JPH04291118A - flow sensor - Google Patents
flow sensorInfo
- Publication number
- JPH04291118A JPH04291118A JP3081688A JP8168891A JPH04291118A JP H04291118 A JPH04291118 A JP H04291118A JP 3081688 A JP3081688 A JP 3081688A JP 8168891 A JP8168891 A JP 8168891A JP H04291118 A JPH04291118 A JP H04291118A
- Authority
- JP
- Japan
- Prior art keywords
- film
- sensor
- flow rate
- heat sensing
- organic film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010408 film Substances 0.000 claims description 41
- 239000010409 thin film Substances 0.000 claims description 25
- 239000012530 fluid Substances 0.000 claims description 15
- 239000011368 organic material Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 230000007261 regionalization Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 abstract description 10
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 238000004544 sputter deposition Methods 0.000 abstract description 2
- 238000005530 etching Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- 229920002120 photoresistant polymer Polymers 0.000 abstract 1
- 238000011144 upstream manufacturing Methods 0.000 description 15
- 238000001514 detection method Methods 0.000 description 10
- 239000004642 Polyimide Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- 230000006355 external stress Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は流量センサに係り、特に
耐久性・耐環境性・装着性・メンテナンス性・安全性等
を向上させる場合に好適な流量センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate sensor, and particularly to a flow rate sensor suitable for improving durability, environmental resistance, ease of mounting, ease of maintenance, safety, etc.
【0002】0002
【従来の技術】従来、例えば特開昭63−252224
号公報記載の技術の如く、半導体基板上に薄膜ヒータと
、1対の薄膜の熱感知センサとを設け、前記薄膜ヒータ
と1対の熱感知センサ上に熱容量が大なる物質からなる
層を形成し、前記半導体基板と、前記薄膜ヒータ及び1
対の熱感知センサとの間に空間を形成し、前記1対の薄
膜の熱感知センサを、前記薄膜ヒータの近傍に絶縁部を
介し前記薄膜ヒータと略平行に形成した構造の流速セン
サが開発されている。[Prior Art] Conventionally, for example, Japanese Patent Application Laid-Open No. 63-252224
As in the technique described in the publication, a thin film heater and a pair of thin film heat sensing sensors are provided on a semiconductor substrate, and a layer made of a material having a large heat capacity is formed on the thin film heater and the pair of heat sensing sensors. and the semiconductor substrate, the thin film heater and
A flow velocity sensor has been developed that has a structure in which a space is formed between the pair of heat-sensing sensors, and the pair of thin-film heat-sensing sensors is formed near the thin-film heater and approximately parallel to the thin-film heater through an insulating part. has been done.
【0003】0003
【発明が解決しようとする課題】ところで、前述した従
来技術においては次のような問題があった。前記流速セ
ンサを使用して流体の流れの速度を計測する場合、流体
中に存在するゴミやダスト等の影響で流速センサが汚染
されることにより計測精度が悪化したり、流体の流れに
よって熱感知センサや薄膜ヒータが変質したりする等、
信頼性や耐久性、耐環境性の面で問題があった。また、
前記流速センサは半導体基板上に熱感知センサを形成し
ていることから弾性変形(屈曲)しにくいという構造上
の性質を有しているが、該流速センサが装着される流路
は配管(例えばケーシング等)内面に曲面部分が多いた
め、流路の配管内面の曲率次第では流速センサを配管内
面にそのまま装着することは難しく、例えば固定用の部
材を介して流速センサを装着する必要が生ずる等、装着
に手間がかかるという問題があった。However, the above-mentioned prior art has the following problems. When measuring the speed of fluid flow using the flow rate sensor, the flow rate sensor may become contaminated due to the influence of dirt or dust present in the fluid, resulting in poor measurement accuracy, or heat detection due to the flow of fluid. Sensors and thin film heaters may deteriorate, etc.
There were problems with reliability, durability, and environmental resistance. Also,
The flow velocity sensor has a structural property that it is difficult to elastically deform (bend) because it is a heat sensing sensor formed on a semiconductor substrate, but the flow path to which the flow velocity sensor is attached is connected to a pipe (e.g. Because there are many curved surfaces on the inner surface (casing, etc.), depending on the curvature of the inner surface of the pipe in the flow path, it is difficult to attach the flow velocity sensor directly to the inner surface of the pipe, for example, it may be necessary to attach the flow velocity sensor via a fixing member. However, there was a problem in that it took time and effort to install.
