JPH04308838A - Optical element - Google Patents
Optical elementInfo
- Publication number
- JPH04308838A JPH04308838A JP3135403A JP13540391A JPH04308838A JP H04308838 A JPH04308838 A JP H04308838A JP 3135403 A JP3135403 A JP 3135403A JP 13540391 A JP13540391 A JP 13540391A JP H04308838 A JPH04308838 A JP H04308838A
- Authority
- JP
- Japan
- Prior art keywords
- optical element
- container
- film
- transparent
- multilayer film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 30
- 239000000463 material Substances 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229920002379 silicone rubber Polymers 0.000 claims description 10
- 239000004945 silicone rubber Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 7
- 230000010287 polarization Effects 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000005304 optical glass Substances 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 206010040925 Skin striae Diseases 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Projection Apparatus (AREA)
- Optical Filters (AREA)
- Polarising Elements (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【0001】0001
【産業上の利用分野】本発明は、光学系を有する装置に
おいて、光の偏光成分及び色成分を分離、合成するため
に用いられる光学素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element used for separating and combining polarization components and color components of light in an apparatus having an optical system.
【0002】0002
【従来の技術】従来の光学系を有する装置において、光
の偏光成分を分離する偏光ビームスプリッタ、青、緑、
赤の三原色を分離・合成するダイクロイックプリズムは
、図11、図12に示すように、複数個の光学硝子を基
材としたプリズムに誘電体多層膜を形成し、さらにそれ
を接着剤を用いて貼り合わせるものであった。尚、図中
1は光学硝子、2は偏光ビームスプリッタ膜、3は赤反
射ダイクロイックミラー膜、4は青反射ダイクロイック
ミラー膜である。[Prior Art] In an apparatus having a conventional optical system, a polarizing beam splitter for separating polarized components of light, blue, green,
A dichroic prism that separates and synthesizes the three primary colors of red is made by forming a dielectric multilayer film on a prism made of multiple optical glasses as a base material, and then bonding it with an adhesive, as shown in Figures 11 and 12. It was meant to be glued together. In the figure, 1 is an optical glass, 2 is a polarizing beam splitter film, 3 is a red-reflecting dichroic mirror film, and 4 is a blue-reflecting dichroic mirror film.
【0003】しかし、従来のこれら光学素子は、以下の
問題点を有する。第1に、光学硝子を材料に用いるプリ
ズムは、その製造工程中で複屈折が材料内部で生じるた
め、プリズム全体が一様な屈折率を持たない。この複屈
折性はプリズムの形状が大きいほど顕著であり、光の偏
光成分を分離する偏光ビームスプリッタの場合、反射さ
れるべき偏光成分がプリズムの一部分で透過する現象を
生じる。However, these conventional optical elements have the following problems. First, in a prism using optical glass as a material, birefringence occurs inside the material during the manufacturing process, so the entire prism does not have a uniform refractive index. This birefringence becomes more pronounced as the shape of the prism becomes larger, and in the case of a polarizing beam splitter that separates polarized light components of light, a phenomenon occurs in which the polarized light component that should be reflected is transmitted through a portion of the prism.
【0004】第2に、この光学素子を光学硝子で構成し
た場合、プリズムの形状が大きくなるほど硝子内部の脈
理や気泡のために歩留まりが悪くなり、コストの高いも
のとなる。また、そのプリズムに誘電体多層膜を施す工
程では、誘電体膜の再生処理が困難なため、高いリスク
を伴う仕事となっている。Second, when this optical element is made of optical glass, the larger the shape of the prism, the lower the yield due to striae and bubbles inside the glass, and the higher the cost. Furthermore, in the process of applying a dielectric multilayer film to the prism, it is difficult to recycle the dielectric film, so the process involves high risks.
【0005】第3に、複数個のプリズムを貼り合わせて
一つの光学素子とする場合、その工程では光路系のズレ
を生じないように細心の注意を払いながら、丁寧に一つ
ずつ貼り合わせていくほかになく、手数がかかって根気
のいる、面倒な作業となっている。Third, when bonding multiple prisms together to form a single optical element, the process involves carefully bonding them one by one, paying close attention to avoid misalignment of the optical path system. There is no other choice but to do so, and it is a tedious and time-consuming process that requires patience.
