04280906A JPH04280906A JP6558391A JP6558391A JPH04280906A JP H04280906 A JPH04280906 A JP H04280906A JP 6558391 A JP6558391 A JP 6558391A JP 6558391 A JP6558391 A JP 6558391A JP H04280906 A JPH04280906 A JP H04280906A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- electrode
- metal
- raw material
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000011882 ultra-fine particle Substances 0.000 title abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 61
- 239000002184 metal Substances 0.000 claims abstract description 61
- 239000000843 powder Substances 0.000 claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 32
- 239000002994 raw material Substances 0.000 claims abstract description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 16
- 230000005855 radiation Effects 0.000 claims description 8
- 239000000112 cooling gas Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 238000004880 explosion Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 2
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 239000012535 impurity Substances 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 19
- 239000000919 ceramic Substances 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 229910001111 Fine metal Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- -1 oxides Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、金属粉末及び金属化合
物 セラミック等の微粒子製造方法に関するもので、
特に従来の方法に比べて高効率で、性状の良い急冷微粒
子体の製造が可能な製法に関するものである。[Field of Industrial Application] The present invention relates to a method for producing fine particles of metal powders, metal compounds, ceramics, etc.
In particular, the present invention relates to a manufacturing method that is more efficient than conventional methods and can produce quenched fine particles with good properties.
【0002】0002
【従来の技術】従来金属微粉末の製造法として、アトマ
イズ法、スプレ―法、キャビテ―ション法等の方法が用
いられている。これら従来の製造方法に於いては、予め
溶融状態とした金属に気体あるいは固体あるいはそれ自
体の運動エネルギ―を物理的に作用させ微小な液滴に分
断し飛散させた後、冷却能力を持つ媒体と接触させて金
属粉末を得るものである。この様な方法で金属を微粉化
する場合、溶融金属の分断に直接作用するエネルギ―に
は、かなり限られた限界が有り例えば、アトマイズ法に
於いて噴出体の流速を上昇させても、得られる金属粉体
の粒径を10ミクロン以下にすることは困難である。2. Description of the Related Art Conventionally, methods such as an atomization method, a spray method, and a cavitation method have been used to produce fine metal powder. In these conventional manufacturing methods, the kinetic energy of a gas, solid, or itself is physically applied to a pre-molten metal to break it up into minute droplets and scatter them, and then a medium with cooling capacity is used. Metal powder is obtained by contacting with When metal is pulverized by such a method, there is a very limited amount of energy that can be used directly to break up the molten metal. For example, even if the flow velocity of the ejected body is increased in the atomization method, It is difficult to reduce the particle size of the metal powder to 10 microns or less.
【0003】上記の製造方法以外に、プラズマ水素ガス
の金属に対する反応性を利用し、金属をプラズマ加熱す
る、ガス中蒸発法と称する金属微粉末の製造法が提案さ
れている。これは水素ガス雰囲気下に金属をプラズマ加
熱し、この際、溶融金属周辺部分から発生する金属煙を
捕集する方法であるが、この方法では得られる金属微粉
末の生産性で問題がある。[0003] In addition to the above-mentioned manufacturing method, a method for manufacturing fine metal powder called the in-gas evaporation method has been proposed, which utilizes the reactivity of plasma hydrogen gas toward metal and heats the metal with plasma. This is a method in which metal is plasma heated in a hydrogen gas atmosphere and metal smoke generated from the surrounding area of the molten metal is collected, but this method has problems with the productivity of the resulting metal fine powder.
【0004】又、線爆現象を利用して金属微粉末を得る
方法も考案されており、前記アトマイズ法等に比してよ
り粒径の小さい粉体を得られるが、やはり生産性が非常
に悪く、実用的に粉体を製造するプロセスには至ってい
なかった。[0004] A method of obtaining fine metal powder using the radiation bombing phenomenon has also been devised, and it is possible to obtain powder with a smaller particle size than the atomization method, etc., but the productivity is still very low. Unfortunately, the process for producing powder in practical terms had not yet been achieved.
【0005】[0005]
【発明が解決しようとする問題点】本発明は、従来法と
異なり生産性が高く、行程が単純な粉体製造法であり、
又得られる粉体については、不純物の混入が少なく、粒
度が揃い、球形に近い形状を有し、広い範囲で粒径の調
節が可能な、金属又はセラミック粒子を製造し得るもの
である。[Problems to be solved by the invention] The present invention is a powder manufacturing method with high productivity and simple steps, unlike conventional methods.