【0004】本発明は前記課題を解決するもので、耐久
性・耐環境性・装着性・安全性・メンテナンス性等の向
上を達成した流量センサの提供を目的とする。[0004] The present invention is intended to solve the above-mentioned problems, and aims to provide a flow sensor that achieves improvements in durability, environmental resistance, ease of mounting, safety, maintainability, etc.
【0005】[0005]
【課題を解決するための手段】本発明は、薄膜の加熱手
段と、1対の薄膜の熱感知手段と、前記加熱手段及び熱
感知手段へ接続された電極とを具備してなり、流体の流
れの有無に伴う前記1対の熱感知手段の出力差に基づき
流量を計測するようにした流量センサにおいて、前記加
熱手段、熱感知手段、電極のパターンを弾性変形可能な
薄膜の第1の有機物膜の表面に形成すると共に、該第1
の有機物膜の前記パターン形成側の表面を弾性変形可能
な薄膜の第2の有機物膜により被覆したことを特徴とす
る。[Means for Solving the Problems] The present invention comprises a thin film heating means, a pair of thin film heat sensing means, and an electrode connected to the heating means and the heat sensing means. In a flow rate sensor that measures the flow rate based on the output difference between the pair of heat sensing means depending on the presence or absence of a flow, the heating means, the heat sensing means, and the electrode pattern are made of a thin film of a first organic material that can be elastically deformed. is formed on the surface of the film, and the first
The surface of the organic material film on the pattern formation side is covered with a second organic material film which is an elastically deformable thin film.
【0006】[0006]
【作用】本発明によれば、流量センサは弾性変形が自在
であるため、配管の曲面の曲率の如何にかかわらず装着
性を向上できると共に、外部応力に対する耐久性を向上
させることができ、また、熱感知手段、加熱手段は有機
物膜により完全に被覆されているため、流体中のゴミ等
の影響を受けたり変質することなく正確な流量を計測で
き、信頼性、耐環境性、安全性、メンテナンス性を向上
できる。[Operation] According to the present invention, since the flow rate sensor can be elastically deformed, it is possible to improve the ease of mounting regardless of the curvature of the curved surface of the piping, and it is also possible to improve the durability against external stress. , the heat sensing means, and the heating means are completely covered with an organic film, so it is possible to accurately measure the flow rate without being affected by dirt in the fluid or deteriorating.It is reliable, environmentally resistant, safe, Maintainability can be improved.
【0007】[0007]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1・図2は本実施例の流量センサ1の平面図及
び断面図であり、熱伝導率が小さい例えばポリイミドや
ポリエステル等から構成された弾性変形可能な薄膜(例
えば厚さ数μm以下)の下部有機物膜2の上面の長手方
向における一方側には、上流側熱感知センサ3と、下流
側熱感知センサ4とが形成されると共に、これら上流側
熱感知センサ3と下流側熱感知センサ4との間には薄膜
のヒータ5が形成されている。この場合、前記上流側熱
感知センサ3、下流側熱感知センサ4は、ヒータ5に対
して対称に配置されている。流量センサ1は、前記上流
側熱感知センサ3が流路パイプ内の流体の上流側に、前
記下流側熱感知センサ4が流路パイプ内の流体の下流側
に位置するように、流路パイプ内面に装着するようにな
っている。また、前記下部有機物膜2の上面の長手方向
における他方側には、前記上流側熱感知センサ3・下流
側熱感知センサ4・ヒータ5と外部回路(図示略)とを
接続するための複数(本実施例では例えば6個)の電極
6が形成されており、電極6と外部回路との接続を行う
ために、電極6の一部は露出状態とされている。即ち、
前記下部有機物膜2の上面にNi等の金属膜をスパッタ
リング法等の方法により成膜した後、フォトマスク、フ
ォトレジストとエッチング液により、前記上流側熱感知
センサ3、下流側熱感知センサ4、ヒータ5、電極6の
パターンを形成するようになっている。Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. 1 and 2 are a plan view and a cross-sectional view of the flow rate sensor 1 of this embodiment, which is made of an elastically deformable thin film (for example, several μm or less in thickness) made of polyimide, polyester, etc. with low thermal conductivity. An upstream heat sensing sensor 3 and a downstream heat sensing sensor 4 are formed on one side in the longitudinal direction of the upper surface of the lower organic substance film 2. A thin film heater 5 is formed between the two. In this case, the upstream heat sensing sensor 3 and the downstream heat sensing sensor 4 are arranged symmetrically with respect to the heater 5. The flow rate sensor 1 is arranged in a flow path pipe such that the upstream heat sensing sensor 3 is located on the upstream side of the fluid in the flow path pipe, and the downstream heat sensing sensor 4 is located on the downstream side of the fluid in the flow path pipe. It is designed to be attached to the inside. Further, on the other side in the longitudinal direction of the upper surface of the lower organic substance film 2, a plurality of ( In this embodiment, for example, six electrodes 6 are formed, and a part of the electrodes 6 is exposed in order to connect the electrodes 6 to an external circuit. That is,
After forming a metal film such as Ni on the upper surface of the lower organic film 2 by a method such as sputtering, the upstream heat sensing sensor 3, downstream heat sensing sensor 4, A pattern of heaters 5 and electrodes 6 is formed.
