JPH04307765A - semiconductor storage device - Google Patents
semiconductor storage deviceInfo
- Publication number
- JPH04307765A JPH04307765A JP3071579A JP7157991A JPH04307765A JP H04307765 A JPH04307765 A JP H04307765A JP 3071579 A JP3071579 A JP 3071579A JP 7157991 A JP7157991 A JP 7157991A JP H04307765 A JPH04307765 A JP H04307765A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- electrode
- plate electrode
- charge storage
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】本発明は、高密度な半導体記憶装
置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density semiconductor memory device.
【0002】0002
【従来の技術】近年、半導体記憶装置は高密度化がすす
み、それに使用されるトランジスタや配線、容量などの
寸法はごく微細なものとなっている。一方、外部から与
える電源や入出力信号の電圧は、あまり低下させないと
いう要求がある。これを満たすため、素子には高電界が
印加されることとなるが、このような状況は素子の寿命
劣化を招く。最近の素子製造技術は、素子内での電界を
できるだけ均一化し、寿命を規定する最大電界を下げる
ことに重点がおかれている。DRAMの容量絶縁膜にか
かる最大電圧を下げることも課題の一つである。2. Description of the Related Art In recent years, the density of semiconductor memory devices has increased, and the dimensions of transistors, wiring, capacitors, etc. used therein have become extremely small. On the other hand, there is a requirement that the voltages of externally applied power supplies and input/output signals should not be lowered too much. In order to satisfy this requirement, a high electric field is applied to the element, but such a situation causes deterioration of the life of the element. Recent device manufacturing technology has focused on making the electric field within the device as uniform as possible and lowering the maximum electric field that defines the lifetime. Another challenge is to lower the maximum voltage applied to the capacitive insulating film of DRAM.
【0003】また小さい平面積で大きな容量を得るため
高い誘電率の膜の開発も進められているが、耐熱性に優
れたものはなく、プレ−ト電極は低温で形成できるもの
を使用せざるを得ない。蓄積電極は耐熱性の良い材料が
求められるので、これらの電極は異なる材料となる。従
来は、このような高い誘電率の膜を用いる必要がなかっ
たので、両電極にN型のシリコンもしくはポリシリコン
が使われてきた。このような場合、プレ−トに対して電
源電圧の二分の一の電圧を与えることにより、容量絶縁
膜に加わる最大電圧を最小に抑えられる。[0003] Further, in order to obtain large capacitance with a small surface area, the development of films with high dielectric constants is progressing, but there is no film with excellent heat resistance, and plate electrodes that can be formed at low temperatures must be used. I don't get it. Since the storage electrode is required to be made of a material with good heat resistance, these electrodes are made of different materials. Conventionally, there was no need to use such a high dielectric constant film, so N-type silicon or polysilicon was used for both electrodes. In such a case, the maximum voltage applied to the capacitive insulating film can be minimized by applying a voltage that is one-half of the power supply voltage to the plate.
【0004】以下図面を参照しながら、上記した従来の
容量絶縁膜にかかる最大電界の緩和方法の一例について
説明する。An example of a conventional method for alleviating the maximum electric field applied to the capacitive insulating film will be described below with reference to the drawings.
【0005】図6は従来のDRAMセルで容量絶縁膜に
かかる最大電界を最小にする方法を示すものである。図
6において、1はワ−ド線、2はビット線、3はトラン
スファゲ−ト、4は電荷蓄積電極、5はプレ−ト電極、
6は容量絶縁膜、7はプレ−ト電極6に与える電圧(V
PL)を示し、以上で単位セルが構成される。FIG. 6 shows a method for minimizing the maximum electric field applied to a capacitor insulating film in a conventional DRAM cell. In FIG. 6, 1 is a word line, 2 is a bit line, 3 is a transfer gate, 4 is a charge storage electrode, 5 is a plate electrode,
6 is a capacitive insulating film, 7 is a voltage applied to the plate electrode 6 (V
PL), and the unit cell is configured as described above.