Furthermore, the resulting powder can be used to produce metal or ceramic particles with less contamination of impurities, uniform particle size, nearly spherical shape, and particle size controllable over a wide range.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、電極2
に接している溶融状態の金属もしくは半導体4をノズル
から噴出させ、該物質によって対向する電極との間が閉
じられる事を特徴とするもので、電極を閉じた該物質は
大電流が流れる為、急激に加熱され爆発的に飛散し,又
その際にア―クもしくはプラズマが発生している場合、
これが該物質液滴をさらに微細化させあるいは、気化さ
せる特徴を有したものである。[Means for Solving the Problems] The gist of the present invention is that the electrode 2
A metal or semiconductor 4 in a molten state that is in contact with the metal or semiconductor is ejected from a nozzle, and the material closes the gap between the electrode and the opposing electrode, and a large current flows through the material that closes the electrode. If it heats up rapidly and scatters explosively, or if an arc or plasma is generated at that time,
This has the characteristic of further making the material droplets finer or vaporizing them.
【0007】[0007]
【作用】 前述の通り、線爆により得られる金属の微
粉体は、従来法に比べて粒径が小さく、5〜10ミクロ
ン以下の金属粉体を得ることができるといという優れた
特性を持つが、生産の効率が非常に低く、実用的な製造
方法とは言えなかった。即ち、従来の線爆方法では、固
体の金属線材を電極間に張り渡した後、電極に瞬間的な
大電流を流し、金属体を瞬時に加熱、これを微細な金属
液滴の高速流として飛散させ粉体を得るというものであ
った為、原料の金属線材の補給が連続的に行なえないと
いう致命的な欠点があった。本発明では、原料となる金
属又は半導体を溶融状態で連続的に電極間へ供給するこ
とで、線爆現象を連続的に発生維持させることを可能と
し、上記の問題点を解決したものである。以上の説明で
示されるように、本発明の製造プロセスに於いて、ア―
クもしくはプラズマが作用しなくても線爆現象により粉
体を生成することができる。しかしながら、線爆現象が
起こる部分付近で発生するア―クもしくはプラズマは、
線爆現象により粉状化された金属液滴に対し、更に効果
的な作用を及ぼす。従来ア―クもしくはプラズマを利用
した金属の粉体製造装置は数々見られる。これらは、ア
―クもしくはプラズマが発生する熱を、金属体に作用さ
せ急激な溶融又は気化を起こさせ金属を粉状化するもの
であり、一般的には粉状化されていない固体もしくは溶
融状態の金属に、ア―クもしくはプラズマを付与し、表
面部分から順次処理していくものであった。これらの方
法では、加えられた熱のかなりの部分が、塊の状態であ
る原料金属体の昇温に費やされ、ア―クやプラズマの有
する非常に高温なエネルギ―を有効に利用できていなか
った。ア―クやプラズマを用いて金属を微細化する場合
、これらの持つエネルギ―をいかに効率良く、又均一に
金属体に作用させるかが、微細な金属粉体を得る為の重
要な側面としてとらえることができる。本発明の場合、
前述の如く溶融した金属もしくは半導体は、線爆により
微細な液滴となっており、これに同部分付近で発生する
ア―クもしくはプラズマが作用すれば、非常に効率良く
エネルギ―の伝達がなされ、金属液滴はさらに微細化あ
るいは気化されるという特徴を有している。[Function] As mentioned above, the fine metal powder obtained by wire bombing has an excellent property of being smaller in particle size than conventional methods, making it possible to obtain metal powder of 5 to 10 microns or less. , the production efficiency was very low and it could not be called a practical manufacturing method. In other words, in the conventional wire bombing method, a solid metal wire is stretched between electrodes, and then a momentary large current is passed through the electrodes to instantaneously heat the metal body, which is converted into a high-speed flow of fine metal droplets. Since powder was obtained by scattering, there was a fatal drawback that the raw metal wire could not be continuously replenished. The present invention solves the above problems by continuously supplying the raw material metal or semiconductor in a molten state between the electrodes, thereby making it possible to continuously generate and maintain the radiation explosion phenomenon. . As shown in the above explanation, in the manufacturing process of the present invention,
Powder can be generated by the radiation bombing phenomenon even without the action of water or plasma. However, the arc or plasma generated near the area where the radiation bomb phenomenon occurs is
It has a more effective effect on metal droplets that have been pulverized by the radiation explosion phenomenon. Conventionally, there are many metal powder manufacturing devices that utilize arc or plasma. These methods apply the heat generated by an arc or plasma to a metal object, causing rapid melting or vaporization, and pulverizing the metal. In this method, an arc or plasma was applied to the metal in a state where it was processed sequentially starting from the surface. In these methods, a considerable portion of the applied heat is spent raising the temperature of the raw metal material in the lump state, and the extremely high temperature energy of the arc and plasma cannot be used effectively. There wasn't. When micronizing metals using arc or plasma, how efficiently and uniformly the energy is applied to the metal body is an important aspect to obtain microscopic metal powder. be able to. In the case of the present invention,
As mentioned above, the molten metal or semiconductor becomes fine droplets due to the radiation explosion, and when the arc or plasma generated near the same part acts on these, energy is transferred very efficiently. , the metal droplets are characterized by being further miniaturized or vaporized.