【0008】更に、前記上流側熱感知センサ3、下流側
熱感知センサ4、ヒータ5、電極6のパターンが形成さ
れた下部有機物膜2の表面は、熱伝導率が小さい例えば
ポリイミドやポリエステル等から構成された弾性変形可
能な薄膜(例えば厚さ数μm以下)の上部有機物膜7に
より被覆されている。即ち、下部有機物膜2の上面に形
成した上流側熱感知センサ3、下流側熱感知センサ4、
ヒータ5、電極6を上部有機物膜7で被覆することによ
り、上流側熱感知センサ3、下流側熱感知センサ4、ヒ
ータ5の酸化や腐食を防止するようになっており、また
、下部有機物膜2及び上部有機物膜7の膜厚を数μm以
下と薄く形成することにより、流量センサ1の熱応答性
を向上させるようになっている。また、前記下部有機物
膜2の下面には空気スペース8を有した状態で弾性変形
可能な下部補強用有機物膜9が形成されると共に、前記
上部有機物膜7の上面には弾性変形可能な上部補強用有
機物膜10が形成されており、これら下部補強用有機物
膜9、上部補強用有機物膜10は、例えばポリイミドや
ポリエステル等から構成されている。前記下部補強用有
機物膜9及び上部補強用有機物膜10を、薄膜に形成し
た前記下部有機物膜2及び上部有機物膜7の補強材とし
て用いることにより、流量センサ1の機械的強度を向上
させるようになっている。この場合、前記下部有機物膜
2の下面の一部に前記空気スペース8を設けることによ
り、上流側熱感知センサ3、下流側熱感知センサ4、ヒ
ータ5の熱絶縁を良好とするようになっている。そして
、流量センサ1は、上流側熱感知センサ3、下流側熱感
知センサ4、ヒータ5が形成された流量検知部11と、
電極6が形成された電極部12とに大別されている。本
実施例の流量センサ1は上記の如くの構造となっている
ため、弾性変形(屈曲)が自在とされている。
尚、図2の矢印は流体の流れの方向である。Furthermore, the surface of the lower organic film 2 on which the patterns of the upstream heat sensor 3, downstream heat sensor 4, heater 5, and electrode 6 are formed is made of a material having low thermal conductivity, such as polyimide or polyester. It is covered with an upper organic film 7 which is an elastically deformable thin film (for example, a thickness of several μm or less). That is, an upstream heat sensing sensor 3, a downstream heat sensing sensor 4 formed on the upper surface of the lower organic film 2,
By covering the heater 5 and electrode 6 with the upper organic film 7, oxidation and corrosion of the upstream heat sensing sensor 3, the downstream heat sensing sensor 4, and the heater 5 are prevented. The thermal responsiveness of the flow rate sensor 1 is improved by forming the upper organic film 2 and the upper organic film 7 to be as thin as several μm or less. Further, a lower reinforcing organic film 9 that is elastically deformable with an air space 8 is formed on the lower surface of the lower organic film 2, and an elastically deformable upper reinforcing organic film 9 is formed on the upper surface of the upper organic film 7. The lower reinforcing organic film 9 and the upper reinforcing organic film 10 are made of, for example, polyimide or polyester. By using the lower reinforcing organic material film 9 and the upper reinforcing organic material film 10 as reinforcing materials for the lower organic material film 2 and the upper organic material film 7 formed into thin films, the mechanical strength of the flow rate sensor 1 is improved. It has become. In this case, by providing the air space 8 in a part of the lower surface of the lower organic film 2, thermal insulation of the upstream heat sensor 3, the downstream heat sensor 4, and the heater 5 is improved. There is. The flow rate sensor 1 includes a flow rate detection section 11 in which an upstream heat detection sensor 3, a downstream heat detection sensor 4, and a heater 5 are formed.