【0006】従来、電荷蓄積電極4はN型のシリコンあ
るいは、ポリシリコン、プレ−ト電極5はN型のポリシ
リコンが用いられ、VPLは電源電圧の二分の一が与え
られていた。この理由は、セルの書き込みが、0ボルト
と電源電圧(VCC)の二値でおこなわれ、電荷蓄積電
極4とプレ−ト電極5のフェルミレベルが同じであるか
ら、プレ−ト電極5の電位を電源電圧の二分の一に保つ
ことにより、容量絶縁膜6にかかる最大電圧を電源電圧
の二分の一に抑えることができるからである。以上は、
絶縁膜の両端に加わる最大電圧が、VPLとVCC−V
PLのうちの大きい方であることを考えると容易にわか
る。Conventionally, charge storage electrode 4 has been made of N-type silicon or polysilicon, plate electrode 5 has been made of N-type polysilicon, and VPL has been given one-half of the power supply voltage. The reason for this is that cell writing is performed with two values, 0 volts and the power supply voltage (VCC), and the Fermi level of the charge storage electrode 4 and the plate electrode 5 are the same, so the potential of the plate electrode 5 is This is because by keeping the voltage at one-half of the power supply voltage, the maximum voltage applied to the capacitive insulating film 6 can be suppressed to one-half of the power supply voltage. The above is
The maximum voltage applied across the insulating film is VPL and VCC-V.
This is easily understood considering that it is the larger of PL.
【0007】[0007]
【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、フェルミレベルの異なる二つの電極から
なる容量の場合、絶縁膜の両端にかかる電圧は、両電極
に加わっている電位差から両材料のフェルミレベル差分
だけずれ、最大電圧が最小にならないという問題点を有
していた。[Problem to be Solved by the Invention] However, in the above configuration, in the case of a capacitor consisting of two electrodes with different Fermi levels, the voltage applied to both ends of the insulating film is determined by the potential difference between the two materials, which is applied to both electrodes. There was a problem in that the maximum voltage did not become the minimum due to the deviation by the Fermi level difference.
【0008】本発明は上記問題点に鑑み、フェルミレベ
ルの異なる二つの電極からなる容量の場合に、絶縁膜の
両端にかかる最大電圧を最小にする半導体記憶装置を提
供することを目的とする。SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a semiconductor memory device that minimizes the maximum voltage applied across an insulating film in the case of a capacitor consisting of two electrodes with different Fermi levels.
【0009】[0009]
【課題を解決するための手段】本発明の半導体記憶装置
は、プレ−ト電極に与える電圧を、電源電圧の二分の一
より、電荷蓄積電極材料のフェルミレベルからプレ−ト
電極材料のフェルミレベルを差し引いた電圧だけ、高く
するという構成を備えたものである。[Means for Solving the Problems] In the semiconductor memory device of the present invention, the voltage applied to the plate electrode is changed from half of the power supply voltage to the Fermi level of the charge storage electrode material to the Fermi level of the plate electrode material. The structure is such that the voltage is increased by the amount minus the voltage.
【0010】0010
【作用】本発明の上記した構成によると、電荷蓄積電極
に電源電圧レベル(VCC)が書き込まれるとき、両電
極間にはVCCからVCCの半分をひき、さらに電荷蓄
積材料のフェルミレベルからプレ−ト電極材料のフェル
ミレベルを引いた電圧を差し引いた電圧がかかる。この
際、容量絶縁膜には前記電圧にフェルミレベル差の電圧
が加わった電圧、すなわちVCCの二分の一の電圧が加
わる。また、電荷蓄積電極に0ボルトが書き込まれると
き、両電極間にはVCCの半分に電荷蓄積材料のフェル
ミレベルからプレ−ト電極材料のフェルミレベルを引い
た電圧を加えた電圧がかかる。この際、容量絶縁膜には
前記電圧からフェルミレベル差の電圧を差し引いた電圧
、すなわちVCCの二分の一の電圧が加わる。このよう
に、本発明の構成によると、異なる材料の容量電極に対
しても、容量絶縁膜に加わる最大電圧をVCCの二分の
一、すなわち最小に抑えることが可能となる。[Operation] According to the above-described structure of the present invention, when the power supply voltage level (VCC) is written to the charge storage electrode, half of VCC is drawn from VCC between the two electrodes, and further, a voltage of half of VCC is drawn from the Fermi level of the charge storage material. The voltage minus the Fermi level of the electrode material is applied. At this time, a voltage obtained by adding a Fermi level difference voltage to the above voltage, that is, a voltage half of VCC is applied to the capacitive insulating film. Further, when 0 volt is written to the charge storage electrode, a voltage equal to half of VCC plus a voltage obtained by subtracting the Fermi level of the plate electrode material from the Fermi level of the charge storage material is applied between the two electrodes. At this time, a voltage obtained by subtracting the voltage of the Fermi level difference from the above voltage, that is, a voltage of one-half of VCC is applied to the capacitive insulating film. As described above, according to the configuration of the present invention, it is possible to suppress the maximum voltage applied to the capacitor insulating film to one-half of VCC, that is, to the minimum, even for capacitor electrodes made of different materials.
【0011】[0011]
【実施例】(実施例1)以下本発明の実施例について、
図面を参照しながら説明する。[Example] (Example 1) The following is an example of the present invention.
This will be explained with reference to the drawings.
【0012】図1は本発明の第一の実施例におけるメモ
リセルの構造を示すものであり、いわゆるスタック型と
呼ばれるDRAMセルのワ−ド線に垂直な断面図である
。FIG. 1 shows the structure of a memory cell in a first embodiment of the present invention, and is a sectional view perpendicular to a word line of a so-called stacked DRAM cell.
【0013】図1において、シリコン基板11上に、ワ
−ド線1、ビット線2、S/D拡散層13、トランスフ
ァゲ−ト3、LOCOS分離膜12、N+ポリシリコン
からなる電荷蓄積電極8、酸化タンタルからなる容量絶
縁膜6、タングステンからなるプレ−ト電極9、および
配線層間絶縁膜14から構成されたメモリセルである。
プレ−ト電極9は、高温熱処理に弱い酸化タンタルの容
量絶縁膜6を使うため、低温で形成可能なタングステン
を用いざるを得ない。このような構造に対して、プレ−
ト電極9に与える電圧VPL10を、電源電圧VCCの
二分の一より、電荷蓄積電極材料のフェルミレベルから
プレ−ト電極材料のフェルミレベルを差し引いた電圧だ
け、高くする。In FIG. 1, a word line 1, a bit line 2, an S/D diffusion layer 13, a transfer gate 3, a LOCOS isolation film 12, and a charge storage electrode 8 made of N+ polysilicon are disposed on a silicon substrate 11. , a capacitor insulating film 6 made of tantalum oxide, a plate electrode 9 made of tungsten, and an interlayer insulating film 14. Since the plate electrode 9 uses the capacitive insulating film 6 of tantalum oxide, which is susceptible to high-temperature heat treatment, tungsten, which can be formed at low temperatures, must be used. For such a structure, play
The voltage VPL10 applied to the plate electrode 9 is made higher than one half of the power supply voltage VCC by a voltage obtained by subtracting the Fermi level of the plate electrode material from the Fermi level of the charge storage electrode material.
【0014】以上のように構成されたメモリセルについ
て、従来の構造と本発明の構造の比較を通して本発明の
効果を説明する。Regarding the memory cell configured as described above, the effects of the present invention will be explained through a comparison between the conventional structure and the structure of the present invention.
【0015】図2は従来の構造、すなわち同一の材料を
二つの電極に用いた場合の電荷蓄積電極4−容量絶縁膜
6−プレ−ト電極5のバンド図を示すものである。プレ
−トに与える電圧(VPL)7は電源電圧(VCC)の
半分の値に固定され、書き込み電圧15が0ボルトとV
CCにとられる。まず、二つの電極に与えられる電圧が
等しい場合(図2(b))は、電極材料が同じため、容
量絶縁膜6には電圧は加わらない。デ−タが書き込まれ
たときは書き込み電圧15が0ボルトあるいはVCCに
なるが、容量絶縁膜6にはどちらの場合もVCCの半分
の電圧が加わる(図2(a),(c))。このようにし
て、絶縁膜にかかる最大電圧がVCCの半分となり、最
小に抑えられる。FIG. 2 shows a band diagram of the charge storage electrode 4, the capacitor insulating film 6, and the plate electrode 5 in a conventional structure, that is, when the same material is used for the two electrodes. The voltage (VPL) 7 applied to the plate is fixed at half the power supply voltage (VCC), and the write voltage 15 is set between 0 volts and V
Caught by CC. First, when the voltages applied to the two electrodes are equal (FIG. 2(b)), no voltage is applied to the capacitive insulating film 6 because the electrode materials are the same. When data is written, the write voltage 15 becomes 0 volts or VCC, but in either case, a voltage half of VCC is applied to the capacitor insulating film 6 (FIGS. 2(a) and 2(c)). In this way, the maximum voltage applied to the insulating film becomes half of VCC, which is suppressed to a minimum.
【0016】図3は本発明の構造で、すなわち図1の場
合の電荷蓄積電極8−容量絶縁膜6−プレ−ト電極9の
バンド図を示すものである。プレ−トに与える電圧VP
L10はVCCの二分の一より、電荷蓄積電極材料のフ
ェルミレベルからプレ−ト電極材料のフェルミレベルを
差し引いた電圧だけ、高くする。本発明が問題とする二
つの電極材料が異なる場合、このようにVPLを設定し
てはじめて、書き込みが0ボルトの時もVCCの時も絶
縁膜6にはVCCの半分の電圧が加わることとなる。こ
のようにして、絶縁膜にかかる最大電圧がVCCの半分
となり、最小に抑えられる(図3(a),(b),(c
))。FIG. 3 shows the structure of the present invention, that is, a band diagram of the charge storage electrode 8, the capacitor insulating film 6, and the plate electrode 9 in the case of FIG. Voltage applied to the plate VP
L10 is set higher than one half of VCC by a voltage equal to the Fermi level of the charge storage electrode material minus the Fermi level of the plate electrode material. When the two electrode materials that are the subject of the present invention are different, only by setting VPL in this manner will a voltage half of VCC be applied to the insulating film 6 both when writing is 0 volts and when it is VCC. . In this way, the maximum voltage applied to the insulating film becomes half of VCC, which is suppressed to the minimum (Figs. 3(a), (b), (c)
)).
【0017】以上のように本実施例では、電荷蓄積電極
8とプレ−ト電極9が異なる材料からなるDRAMにお
いて、プレ−ト電極9に与える電圧が、電源電圧の二分
の一より、電荷蓄積電極8材料のフェルミレベルからプ
レ−ト電極9材料のフェルミレベルを差し引いた電圧だ
け、高くすることにより、容量絶縁膜6の両端にかかる
最大電圧を最小にすることができる。As described above, in this embodiment, in a DRAM in which the charge storage electrode 8 and the plate electrode 9 are made of different materials, the voltage applied to the plate electrode 9 is lower than half of the power supply voltage. By increasing the voltage by the Fermi level of the material of the electrode 8 minus the Fermi level of the material of the plate electrode 9, the maximum voltage applied to both ends of the capacitive insulating film 6 can be minimized.
【0018】なお、本実施例ではN+ポリシリコンから
なる電荷蓄積電極8、タングステンからなるプレ−ト電
極9を用いたが、N型不純物が拡散されたシリコンある
いはポリシリコンでできた電荷蓄積電極、P型不純物が
拡散されたポリシリコンでできたプレ−ト電極を用いて
、このプレ−ト電極に対して、電源電圧の二分の一より
約1.1Vだけ高い電圧を与えても良い。さらに、P型
不純物が拡散されたシリコンあるいはポリシリコンでで
きた電荷蓄積電極と、N型不純物が拡散されたポリシリ
コンでできたプレ−ト電極を用いて、このプレ−ト電極
に対して、電源電圧の二分の一より約1.1Vだけ低い
電圧を与えても良い。In this embodiment, the charge storage electrode 8 made of N+ polysilicon and the plate electrode 9 made of tungsten were used; A plate electrode made of polysilicon with P-type impurities diffused therein may be used, and a voltage approximately 1.1 V higher than one-half of the power supply voltage may be applied to the plate electrode. Furthermore, using a charge storage electrode made of silicon or polysilicon in which P-type impurities are diffused and a plate electrode made of polysilicon in which N-type impurities are diffused, A voltage that is approximately 1.1 V lower than one-half of the power supply voltage may be applied.
【0019】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。(Embodiment 2) A second embodiment of the present invention will be described below with reference to the drawings.
【0020】図4は本発明の第2の実施例、すなわち強
誘電体メモリ−のセルの構造でワ−ド線に垂直な断面図
である。すなわち強誘電体メモリ−のセルは、ワ−ド線
1、ビット線2、拡散層17、拡散層からなる書き込み
電極23、強誘電体膜19、プレ−ト電極20、LOC
OS分離膜22および層間絶縁膜21からなる。強誘電
体は高温熱処理で分極を失うため、形成後は高温を避け
る必要がある。故にプレ−ト電極21は低温で形成せね
ばならず、アルミ、タングステンなどが用いられ、書き
込み電極23とは材料が異なることとなる。FIG. 4 is a cross-sectional view perpendicular to the word line of a cell structure of a ferroelectric memory according to a second embodiment of the present invention. That is, a ferroelectric memory cell includes a word line 1, a bit line 2, a diffusion layer 17, a write electrode 23 made of a diffusion layer, a ferroelectric film 19, a plate electrode 20, and a LOC.
It consists of an OS isolation film 22 and an interlayer insulating film 21. Ferroelectrics lose their polarization when subjected to high-temperature heat treatment, so it is necessary to avoid high temperatures after formation. Therefore, the plate electrode 21 must be formed at a low temperature, and is made of aluminum, tungsten, or the like, and is made of a different material from the write electrode 23.
【0021】図5は図4を回路図で表したもので、これ
を用いて動作を説明する。図6に示すDRAMセルと回
路上は同一となる。異なるのは書き込み電極23、プレ
−ト電極20からなる容量の絶縁膜が強誘電体19にな
っていることと、プレ−ト電極20に高レベル書き込み
電圧から低レベル書き込み電圧を引いた値の二分の一と
、書き込み電極23材料のフェルミレベルからプレ−ト
電極20材料のフェルミレベルを差し引いた電圧を足し
た電圧だけ、低レベル書き込み電圧より高い電圧を与え
ることである。FIG. 5 shows a circuit diagram of FIG. 4, and the operation will be explained using this circuit diagram. The circuit is the same as the DRAM cell shown in FIG. The difference is that the insulating film of the capacitance consisting of the write electrode 23 and the plate electrode 20 is made of ferroelectric material 19, and that the value of the low level write voltage subtracted from the high level write voltage applied to the plate electrode 20 is A voltage higher than the low-level write voltage is applied by a voltage equal to the sum of one half and the voltage obtained by subtracting the Fermi level of the plate electrode 20 material from the Fermi level of the write electrode 23 material.
【0022】その動作は、ビット線2にデ−タレベルを
与え、ワ−ド線1がトランスファゲ−ト3を開き、デ−
タレベルが書き込み電極23に加わる。この際発生した
強誘電体に加わる電界で強誘電体の分極が変わり、この
分極状態を記憶状態としてとどめる、というものである
。一般的に強誘電体の分極特性は、書き込み電極23か
らプレ−ト電極20に向かう方向、その反対方向、の両
方向に対してほぼ対称に近い。ゆえに、ある分極状態を
反転させる電界の強さ(絶対値)の最小値はもとの分極
方向によらず同じとして良い。The operation is such that a data level is applied to the bit line 2, the word line 1 opens the transfer gate 3, and the data level is applied to the bit line 2.
The data level is applied to the write electrode 23. The electric field generated at this time and applied to the ferroelectric changes the polarization of the ferroelectric, and this polarized state remains as a memory state. In general, the polarization characteristics of a ferroelectric material are nearly symmetrical in both directions, from the write electrode 23 toward the plate electrode 20, and in the opposite direction. Therefore, the minimum value of the strength (absolute value) of the electric field that reverses a certain polarization state may be the same regardless of the original polarization direction.
【0023】以上のように本実施例では、プレ−ト電圧
20に、高レベル書き込み電圧から低レベル書き込み電
圧を引いた値の二分の一と、書き込み電極23材料のフ
ェルミレベルからプレ−ト電極20材料のフェルミレベ
ルを差し引いた電圧を足した電圧だけ、低レベル書き込
み電圧より高い電圧を与えると、強誘電体19に正負等
しい電界がかかるようになり、もっとも効率の良い書き
込みが達成できる。As described above, in this embodiment, the plate voltage 20 is set to one-half of the value obtained by subtracting the low level write voltage from the high level write voltage, and the value of the plate electrode 20 is set to 1/2 of the value obtained by subtracting the low level write voltage from the high level write voltage, and from the Fermi level of the write electrode 23 material. By applying a voltage higher than the low-level write voltage by a voltage equal to the voltage obtained by subtracting the Fermi level of the 20 material, equal positive and negative electric fields are applied to the ferroelectric material 19, and the most efficient writing can be achieved.
【0024】[0024]
【発明の効果】以上のように本発明は、電荷蓄積電極と
プレ−ト電極が異なる材料からなるDRAMにおいて、
プレ−ト電極に与える電圧が、電源電圧の二分の一より
、電荷蓄積電極材料のフェルミレベルからプレ−ト電極
材料のフェルミレベルを差し引いた電圧だけ、高くする
ことにより、容量絶縁膜の両端にかかる最大電圧を最小
にすることができ長期信頼性を確保できる。As described above, the present invention provides a DRAM in which the charge storage electrode and the plate electrode are made of different materials.
By increasing the voltage applied to the plate electrode by a voltage equal to the Fermi level of the charge storage electrode material minus the Fermi level of the plate electrode material than half of the power supply voltage, the voltage applied to both ends of the capacitive insulating film is increased. This maximum voltage can be minimized and long-term reliability can be ensured.
【図1】本発明の第1の実施例におけるDRAMのワ−
ド線に垂直な断面図である。FIG. 1: A workpiece of a DRAM in a first embodiment of the present invention.
FIG.
【図2】従来の方法における容量構造のバンド図である
。FIG. 2 is a band diagram of a capacitive structure in a conventional method.
【図3】本発明の第1の実施例における容量構造のバン
ド図である。FIG. 3 is a band diagram of the capacitive structure in the first embodiment of the present invention.
【図4】本発明の第2の実施例を説明する強誘電体メモ
リ−のワ−ド線に垂直な断面図である。FIG. 4 is a sectional view perpendicular to a word line of a ferroelectric memory illustrating a second embodiment of the present invention.
【図5】本発明の第2の実施例における強誘電体メモリ
−セルの回路図である。FIG. 5 is a circuit diagram of a ferroelectric memory cell in a second embodiment of the present invention.
【図6】従来の方法の動作説明のためのDRAMセルの
回路図である。FIG. 6 is a circuit diagram of a DRAM cell for explaining the operation of a conventional method.
1 ビット線
2 ワ−ド線
3 トランスファゲ−ト
6 容量電極
7 プレ−ト電極に与える電圧(VPL)8 電荷
蓄積電極(P+ポリシリコン)9 プレ−ト電極(N
+ポリシリコン)10 VPL
15 書き込み電圧
19 強誘電体
23 書き込み電極1 Bit line 2 Word line 3 Transfer gate 6 Capacitor electrode 7 Voltage applied to plate electrode (VPL) 8 Charge storage electrode (P+polysilicon) 9 Plate electrode (N
+Polysilicon) 10 VPL 15 Write voltage 19 Ferroelectric 23 Write electrode
Claims (4)
憶セルをなし、その容量が、電荷蓄積電極と、プレ−ト
電極と、それらに挟まれた絶縁膜とから構成され、この
電荷蓄積電極とプレ−ト電極が異なる材料からなるDR
AMであって、前記プレ−ト電極に与える電圧が、電源
電圧の二分の一より、電荷蓄積電極材料のフェルミレベ
ルからプレ−ト電極材料のフェルミレベルを差し引いた
電圧だけ高いことを特徴とする半導体記憶装置。Claim 1: One transistor and one capacitor form a unit memory cell, and the capacitor is composed of a charge storage electrode, a plate electrode, and an insulating film sandwiched between them, and the charge storage electrode DR whose plate electrode and plate electrode are made of different materials.
AM, characterized in that the voltage applied to the plate electrode is higher than one-half of the power supply voltage by the voltage obtained by subtracting the Fermi level of the plate electrode material from the Fermi level of the charge storage electrode material. Semiconductor storage device.
憶セルをなし、その容量が、書き込み電極と、プレ−ト
電極と、それらに挟まれた強誘電体膜とから構成され、
この書き込み電極とプレ−ト電極が異なる材料からなる
強誘電体メモリ−であって、プレ−ト電極に与える電圧
が、高レベル書き込み電圧から低レベル書き込み電圧を
引いた値の二分の一と、書き込み電極材料のフェルミレ
ベルからプレ−ト電極材料のフェルミレベルを差し引い
た電圧を足した電圧だけ低レベル書き込み電圧より高い
ことを特徴とする半導体記憶装置。2. One transistor and one capacitor form a unit memory cell, and the capacitor is composed of a write electrode, a plate electrode, and a ferroelectric film sandwiched between them,
The write electrode and the plate electrode are made of different materials, and the voltage applied to the plate electrode is one half of the value obtained by subtracting the low level write voltage from the high level write voltage, A semiconductor memory device characterized in that the voltage is higher than the low level write voltage by the sum of the voltage obtained by subtracting the Fermi level of the plate electrode material from the Fermi level of the write electrode material.
憶セルをなすDRAMであって、その容量が、N型不純
物が拡散されたシリコンあるいはポリシリコンでできた
電荷蓄積電極と、P型不純物が拡散されたポリシリコン
でできた対向電極と、それらに挟まれた絶縁膜とから構
成され、この対向電極に対して、電源電圧の二分の一よ
り約1.1Vだけ高い電圧が与えられることを特徴とす
る半導体記憶装置。3. A DRAM in which one transistor and one capacitor form a unit memory cell, and the capacitor has a charge storage electrode made of silicon or polysilicon doped with N-type impurities and a charge storage electrode made of silicon or polysilicon doped with N-type impurities. It consists of a counter electrode made of diffused polysilicon and an insulating film sandwiched between them, and a voltage approximately 1.1V higher than one-half of the power supply voltage is applied to the counter electrode. Characteristic semiconductor memory device.
憶セルをなすDRAMであって、その容量が、P型不純
物が拡散されたシリコンあるいはポリシリコンでできた
電荷蓄積電極と、N型不純物が拡散されたポリシリコン
でできた対向電極と、それらに挟まれた絶縁膜とから構
成され、この対向電極に対して、電源電圧の二分の一よ
り約1.1Vだけ低い電圧が与えられることを特徴とす
る半導体記憶装置。4. A DRAM in which one transistor and one capacitor form a unit memory cell, and the capacitance includes a charge storage electrode made of silicon or polysilicon doped with P-type impurities, and a charge storage electrode made of silicon or polysilicon doped with P-type impurities. It consists of a counter electrode made of diffused polysilicon and an insulating film sandwiched between them, and a voltage approximately 1.1V lower than half of the power supply voltage is applied to the counter electrode. Characteristic semiconductor memory device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3071579A JPH04307765A (en) | 1991-04-04 | 1991-04-04 | semiconductor storage device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3071579A JPH04307765A (en) | 1991-04-04 | 1991-04-04 | semiconductor storage device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04307765A true JPH04307765A (en) | 1992-10-29 |
Family
ID=13464750
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3071579A Pending JPH04307765A (en) | 1991-04-04 | 1991-04-04 | semiconductor storage device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04307765A (en) |
-
1991
- 1991-04-04 JP JP3071579A patent/JPH04307765A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3287460B2 (en) | Field effect transistor | |
| US5978253A (en) | Methods of operating integrated circuit memory devices having nonvolatile single transistor unit cells therein | |
| US5768185A (en) | Non-volatile semiconductor memory of a metal ferroelectric field effect transistor | |
| CN100412986C (en) | Strong medium memory and its operation method | |
| JPH0513774A (en) | Nonvolatile random access memory | |
| JPH0254572A (en) | semiconductor storage device | |
| JPH09205181A (en) | Semiconductor device | |
| US4991137A (en) | Semiconductor memory device | |
| JP3098629B2 (en) | Ferroelectric transistor, semiconductor storage device using the same, semiconductor applied equipment, and artificial intelligence system | |
| US6876030B2 (en) | Semiconductor memory device | |
| JP3039245B2 (en) | Semiconductor memory device | |
| JPS60189964A (en) | semiconductor memory | |
| JP3299837B2 (en) | Semiconductor storage device | |
| TWI792545B (en) | Oxide semiconductor-based fram | |
| KR100410716B1 (en) | FeRAM capable of connecting bottom electrode to storage node and method for forming the same | |
| JPH04307765A (en) | semiconductor storage device | |
| JPS62120072A (en) | Semiconductor memory | |
| JP3194287B2 (en) | Semiconductor storage device | |
| JPS61113189A (en) | Nonvolatile random access memory device | |
| GB2068639A (en) | Semiconductor memory device | |
| JP2723385B2 (en) | Non-volatile random access memory | |
| JPH0770228B2 (en) | Semiconductor memory write operation control method | |
| KR100317328B1 (en) | semiconductor memory device | |
| JPS59112646A (en) | semiconductor storage device | |
| JPH02209765A (en) | Semiconductor device |