【0006】第4に、誘電体多層膜は光の干渉効果を利
用しているために、入射光線の入射する角度は分光特性
に対して大きな依存性を持つ。広域帯の偏光ビームスプ
リッタの最適特性を得るためには、プリズムの硝子基材
と積層させる誘電体物質がある程度限定された場合、そ
の屈折率より、誘電体多層膜面に対する入射光線の角度
は限定される。Fourth, since the dielectric multilayer film utilizes the interference effect of light, the angle of incidence of the incident light beam has a large dependence on the spectral characteristics. In order to obtain the optimal characteristics of a broadband polarizing beam splitter, if the dielectric material laminated with the glass base material of the prism is limited to a certain extent, the angle of the incident ray to the dielectric multilayer film surface is limited due to its refractive index. be done.
【0007】[0007]
【発明が解決しようとする課題】この発明は上記の問題
点を解決するためになされたもので、その目的としてい
るところは、複屈折性を持たず、低価格で且つ簡単な構
造をしており、入射光線の誘電体多層膜面に対する最適
入射角度に対応でき、貼り合わせ工程を簡略化した光学
素子を提供するところにある。[Problems to be Solved by the Invention] This invention was made to solve the above problems, and its purpose is to provide a low-cost and simple structure that does not have birefringence. Therefore, it is an object of the present invention to provide an optical element that can correspond to the optimum angle of incidence of an incident light beam with respect to a dielectric multilayer film surface and that simplifies the bonding process.
【0008】[0008]
【課題を解決するための手段】本発明の光学素子は、複
数の入射窓と出射窓を有する容器の中に、誘電体多層膜
が形成されてなる一枚以上の透明基材を配置し、容器内
を、注入時は液体で、使用時は固体またはゲル状である
透明充填物質で密閉することを特徴とする。[Means for Solving the Problems] The optical element of the present invention has one or more transparent substrates formed with a dielectric multilayer film arranged in a container having a plurality of entrance windows and exit windows, The container is characterized by being sealed with a transparent filling material that is liquid during injection and solid or gel during use.
【0009】[0009]
【実施例】以下、本発明の実施例について図面を参照し
つつ説明する。
第1実施例
図1は本発明の第1実施例の光学素子の斜視図を示す。
容器13はアルミダイキャストにより成形したもので、
入射窓5と出射窓6があり、それぞれに反射防止膜を施
した透明基材を接着材で貼り付ける。容器13の内部に
は、誘電体多層膜の施された透明基材7を一定角度で設
置できるように突起10を設けており、接着剤を用いて
貼り付けて固定する。透明基材7に施された膜は、広域
帯の偏光ビームスプリッタ膜であり、真空蒸着により高
屈折材料として酸化チタン或いは酸化ジルコニウム或い
は酸化イットリウム、低屈折材料として酸化珪素或いは
フッ化マグネシウムなどの誘電体を多層蒸着した。入射
光線に対する透明基材7の設置角度及び分光光学特性は
、これら誘電体の組み合わせにより偏光成分を効率良く
分離するための最適角度及び膜構成とする。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. First Embodiment FIG. 1 shows a perspective view of an optical element according to a first embodiment of the present invention. The container 13 is molded by aluminum die-casting,
There is an entrance window 5 and an exit window 6, and a transparent base material coated with an antireflection film is attached to each with an adhesive. A protrusion 10 is provided inside the container 13 so that the transparent base material 7 coated with a dielectric multilayer film can be installed at a certain angle, and is fixed by pasting it using an adhesive. The film applied to the transparent base material 7 is a broadband polarizing beam splitter film, and is made of titanium oxide, zirconium oxide, or yttrium oxide as a high refractive material and a dielectric material such as silicon oxide or magnesium fluoride as a low refractive material by vacuum evaporation. The body was deposited in multiple layers. The installation angle and spectral optical characteristics of the transparent substrate 7 with respect to the incident light beam are determined to be optimal angles and film configurations for efficiently separating polarized light components by combining these dielectrics.
【0010】透明基材7を設置後、容器内部を密閉する
ために上蓋11を接着剤或いはパッキング構造により取
り付け、注入孔12よりシリコーンゴムコンパウンド(
屈折率>1.4 )を注入して内部を充填する。シリコ
ーンゴムコンパウンド内の気泡を抜くために、減圧器で
減圧したのちに常温或いは50〜150°Cの加熱状態
で硬化を行なう。After installing the transparent base material 7, a top lid 11 is attached using adhesive or a packing structure to seal the inside of the container, and a silicone rubber compound (
(refractive index > 1.4) to fill the interior. In order to remove air bubbles from the silicone rubber compound, the pressure is reduced using a pressure reducer, and then curing is performed at room temperature or under heating at 50 to 150°C.