It is roughly divided into an electrode section 12 in which an electrode 6 is formed. Since the flow rate sensor 1 of this embodiment has the above-described structure, it can be elastically deformed (bent). Note that the arrows in FIG. 2 indicate the direction of fluid flow.
【0009】次に、上記構成による本実施例の流量セン
サの作用について説明する。図3に示す如く、流量計測
対象となる流路パイプPのパイプ内面に流量センサ1の
流量検知部11を接着した後、該流量センサ1をその弾
性変形性質を利用することによりパイプ内外面の曲率に
沿って屈曲させ、電極部12を流路パイプPの外部へ引
出し、該電極部12を外部回路(図示略)へ接続する。
この場合、流量センサ1は弾性変形自在なため、流路パ
イプPの曲率の如何にかかわらずパイプ曲面に対して的
確に装着することができる。上記接続により、外部回路
から電極部12の電極6を介して流量検知部11のヒー
タ5が所定温度に加熱されると共に、流量検知部11の
上流側熱感知センサ3、下流側熱感知センサ4の出力が
外部回路へ供給される。この後、流路パイプP内部にお
ける流量の計測時において、流体の流れが無い場合は、
ヒータ5に対し対称配置された上流側熱感知センサ3、
下流側熱感知センサ4は該ヒータ5からの均一な熱伝導
により同温度に加熱される結果、両センサ3、4の出力
差は生じないため、外部回路により流量が0と計測され
る。他方、流体の流れが有る場合は、上流側熱感知セン
サ3は流体のヒータ5方向への流れに伴い冷却され、下
流側熱感知センサ4はヒータ5により加熱された流体の
流れにより加熱される結果、両センサ3、4の出力に差
が生ずるため、外部回路により流体の流れに応じた流量
が計測される。Next, the operation of the flow rate sensor of this embodiment having the above configuration will be explained. As shown in FIG. 3, after bonding the flow rate detection part 11 of the flow rate sensor 1 to the inner surface of the flow path pipe P to be measured, the flow rate sensor 1 is used to adjust the inner and outer surfaces of the pipe by utilizing its elastic deformation properties. It is bent along the curvature, the electrode part 12 is drawn out of the flow path pipe P, and the electrode part 12 is connected to an external circuit (not shown). In this case, since the flow rate sensor 1 is elastically deformable, it can be accurately attached to the curved surface of the pipe regardless of the curvature of the flow path pipe P. With the above connection, the heater 5 of the flow rate detection unit 11 is heated to a predetermined temperature from the external circuit via the electrode 6 of the electrode unit 12, and the upstream heat detection sensor 3 and downstream heat detection sensor 4 of the flow rate detection unit 11 are heated. The output of is supplied to an external circuit. After this, when measuring the flow rate inside the flow path pipe P, if there is no fluid flow,
an upstream heat sensing sensor 3 arranged symmetrically with respect to the heater 5;
As a result of the downstream heat sensing sensor 4 being heated to the same temperature by uniform heat conduction from the heater 5, there is no output difference between the two sensors 3 and 4, so the flow rate is measured as 0 by the external circuit. On the other hand, when there is a flow of fluid, the upstream heat sensor 3 is cooled as the fluid flows toward the heater 5, and the downstream heat sensor 4 is heated by the flow of fluid heated by the heater 5. As a result, a difference occurs between the outputs of both sensors 3 and 4, so that an external circuit measures the flow rate according to the fluid flow.