【0008】又、電極部分で発生したア―クもしくはプ
ラズマは、後述の通り原料に対して活性な気体を雰囲気
ガスとして用いた場合、原料物質とこれら気体との反応
を促進させる効果がある。本発明に於いて、原料となる
物質は、通電による発熱が条件となる為、全ての金属及
び、ケイ素ゲルマニウム等の半導体が処理対象となりう
る。[0008] Furthermore, the arc or plasma generated at the electrode portion has the effect of promoting the reaction between the raw material and these gases when a gas active with respect to the raw material is used as the atmospheric gas, as will be described later. In the present invention, all metals and semiconductors such as silicon-germanium can be treated because the material used as the raw material must generate heat when energized.
【0009】[0009]
【実施例】 次に、本発明の具体的実施例について、
図面にもとずき説明する。第1図に示すものは、電極に
接した溶融金属4の噴出するノズル1の対向面に、固定
した電極2aを配置したものである。本例の場合、ノズ
ル部分1をタングステンや銅等の導電性部材で構成して
、ノズル部分をそのまま電極2bとしても、あるいはノ
ズル部分をセラミック等で構成しておき、ノズル径より
も大きな面積の電極2cを、原料溜り3の溶融金属4に
接触させておき、溶融金属自体が電極の機能を持つよう
に構成することも可能である。この場合、セラミックノ
ズルの空洞断面形状を、第2図の様に先細りとして、溶
融金属4の最少断面部分がノズル1の先端となるように
構成することで、ノズル内での過度の昇温を防ぐことが
できる。本例の様に固定電極2aを用いる場合、電極部
分が過度に加熱され溶融するのを防止する為、電極部分
が冷却媒体で常に冷却されていても良い。[Examples] Next, regarding specific examples of the present invention,
The explanation will be based on the drawings. In the device shown in FIG. 1, a fixed electrode 2a is placed on the opposite surface of a nozzle 1 from which molten metal 4 is spouted in contact with the electrode. In the case of this example, the nozzle portion 1 may be made of a conductive material such as tungsten or copper, and the nozzle portion may be used as the electrode 2b, or the nozzle portion may be made of ceramic or the like and a It is also possible to make the electrode 2c contact the molten metal 4 in the raw material reservoir 3 so that the molten metal itself has the function of the electrode. In this case, the cross-sectional shape of the cavity of the ceramic nozzle is tapered as shown in Figure 2, so that the smallest cross-sectional area of the molten metal 4 becomes the tip of the nozzle 1, thereby preventing excessive temperature rise inside the nozzle. It can be prevented. When using the fixed electrode 2a as in this example, the electrode portion may be constantly cooled with a cooling medium to prevent the electrode portion from being excessively heated and melted.
【0010】第3図は、内部に電極2cを有するノズル
1を対向して配置し、噴出する溶融金属4aと4bが、
ノズル間で衝突するように構成した例である。本例では
、ノズル部分をセラミックで構成可能である為、ノズル
及び電極の溶滅が防げる。溶融した金属は、非常に反応
性が高く、ノズル内の電極2cと化合してしまう恐れも
ある。これを防ぐ方法として、原料溜り部分3に温度勾
配を設けて、固体金属部分5を形成し、同部分で電極2
cと金属5を接触させるという手法もとれる。尚、対向
して噴出する溶融金属4aと4bは、異なる成分として
おくことも可能である。In FIG. 3, nozzles 1 having electrodes 2c inside are disposed facing each other, and molten metals 4a and 4b are ejected.