【0011】このようにして得られた光学素子の分光特
性を図2、図3に示す。図2は本実施例に於けるS偏光
成分及びP偏光成分の分光透過率特性であり、図3は透
明基材7を設置していない状態、すなわちシリコーンゴ
ムコンパウンドのみの分光透過率特性を示す。入射光線
は400〜700mmの広範囲にわたりS偏光成分とP
偏光成分に分離された。また、シリコーンゴムコンパウ
ンドは、光学素子として使用できうる透光性を持ってい
る。The spectral characteristics of the optical element thus obtained are shown in FIGS. 2 and 3. FIG. 2 shows the spectral transmittance characteristics of the S-polarized light component and the P-polarized light component in this example, and FIG. 3 shows the spectral transmittance characteristics of only the silicone rubber compound without the transparent base material 7 installed. . The incident light beam has an S polarization component and a P polarization component over a wide range of 400 to 700 mm.
Separated into polarized components. Additionally, silicone rubber compounds have translucency that allows them to be used as optical elements.
【0012】図4、図5は複屈折の状態を示した。黒い
部分は複屈折により偏光成分の抜けが生じている箇所で
あり、図4に示した従来の光学硝子を用いたプリズムの
場合は、4隅にこの黒い部分がみられ、偏光成分の抜け
が発生していたが、図5に示した本発明による場合に於
いては複屈折部分は見受けられない。充填物質に用いる
シリコーンゴムコンパウンドは、付加重合反応により硬
化するため、副生成物もなく、歪みが発生しない。この
ように、光学素子全体にわたり歪みがなく、屈折率が一
様であることは、偏光ビームスプリッタとして使用する
とき、偏光成分の分離に於いてきわめて効率よい。FIGS. 4 and 5 show the state of birefringence. The black areas are areas where the polarization component is missing due to birefringence, and in the case of the prism using conventional optical glass shown in Figure 4, these black areas are seen at the four corners, indicating that the polarization component is missing. However, in the case according to the present invention shown in FIG. 5, no birefringent portion is observed. The silicone rubber compound used as the filling material is cured by addition polymerization reaction, so there are no by-products and no distortion occurs. Thus, the absence of distortion and uniform refractive index over the entire optical element is extremely efficient in separating polarized light components when used as a polarizing beam splitter.
【0013】図6〜図8に入射光線に対する偏光ビーム
スプリッタ膜の設置角度を変えたときの容器の形状を示
した。入射角45°のときが構造的にもっとも簡単であ
ったが、30°及び60°でもP偏光成分、S偏光成分
の分離は可能だった。FIGS. 6 to 8 show the shape of the container when the installation angle of the polarizing beam splitter film with respect to the incident light beam is changed. Although the structure was the simplest when the incident angle was 45°, it was possible to separate the P-polarized light component and the S-polarized light component even at 30° and 60°.
【0014】第2実施例
図9は本発明の第2実施例の光学素子の斜視図を示す。
容器13には4つの透明基材による窓があり、それぞれ
一つの窓には青、緑、赤の三色に分割された光が入射し
、容器内に十文字状に設置した、誘電体多層膜によるダ
イクロイックミラー膜の施された透明基材により、選択
的に反射及び透過し、一つの窓より合成光として出射す
る。また、一つの窓より光源光を入射させたときは、残
りの窓からはそれぞれ青、緑、赤に分割された光が出射
する。容器内は第1実施例と同様にシリコーンゴムコン
パウンドで充填し密閉する。Second Embodiment FIG. 9 shows a perspective view of an optical element according to a second embodiment of the present invention. The container 13 has four windows made of transparent substrates, each of which allows light divided into three colors of blue, green, and red to enter, and a dielectric multilayer film installed in a cross shape inside the container. A transparent base material coated with a dichroic mirror film selectively reflects and transmits light, and the light is emitted as composite light through a single window. Furthermore, when the light source light enters through one window, the remaining windows emit light that is divided into blue, green, and red, respectively. The inside of the container is filled with silicone rubber compound and sealed in the same manner as in the first embodiment.