【0010】ところで、本実施例の流量センサ1は弾性
変形が自在とされているため、上述した如く流路パイプ
の曲面の曲率の如何にかかわらず、流路パイプへの装着
性を向上させることができる。また、流量センサ1の上
流側熱感知センサ3、下流側熱感知センサ4、ヒータ5
からなる流量検知部11は、ポリイミドやポリエステル
等の化学的に安定な下部有機物膜2、上部有機物膜7に
より完全に被覆されているため、流量センサ1は流体中
のゴミやダスト等の影響を受けたり変質することなく正
確な流量を計測でき、信頼性、耐久性、耐環境性、安全
性、メンテナンス性等を向上させることができる。By the way, since the flow rate sensor 1 of this embodiment can be elastically deformed, it is possible to improve the ease of attachment to the flow path pipe, regardless of the curvature of the curved surface of the flow path pipe, as described above. Can be done. In addition, the upstream heat sensor 3, the downstream heat sensor 4, and the heater 5 of the flow rate sensor 1
The flow rate sensor 11 is completely covered with a lower organic film 2 and an upper organic film 7, which are chemically stable such as polyimide or polyester. It is possible to accurately measure the flow rate without being influenced or altered, and it is possible to improve reliability, durability, environmental resistance, safety, maintainability, etc.
【0011】[0011]
【発明の効果】以上説明したように本発明によれば、薄
膜の加熱手段と、1対の薄膜の熱感知手段と、前記加熱
手段及び熱感知手段へ接続された電極とを具備してなり
、流体の流れの有無に伴う前記1対の熱感知手段の出力
差に基づき流量を計測するようにした流量センサにおい
て、前記加熱手段、熱感知手段、電極のパターンを弾性
変形可能な薄膜の第1の有機物膜の表面に形成すると共
に、該第1の有機物膜の前記パターン形成側の表面を弾
性変形可能な薄膜の第2の有機物膜により被覆する構成
としたので、以下の効果を奏することができる。
(1)流量センサは弾性変形(屈曲)が自在な構造であ
るため、流量センサを流路パイプ等の曲面の曲率の如何
にかかわらず容易に固定することができるため、装着性
を向上させることができると共に、外部応力に対して耐
久性を向上させることができる。
(2)また、流量センサの熱感知手段、加熱手段は有機
物膜により完全に被覆されているため、流量センサは流
体中のゴミやダスト等の影響を受けたり変質することな
く正確な流量を計測でき、この結果、流量センサの信頼
性を向上させることができると共に、耐環境性、安全性
、メンテナンス性を向上させることができる。As described above, the present invention includes a thin film heating means, a pair of thin film heat sensing means, and an electrode connected to the heating means and the heat sensing means. In the flow rate sensor, the flow rate is measured based on the output difference between the pair of heat sensing means depending on the presence or absence of fluid flow, in which the heating means, the heat sensing means, and the electrode pattern are made of elastically deformable thin film. The organic material film is formed on the surface of the first organic material film, and the surface of the first organic material film on the pattern formation side is covered with the second organic material film, which is an elastically deformable thin film, so that the following effects can be achieved. Can be done. (1) Since the flow sensor has a structure that can be elastically deformed (bending), the flow sensor can be easily fixed regardless of the curvature of the curved surface of the flow path pipe, etc., which improves the ease of mounting. It is possible to improve durability against external stress. (2) Also, since the heat sensing means and heating means of the flow sensor are completely covered with an organic film, the flow sensor accurately measures the flow rate without being affected by dirt or dust in the fluid or changing its quality. As a result, the reliability of the flow sensor can be improved, as well as environmental resistance, safety, and maintainability.
【図1】本発明の実施例の流量センサの断面図である。FIG. 1 is a sectional view of a flow rate sensor according to an embodiment of the present invention.
【図2】本実施例の流量センサの平面図である。FIG. 2 is a plan view of the flow rate sensor of this embodiment.
【図3】本実施例の流量センサの流路パイプに対する装
着例の斜視図である。FIG. 3 is a perspective view of an example of how the flow rate sensor of this embodiment is attached to a flow path pipe.