This is an example in which the nozzles are configured to collide. In this example, since the nozzle portion can be made of ceramic, it is possible to prevent the nozzle and electrode from melting away. The molten metal is highly reactive and may combine with the electrode 2c inside the nozzle. As a method to prevent this, a temperature gradient is provided in the raw material reservoir part 3 to form a solid metal part 5, and the electrode 2 is formed in the same part.
It is also possible to bring c into contact with the metal 5. Note that the molten metals 4a and 4b that are ejected oppositely may have different components.
【0011】第4図は、ノズル1に対向する電極2aを
回転させることで、電極2aの一部分が集中して加熱さ
れるのを防ぐものである。溶滅した電極は、生成する金
属粒子に混入化合し、純度を低下させる原因となったり
、電極間の距離が変化することで粒子の性状が変化する
等の障害を生じ、連続して安定した粉体を製造する為に
は、解決しなければならない問題であった。第3図と、
第4図に示すものは、この問題を解決可能な構成であり
、特に第3図の方法では、根本的に電極の溶滅を防げ、
安定した連続運転が可能な画期的なものである。FIG. 4 shows an arrangement in which the electrode 2a facing the nozzle 1 is rotated to prevent a portion of the electrode 2a from being heated in a concentrated manner. The melted electrodes may mix with the metal particles that are generated, causing problems such as a decrease in purity, or changes in the properties of the particles due to changes in the distance between the electrodes. This was a problem that had to be solved in order to produce powder. Figure 3 and
What is shown in Fig. 4 is a configuration that can solve this problem. In particular, the method shown in Fig. 3 fundamentally prevents the melting of the electrode.
This is an epoch-making device that enables stable continuous operation.
【0012】金属液滴が生成されるノズル周囲部分は、
アルゴン、ヘリウム、窒素、水素、二酸化炭素、酸素等
のガスで満たされるか、あるいは大気中もしくは真空中
であり、それぞれの雰囲気に応じた粉体粒子が生成され
る。原料となる金属に対して不活性なガスを使用した場
合は、金属液滴がそのまま凝固した急冷金属粉体が得ら
れる。反応性ガスを使用した場合、金属液滴は、これら
のガスと反応する為、酸化物、窒化物、炭化物等の金属
化合物微粒子として生成させることも可能である。これ
は、飛散段階の金属液滴が非常な高温であり、又ア―ク
もしくはプラズマが発生している場合には、反応が促進
されやすい状況となるためである。後述の例に示したア
ルミナ微粒子の生成以外、例えば、窒化アルミ、炭化チ
タン、酸化鉄、窒化ケイ素、等々各種の微粒子の生成も
可能である。The area around the nozzle where metal droplets are generated is
It is filled with gases such as argon, helium, nitrogen, hydrogen, carbon dioxide, oxygen, etc., or in the atmosphere or vacuum, and powder particles are generated according to each atmosphere. When a gas inert to the raw material metal is used, quenched metal powder in which metal droplets solidify as they are can be obtained. When a reactive gas is used, the metal droplets react with these gases, so it is also possible to generate fine particles of metal compounds such as oxides, nitrides, and carbides. This is because the metal droplets at the scattering stage are at a very high temperature, and if an arc or plasma is generated, the reaction is likely to be accelerated. In addition to the generation of alumina fine particles shown in the examples described later, it is also possible to generate various types of fine particles such as aluminum nitride, titanium carbide, iron oxide, silicon nitride, and the like.
【0013】従来、プラズマを作用させる金属の粉体化
方法では、水素等のガスを周囲から供給することで、効
果を上げる例が見られるが、本方法に於いても、電極間
に周囲から冷却ガスを噴射することで、プラズマの発生
を促し、生成した粒子を急冷凝固させるのに効果がある
。使用される冷却ガスには水素以外に、雰囲気ガスとし
て用いられるものと同様、アルゴン、ヘリウム、窒素、
二酸化炭素、酸素等々あげられるが、反応性気体をこれ
に用いた場合には、前述同様 金属間化合物やセラミ
ックを得ることが可能である。[0013] Conventionally, in the metal powderization method using plasma, there have been cases where the effect is improved by supplying a gas such as hydrogen from the surroundings, but in this method as well, the Injecting cooling gas is effective in promoting the generation of plasma and rapidly solidifying the generated particles. In addition to hydrogen, the cooling gases used include argon, helium, nitrogen, and the like used as atmospheric gases.
Examples include carbon dioxide and oxygen, but if a reactive gas is used, it is possible to obtain intermetallic compounds and ceramics as described above.
【0014】次に本発明装置により、アルミ合金を処理
した例について、第1図にもとずいて説明する。使用し
たノズル1の穴径は、1.1 mm、ノズルから電極2
aまでの間隔2mm、電極間に付加された電圧は200
ボルト交流60ヘルツ、圧縮空気7によって原料溜り3
の内圧を上げて、ノズルより溶融金属を噴出させる。粉
体の生成される電極部分周囲は、大気に露出しいる。Next, an example of processing aluminum alloy using the apparatus of the present invention will be explained based on FIG. The hole diameter of the nozzle 1 used was 1.1 mm, and the distance from the nozzle to the electrode 2 was 1.1 mm.
The distance to a is 2 mm, and the voltage applied between the electrodes is 200
Volt AC 60 Hz, compressed air 7 to create raw material reservoir 3
The internal pressure is increased to eject molten metal from the nozzle. The area around the electrode where the powder is generated is exposed to the atmosphere.
【0015】以上の構成で、電極2a及び2bに電圧を
加え、続いて溶融金属をノズル1より噴出させ、粉体の
生成を行った。生成開始後約0,5秒後位から、電極間
に生成したアルミ粒子は、急激な酸化反応を始め、その
後1,5秒の間に、約5グラムの量の原料のアルミ合金
が、全て煙状の超微粒子に変わった。実験直後に得られ
たアルミ合金粉は、電極より10Cm離れた捕収板8に
付着、それ以降に生成された金属酸化物粒子は、装置の
上部約1mに設けられた捕収板9に付着した状態で収集
された。With the above configuration, a voltage was applied to the electrodes 2a and 2b, and then molten metal was ejected from the nozzle 1 to generate powder. Approximately 0.5 seconds after the start of generation, the aluminum particles generated between the electrodes begin a rapid oxidation reaction, and within 1.5 seconds, approximately 5 grams of the raw material aluminum alloy is completely oxidized. It turned into smoke-like ultrafine particles. The aluminum alloy powder obtained immediately after the experiment adhered to a collection plate 8 located 10 cm away from the electrode, and the metal oxide particles generated thereafter adhered to a collection plate 9 installed approximately 1 m above the device. It was collected in the same condition.
【0016】捕収板8で得られた粒子は、アルミ合金粉
であり、原料のアルミ合金粉よりも粒径が小さく、平均
粒径25ミクロン程度で、分級していない状態でも粒径
が揃っており、全体的に球形のものが多く見られた。上
部捕収板9で得られた金属酸化物粒子は、アルミナの微
粒子であり、平均粒径0,2ミクロン 程度で、やは
り非常に均一な大きさであった。The particles obtained by the collecting plate 8 are aluminum alloy powder, and the particle size is smaller than the raw material aluminum alloy powder, with an average particle size of about 25 microns, and the particle size is uniform even in an unclassified state. Most of the particles were spherical in shape. The metal oxide particles obtained on the upper collecting plate 9 were fine particles of alumina, and had an average particle size of about 0.2 microns, which was also very uniform in size.
【0017】本実験では、生成されたアルミ合金粉体が
順次アルミナに再生成されたが、電極周囲を不活性ガス
でシ―ルドすることで、アルミの酸化を防止でき、又他
の反応性ガスを用いた場合、異なった化合物とすること
ができる。本例の場合、電極部分で安定したア―クが生
じていたが、これは、線爆により飛散する金属液滴を一
層微細化させる方向に作用する。飛散中の金属液滴は微
細である為、重量当りの表面積が大きくエネルギ―の拾
得効率が高いからである。生成された液滴あるいは、粒
子は、冷却板又は冷却液により急冷状態で採集されても
よい。In this experiment, the generated aluminum alloy powder was successively regenerated into alumina, but by shielding the area around the electrode with an inert gas, oxidation of aluminum can be prevented and other reactivity can be prevented. When gases are used, different compounds can be used. In the case of this example, a stable arc was generated at the electrode portion, but this worked in the direction of making the metal droplets scattered by the radiation explosion even finer. This is because the flying metal droplets are minute, so they have a large surface area per weight and have high energy pickup efficiency. The generated droplets or particles may be collected in a quenched state by a cooling plate or liquid.
【0018】本発明の方法では、ノズル径、電極間隔、
電圧、直流交流、交流の場合その周波数、溶融物質の噴
出速度、ア―クもしくはプラズマの発生状態、冷却ガス
や反応性ガスの種類や噴出状態、等々の要素により、得
られる粉体の粒径、性状、冷却速度等を調節することが
できる。In the method of the present invention, the nozzle diameter, the electrode spacing,
The particle size of the powder obtained depends on factors such as voltage, direct current, alternating current, frequency in the case of alternating current, ejection speed of molten material, generation state of arc or plasma, type and ejection state of cooling gas or reactive gas, etc. , properties, cooling rate, etc. can be adjusted.
【0019】[0019]
【発明の効果】金属あるいは、セラミックの粉体粒子は
、構造材料、磁性物質、機能性素材として近年脚光を浴
びている。本発明の方法によれば、球径に近く、粒径が
揃い、不純物の混入が少ない、各種成分の粉体粒子を非
常に低コストで大量に生産することが可能である。[Effects of the Invention] Metal or ceramic powder particles have recently been in the spotlight as structural materials, magnetic substances, and functional materials. According to the method of the present invention, it is possible to produce powder particles of various components in large quantities at a very low cost, with uniform particle diameters that are close to spherical diameters, and with little contamination of impurities.
【図1】本発明装置の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the device of the present invention.
【第2図】ノズル部分の一例を示す断面図。FIG. 2 is a sectional view showing an example of a nozzle portion.
【第3図】ノズルを対向させた例の本発明装置の断面図
。FIG. 3 is a sectional view of the device of the present invention in which nozzles are opposed to each other.
【第4図】電極を回転させた例の本発明装置の断面図。FIG. 4 is a sectional view of the device of the present invention in which the electrodes are rotated.
1…ノズル 2a…固定電極 2b…ノズル電極 2c…原料溜り部分電極 3…原料溜り部分 4…溶融金属又は半導体 5…固体金属又は半導体 6…冷却ガス、反応性ガス 7…圧縮空気 8…捕収板 9…捕収板 10…電源 11…モ―タ― 12…絶縁体、 13…しゅう動接点 14…コ―ド 1...Nozzle 2a...Fixed electrode 2b...Nozzle electrode 2c...raw material reservoir partial electrode 3...Raw material storage part 4... Molten metal or semiconductor 5...Solid metal or semiconductor 6...Cooling gas, reactive gas 7...Compressed air 8...Collection plate 9...Collection plate 10...Power supply 11...Motor 12...Insulator, 13...Sliding contact 14...Code
Claims (5)
1又はノズル内部の原料溜り部分3において、液体又は
固体の状態で電極2に接触させながらノズルより噴出さ
せ、対向する電極2又は電極とみなせる電位差を有する
溶融した金属又は半導体4との間を閉じることで、該溶
融物質に通電を行い、ノズルと電極の間又はノズルとノ
ズルの間で連続的な線爆現象を生じせしめ、該溶融物質
を微細な液滴又は蒸気体として飛散させ粉状化すること
を特徴とする粉体粒子製造方法。Claim 1: A molten metal or semiconductor 4 is ejected from the nozzle while being in contact with an electrode 2 in a liquid or solid state in a nozzle 1 or a raw material reservoir 3 inside the nozzle, and can be regarded as an opposing electrode 2 or an electrode. By closing the gap between the molten metal or semiconductor 4 that has a potential difference, the molten substance is energized and a continuous radiation explosion phenomenon occurs between the nozzle and the electrode or between the nozzles, and the molten substance A method for producing powder particles, which comprises scattering and pulverizing the particles as fine droplets or vapor.
り部分3において、外部より誘導起電力を与えられてい
ることで、電極に接しているのと同様の作用を受けるこ
とを特徴とした粉体粒子製造方法。2. Powder characterized in that the metal or semiconductor serving as the raw material receives an induced electromotive force from the outside in the raw material reservoir portion 3, thereby receiving an effect similar to that when the metal or semiconductor is in contact with an electrode. Body particle manufacturing method.
対向するノズル1との接近点が連続的に移動することを
特徴とする粉体粒子製造方法。3. A driving means for rotating the electrode 2;
A method for producing powder particles, characterized in that the point of approach with the opposing nozzle 1 moves continuously.
融物質に対して反応性を有するガスを供給することを特
徴とする粉体粒子製造方法。4. A method for producing powder particles, characterized in that a cooling gas or a gas reactive with the molten substance is supplied from the surroundings between the electrodes.
生することを特徴とした粉体粒子製造方法。5. A method for producing powder particles, characterized in that arc or plasma is generated between electrodes.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6558391A JPH04280906A (en) | 1991-03-05 | 1991-03-05 | Manufacture of ultra-fine particle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6558391A JPH04280906A (en) | 1991-03-05 | 1991-03-05 | Manufacture of ultra-fine particle |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04280906A true JPH04280906A (en) | 1992-10-06 |
Family
ID=13291176
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6558391A Pending JPH04280906A (en) | 1991-03-05 | 1991-03-05 | Manufacture of ultra-fine particle |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04280906A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5518522A (en) * | 1993-03-15 | 1996-05-21 | Tsuyoshi Masumoto | Deformed ultra fine grains and process for producing same in bulk |
| CN110961644A (en) * | 2019-11-07 | 2020-04-07 | 深圳航科新材料有限公司 | Novel spherical powder and method for producing same |
-
1991
- 1991-03-05 JP JP6558391A patent/JPH04280906A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5518522A (en) * | 1993-03-15 | 1996-05-21 | Tsuyoshi Masumoto | Deformed ultra fine grains and process for producing same in bulk |
| CN110961644A (en) * | 2019-11-07 | 2020-04-07 | 深圳航科新材料有限公司 | Novel spherical powder and method for producing same |
| CN110961644B (en) * | 2019-11-07 | 2023-09-01 | 深圳航科新材料有限公司 | Spherical powder and method for producing the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4670047A (en) | Process for producing finely divided spherical metal powders | |
| US7431750B2 (en) | Nanostructured metal powder and method of fabricating the same | |
| US5294242A (en) | Method for making metal powders | |
| US4592781A (en) | Method for making ultrafine metal powder | |
| EP0282945B1 (en) | Hydrometallurgical process for producing finely divided spherical precious metal based powders | |
| Karpov et al. | Method for producing nanomaterials in the plasma of a low-pressure pulsed arc discharge | |
| US4474604A (en) | Method of producing high-grade metal or alloy powder | |
| JP2015221942A (en) | Apparatus and method for production of clean alloy solidified quickly | |
| US3041672A (en) | Making spheroidal powder | |
| CA2516992C (en) | Method and apparatus for producing fine particles | |
| CA1330624C (en) | Hydrometallurgical process for producing finely divided copper and copper alloy powders | |
| US4687510A (en) | Method for making ultrafine metal powder | |
| CN114245762A (en) | Method and device for separating conductive liquid | |
| JP2004183049A (en) | Method for producing fine metal powder by gas atomization method and apparatus for producing fine metal powder | |
| JPH0234707A (en) | Method for pulverizing a metal and apparatus for performing it | |
| WO1988001919A1 (en) | Apparatus for producing powder and process for its production | |
| CN115625339B (en) | A device and method for preparing spherical powder using radio frequency plasma | |
| JP3270118B2 (en) | Method and apparatus for producing spheroidized particles by high-frequency plasma | |
| WO2002043905A2 (en) | A method and apparatus for the production of metal powder granules by electric discharge | |
| JPH04280906A (en) | Manufacture of ultra-fine particle | |
| US4885028A (en) | Process for producing prealloyed tungsten alloy powders | |
| JP3941325B2 (en) | Porous film forming method and porous film forming apparatus | |
| CN1334159A (en) | Atomizing pulverization technology and apparatus by high-power high-frequency electromagnetic oscillasion | |
| JPH07102307A (en) | Flake powder material manufacturing method | |
| CA1236711A (en) | Method for making ultrafine metal powder |