【0015】図10は本実施例におけるS偏光成分の分
光透過率特性図である。赤、青の色成分を反射し、緑の
色成分を透過している。半値波長は誘電体膜の膜厚を変
えることにより任意に設定できる。十文字状に設置した
ダイクロイックミラーは、その中央部で膜切れ状態とな
っており、その影響を少なくするために透明基材の板厚
は 0.2〜 1.0mmと薄いものとなっている。容
器内を充填するシリコーンゴムコンパウンドは、硬化後
は固体またはゲル状になるため、十文字状に設置された
ミラーは固定され、振動による出射光のブレを抑えるこ
とができる。FIG. 10 is a spectral transmittance characteristic diagram of the S-polarized light component in this example. It reflects the red and blue color components and transmits the green color component. The half-value wavelength can be arbitrarily set by changing the thickness of the dielectric film. The dichroic mirrors installed in a cross shape have a film breakage in the center, and in order to reduce the effect of this, the thickness of the transparent base material is as thin as 0.2 to 1.0 mm. The silicone rubber compound that fills the inside of the container becomes solid or gel-like after it hardens, so the mirrors arranged in a cross shape are fixed, and it is possible to suppress blurring of the emitted light due to vibration.
【0016】[0016]
【発明の効果】以上述べたように、本発明によれば、従
来光学材料で構成したプリズムに頼っていた光学素子を
、1つの容器と誘電体多層膜を有する複数枚の板材によ
って作ることができ、コストとリスクの大幅な低減を図
ることができる。また、容器内部を透光性のあるシリコ
ーンゴムコンパウンドで充填することにより、従来のプ
リズムの欠陥であった脈理や気泡、或いは歪みや複屈折
の問題点を解消し、かつ形状の大型化にも対応できる。
さらに、誘電体多層膜の角度依存性に対して誘電体多層
膜の施された透明基材の設置角度を変えることによりあ
る程度簡単に対応でき、また、複雑な構造を有する光学
素子において高精度を要求される貼り合わせ工程を簡略
化することができる。As described above, according to the present invention, an optical element that conventionally relied on a prism made of an optical material can be made from one container and a plurality of plates having dielectric multilayer films. It is possible to significantly reduce costs and risks. In addition, by filling the inside of the container with a translucent silicone rubber compound, problems with conventional prisms such as striae, bubbles, distortion, and birefringence are eliminated, and the shape can be increased. can also be handled. Furthermore, the angular dependence of the dielectric multilayer film can be easily dealt with by changing the installation angle of the transparent substrate coated with the dielectric multilayer film, and high precision can be achieved in optical elements with complex structures. The required bonding process can be simplified.
【図1】本発明の第1実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment of the invention.
【図2】第1実施例における光学素子の光学特性図であ
る。FIG. 2 is an optical characteristic diagram of the optical element in the first example.
【図3】シリコーンゴムコンパウンドの透光性を示す光
学特性図である。FIG. 3 is an optical characteristic diagram showing the translucency of a silicone rubber compound.
【図4】従来の光学硝子を用いたプリズムの場合の複屈
折状態の説明図である。FIG. 4 is an explanatory diagram of the state of birefringence in the case of a prism using conventional optical glass.
【図5】本発明の第1実施例による場合の複屈折状態の
説明図である。FIG. 5 is an explanatory diagram of a birefringence state according to the first embodiment of the present invention.
【図6】第1実施例において偏光ビームスプリッタの設
置角度を変えたときの容器の形状を示す平面図である。FIG. 6 is a plan view showing the shape of the container when the installation angle of the polarizing beam splitter is changed in the first embodiment.
【図7】第1実施例において偏光ビームスプリッタの設
置角度を変えたときの容器の形状を示す平面図である。FIG. 7 is a plan view showing the shape of the container when the installation angle of the polarizing beam splitter is changed in the first embodiment.
【図8】第1実施例において偏光ビームスプリッタの設
置角度を変えたときの容器の形状を示す平面図である。FIG. 8 is a plan view showing the shape of the container when the installation angle of the polarizing beam splitter is changed in the first embodiment.
【図9】本発明の第2実施例の斜視図である。FIG. 9 is a perspective view of a second embodiment of the invention.
【図10】第2実施例における光学素子の光学特性図で
ある。FIG. 10 is an optical characteristic diagram of an optical element in a second example.
【図11】従来の光学素子の説明図である。FIG. 11 is an explanatory diagram of a conventional optical element.
【図12】従来の光学素子の説明図である。FIG. 12 is an explanatory diagram of a conventional optical element.
5 入射窓
6 出射窓
7 偏光ビームスプリッタ膜付き透明基材8 赤反
射ダイクロイックミラー膜付き透明基板9 青反射ダ
イクロイックミラー膜付き透明基板10 透明基材固
定用突起
11 密閉用上蓋
12 注入口
13 容器5 Entrance window 6 Output window 7 Transparent base material with polarizing beam splitter film 8 Transparent substrate with red reflective dichroic mirror film 9 Transparent substrate with blue reflective dichroic mirror film 10 Transparent base material fixing protrusion 11 Sealing top lid 12 Inlet port 13 Container
Claims (4)
、誘電体多層膜が形成されてなる一枚以上の透明基材を
配置し、容器内を注入時は液体であり、使用時は固体ま
たはゲル状である透明充填物質で密閉したことを特徴と
する光学素子。Claim 1: One or more transparent substrates formed with a dielectric multilayer film are arranged in a container having a plurality of entrance windows and exit windows, and the inside of the container is liquid when injected. An optical element characterized in that it is sealed with a transparent filling material that is sometimes solid or gel-like.
帯偏光ビームスプリッタ膜である請求項1記載の光学素
子。2. The optical element according to claim 1, wherein the dielectric multilayer film formed on the transparent base material is a broadband polarization beam splitter film.
クロイックミラー膜である請求項1記載の光学素子。3. The optical element according to claim 1, wherein the dielectric band multilayer film formed on the transparent base material is a dichroic mirror film.
ドである請求項1記載の光学素子。4. The optical element according to claim 1, wherein the transparent filling material is a silicone rubber compound.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3135403A JPH04308838A (en) | 1991-04-05 | 1991-04-05 | Optical element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3135403A JPH04308838A (en) | 1991-04-05 | 1991-04-05 | Optical element |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04308838A true JPH04308838A (en) | 1992-10-30 |
Family
ID=15150910
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3135403A Pending JPH04308838A (en) | 1991-04-05 | 1991-04-05 | Optical element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04308838A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009503584A (en) * | 2005-07-29 | 2009-01-29 | スリーエム イノベイティブ プロパティズ カンパニー | Method for making a polarizing beam splitter |
-
1991
- 1991-04-05 JP JP3135403A patent/JPH04308838A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009503584A (en) * | 2005-07-29 | 2009-01-29 | スリーエム イノベイティブ プロパティズ カンパニー | Method for making a polarizing beam splitter |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5453859A (en) | Polarization beam splitter and projection display apparatus | |
| US20050041289A1 (en) | Advanced prism assemblies and prism assemblies using cholesteric reflectors | |
| EP0468501B1 (en) | Dichroic mirror and projector having the same | |
| US7480013B2 (en) | Projection type display apparatus | |
| US6909556B2 (en) | Design of prism assemblies and kernel configurations for use in projection systems | |
| CN105339818B (en) | Polarization converter, the manufacturing method of Polarization converter and optical device | |
| JP2006301585A (en) | Optical product and method of manufacturing optical product | |
| WO2017110176A1 (en) | Optical element package | |
| JPH03120503A (en) | Polarizing component | |
| JPH10186111A (en) | Optical block | |
| US6999237B2 (en) | Method and apparatus for configuration and assembly of a video projection light management system | |
| JPH04308838A (en) | Optical element | |
| JP2002286934A (en) | Optical filter, imaging device using the same, and imaging device using the same | |
| US6402322B1 (en) | Polarization separation element, polarization conversion element, and projector | |
| JP2003149414A (en) | Prism device, projection display device using the same, and method of manufacturing prism device | |
| JPH11142624A (en) | Optical block, display device equipped with optical system having optical block and manufacture of optical block | |
| JPS63116106A (en) | Optical multilayer film and its manufacturing method | |
| CN100367050C (en) | Optical compensation plate and projection type liquid crystal display device using optical compensation plate | |
| JP2017120275A (en) | Package, manufacturing method of package, and image display device | |
| JP2017120799A (en) | Package, manufacturing method of package, and image display device | |
| US20030123147A1 (en) | Film for forming 3D image display body and production method of 3D image display body | |
| JPH10311907A (en) | Manufacturing method of cross dichroic prism | |
| JPH11281806A (en) | Optical block | |
| JP2005134814A (en) | Image display device | |
| CN100397149C (en) | Optical compensation plate and its projection type liquid crystal display device |