1 流量センサ
2 下部有機物膜(第1の有機物膜)3 上流側熱
感知センサ(熱感知手段)4 下流側熱感知センサ(
熱感知手段)5 ヒータ(加熱手段)
6 電極
7 上部有機物膜(第2の有機物膜)8 空気スペ
ース
9 下部補強用有機物膜
10 上部補強用有機物膜
11 流量検知部
12 電極部1 Flow rate sensor 2 Lower organic film (first organic film) 3 Upstream heat sensing sensor (heat sensing means) 4 Downstream heat sensing sensor (
Heat sensing means) 5 Heater (heating means) 6 Electrode 7 Upper organic film (second organic film) 8 Air space 9 Lower reinforcing organic film 10 Upper reinforcing organic film 11 Flow rate detection section 12 Electrode section
Claims (1)
知手段と、前記加熱手段及び熱感知手段へ接続された電
極とを具備してなり、流体の流れの有無に伴う前記1対
の熱感知手段の出力差に基づき流量を計測するようにし
た流量センサにおいて、前記加熱手段、熱感知手段、電
極のパターンを弾性変形可能な薄膜の第1の有機物膜の
表面に形成すると共に、該第1の有機物膜の前記パター
ン形成側の表面を弾性変形可能な薄膜の第2の有機物膜
により被覆したことを特徴とする流量センサ。1. A thin film heating means, a pair of thin film heat sensing means, and an electrode connected to the heating means and the heat sensing means, the pair of thin film heat sensing means being connected to each other according to the presence or absence of fluid flow. In the flow rate sensor that measures the flow rate based on the output difference of the heat sensing means, a pattern of the heating means, the heat sensing means, and the electrodes is formed on the surface of the first organic substance film which is an elastically deformable thin film; A flow rate sensor characterized in that a surface of the first organic material film on the pattern formation side is covered with a second organic material film that is an elastically deformable thin film.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3081688A JPH04291118A (en) | 1991-03-20 | 1991-03-20 | flow sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3081688A JPH04291118A (en) | 1991-03-20 | 1991-03-20 | flow sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04291118A true JPH04291118A (en) | 1992-10-15 |
Family
ID=13753296
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3081688A Withdrawn JPH04291118A (en) | 1991-03-20 | 1991-03-20 | flow sensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04291118A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009168480A (en) * | 2008-01-11 | 2009-07-30 | Univ Nagoya | Flow sensor |
| WO2019171376A1 (en) * | 2018-03-06 | 2019-09-12 | Ezmems Ltd. | Direct implementation of sensors in tubes |
-
1991
- 1991-03-20 JP JP3081688A patent/JPH04291118A/en not_active Withdrawn
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009168480A (en) * | 2008-01-11 | 2009-07-30 | Univ Nagoya | Flow sensor |
| WO2019171376A1 (en) * | 2018-03-06 | 2019-09-12 | Ezmems Ltd. | Direct implementation of sensors in tubes |
| US11841251B2 (en) | 2018-03-06 | 2023-12-12 | Ezmems Ltd. | Direct implementation of sensors in tubes |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3333712B2 (en) | Flow rate detecting element and flow rate sensor using the same | |
| US6470742B1 (en) | Flow sensor | |
| US8423304B2 (en) | Thermal, flow measuring device | |
| EP0395721A1 (en) | CONTROL AND DETECTION CIRCUITS FOR MASS AIR FLOW SENSORS. | |
| WO2000039551A1 (en) | Pressure sensor | |
| JP3240733B2 (en) | Thermal air flow meter | |
| US6948361B2 (en) | Gasket flow sensing apparatus and method | |
| US7426857B2 (en) | Flow detector element of thermosensible flow sensor | |
| US8583385B2 (en) | Thermal, flow measuring device | |
| WO2007025001A1 (en) | Method of thermally coupling a flow tube or like component to a thermal sensor and sensor systems formed thereby | |
| US6301960B1 (en) | Thermo-sensitive flow rate sensor | |
| JP3538188B2 (en) | Thermosensitive flow rate detecting element and method of manufacturing the same | |
| US4425792A (en) | Apparatus for measuring a fluid flow rate | |
| JPH04291118A (en) | flow sensor | |
| US6470743B2 (en) | Heat-sensitive flow rate sensor | |
| US6619130B1 (en) | Pressure sensor | |
| JP2004184177A (en) | Flowmeter | |
| US6250150B1 (en) | Sensor employing heating element with low density at the center and high density at the end thereof | |
| JPH0422269Y2 (en) | ||
| JP4005823B2 (en) | Thermal sensor, installation method thereof, and mass flow meter | |
| JP4435374B2 (en) | Flow measuring device | |
| JP3808208B2 (en) | Solid stem for flow sensor | |
| JP4081639B2 (en) | Thermal mass flow meter for liquids | |
| JPS60230020A (en) | Thermal resistance type flow rate detecting device | |
| JP3766290B2 (en) | Flow sensor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |