JPH04324072A - Refrigeration circuit for non-azeotropic refrigerant - Google Patents
Refrigeration circuit for non-azeotropic refrigerantInfo
- Publication number
- JPH04324072A JPH04324072A JP9536391A JP9536391A JPH04324072A JP H04324072 A JPH04324072 A JP H04324072A JP 9536391 A JP9536391 A JP 9536391A JP 9536391 A JP9536391 A JP 9536391A JP H04324072 A JPH04324072 A JP H04324072A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- boiling point
- point refrigerant
- heat exchanger
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、非共沸混合冷媒を用い
た冷凍回路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration circuit using a non-azeotropic refrigerant mixture.
【0002】0002
【従来の技術】従来、2流体混合の非共沸混合冷媒(沸
点が異なる2つの冷媒の混合物)を単段圧縮機によって
圧縮する冷凍回路として図2に示すものが知られている
。図において21は圧縮機、22は凝縮器、23は気液
分離器、24は高沸点冷媒用の第1膨張弁、25は2重
管式の熱交換器、26は低沸点冷媒用の第2膨張弁、2
7は蒸発器である。2. Description of the Related Art Conventionally, a refrigeration circuit shown in FIG. 2 is known in which a two-fluid non-azeotropic refrigerant mixture (a mixture of two refrigerants having different boiling points) is compressed by a single-stage compressor. In the figure, 21 is a compressor, 22 is a condenser, 23 is a gas-liquid separator, 24 is a first expansion valve for high boiling point refrigerant, 25 is a double pipe heat exchanger, and 26 is a first expansion valve for low boiling point refrigerant. 2 expansion valve, 2
7 is an evaporator.
【0003】図中矢印で示すように圧縮機21から吐出
された非共沸混合冷媒は、凝縮器22でその一部を凝縮
されて気液分離器23に送り込まれ、該気液分離器23
の上層にガス状の低沸点冷媒が、また下層に液状の高沸
点冷媒が夫々収容される。As shown by the arrow in the figure, the non-azeotropic mixed refrigerant discharged from the compressor 21 is partially condensed in the condenser 22 and sent to the gas-liquid separator 23.
A gaseous low boiling point refrigerant is contained in the upper layer, and a liquid high boiling point refrigerant is contained in the lower layer.
【0004】液状の高沸点冷媒は、気液分離器23の下
層から第1膨張弁24に送り込まれて減圧された後、熱
交換器25の流路25aに送り込まれて他方の流路25
bとの相互熱交換で蒸発し圧縮機21に戻る。一方、ガ
ス状の低沸点冷媒は、気液分離器23の上層から熱交換
器25の流路25bに送り込まれて他方の流路25aと
の相互熱交換で凝縮された後、第2膨張弁26に送り込
まれて減圧され、さらに蒸発器27に送り込まれて蒸発
し圧縮機21に戻る。The liquid high boiling point refrigerant is fed from the lower layer of the gas-liquid separator 23 to the first expansion valve 24 to be depressurized, and then fed into the flow path 25a of the heat exchanger 25, and is then fed into the other flow path 25.
It evaporates through mutual heat exchange with b and returns to the compressor 21. On the other hand, the gaseous low boiling point refrigerant is sent from the upper layer of the gas-liquid separator 23 to the flow path 25b of the heat exchanger 25, and after being condensed by mutual heat exchange with the other flow path 25a, the second expansion valve 26 where the pressure is reduced, and further into the evaporator 27 where it is evaporated and returned to the compressor 21.
【0005】上記の冷凍回路では、ロ−レンツサイクル
によって広い温度範囲で凝縮と蒸発を行なって良好な成
績係数(COP)もって冷却を行なうことができ、−8
0℃以下の超低温冷却を実現できる。[0005] In the above-mentioned refrigeration circuit, condensation and evaporation can be performed in a wide temperature range by the Lorentz cycle, and cooling can be performed with a good coefficient of performance (COP).
Ultra-low temperature cooling below 0°C can be achieved.
【0006】[0006]
【発明が解決しようとする課題】しかしながら上述の冷
凍回路では、気液分離器23の下層から第1膨張弁24
に送り込まれる液状の高沸点冷媒は飽和状態にあって過
冷却度が0℃であるため、送り込み途中で温度上昇や圧
力降下があるとフラッシュガスが発生し易く、第1膨張
弁24における減圧作用及び熱交換器25における熱交
換作用が十分に行なえなくなって冷凍能力が低下する欠
点がある。However, in the above-mentioned refrigeration circuit, the first expansion valve 24 is
Since the liquid high boiling point refrigerant sent to the refrigerant is in a saturated state and has a supercooling degree of 0°C, flash gas is likely to be generated if there is a temperature rise or pressure drop during the delivery, and the pressure reducing effect at the first expansion valve 24 Another drawback is that the heat exchange action in the heat exchanger 25 cannot be performed sufficiently, resulting in a reduction in refrigerating capacity.
【0007】本発明は上記問題点に鑑みてなされたもの
で、その目的とするところは、フラッシュガスの発生に
よる冷凍能力の低下を防止できる非共沸混合冷媒用の冷
凍回路を提供することにある。The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a refrigeration circuit for non-azeotropic mixed refrigerants that can prevent a reduction in refrigeration capacity due to the generation of flash gas. be.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
、請求項1では、圧縮機と、圧縮機から吐出された非共
沸混合冷媒を凝縮させる凝縮器と、凝縮器で凝縮された
冷媒をガス状の低沸点冷媒と液状の高沸点冷媒に分離す
る気液分離器と、気液分離器から送り出される液状の高
沸点冷媒を減圧する第1膨張手段と、減圧後の高沸点冷
媒とガス状の低沸点冷媒とを相互に熱交換させる熱交換
器と、熱交換後の低沸点冷媒を減圧する第2膨張手段と
、減圧後の低沸点冷媒を蒸発させる蒸発器とを具備し、
熱交換後の高沸点冷媒と蒸発後の低沸点冷媒を圧縮機に
戻すようにした非共沸混合冷媒用の冷凍回路において、
気液分離器から第1膨張手段に送り込まれる液状の高沸
点冷媒と熱交換器から圧縮機に戻される高沸点冷媒とを
相互に熱交換させる第2の熱交換器を設けている。[Means for Solving the Problems] In order to achieve the above object, claim 1 provides a compressor, a condenser for condensing a non-azeotropic mixed refrigerant discharged from the compressor, and a refrigerant condensed in the condenser. a gas-liquid separator that separates the refrigerant into a gaseous low-boiling refrigerant and a liquid high-boiling refrigerant; a first expansion means that depressurizes the liquid high-boiling refrigerant sent from the gas-liquid separator; and a high-boiling refrigerant after depressurization. A heat exchanger that mutually exchanges heat with a gaseous low boiling point refrigerant, a second expansion means that reduces the pressure of the low boiling point refrigerant after heat exchange, and an evaporator that evaporates the low boiling point refrigerant after the pressure reduction,
In a refrigeration circuit for a non-azeotropic mixed refrigerant, the high boiling point refrigerant after heat exchange and the low boiling point refrigerant after evaporation are returned to the compressor.
A second heat exchanger is provided for mutually exchanging heat between the liquid high-boiling refrigerant sent from the gas-liquid separator to the first expansion means and the high-boiling refrigerant returned from the heat exchanger to the compressor.
【0009】また、請求項2では、圧縮機と、圧縮機か
ら吐出された非共沸混合冷媒を凝縮させる凝縮器と、凝
縮器で凝縮された冷媒をガス状の低沸点冷媒と液状の高
沸点冷媒に分離する気液分離器と、気液分離器から送り
出される液状の高沸点冷媒を減圧する第1膨張手段と、
減圧後の高沸点冷媒とガス状の低沸点冷媒とを相互に熱
交換させる熱交換器と、熱交換後の低沸点冷媒を減圧す
る第2膨張手段と、減圧後の低沸点冷媒を蒸発させる蒸
発器とを具備し、熱交換後の高沸点冷媒と蒸発後の低沸
点冷媒を圧縮機に戻すようにした非共沸混合冷媒用の冷
凍回路において、気液分離器から送り出される液状の高
沸点冷媒を2分する分流器と、分流器の一分流側から送
り出される液状の高沸点冷媒を減圧する第3膨張手段と
、分流器の他分流側から第1膨張手段に送り込まれる液
状の高沸点冷媒と第3膨張手段で減圧された高沸点冷媒
とを相互に熱交換させる第2の熱交換器を設け、第2の
熱交換器で熱交換された一分流側の高沸点冷媒を圧縮機
に戻すようにしている。[0009] Also, in claim 2, the compressor, the condenser for condensing the non-azeotropic mixed refrigerant discharged from the compressor, and the refrigerant condensed in the condenser are combined with a gaseous low boiling point refrigerant and a liquid high boiling point refrigerant. a gas-liquid separator that separates the boiling-point refrigerant; a first expansion means that reduces the pressure of the liquid high-boiling refrigerant sent out from the gas-liquid separator;
A heat exchanger that mutually exchanges heat between a high boiling point refrigerant after being decompressed and a gaseous low boiling point refrigerant, a second expansion means that depressurizes the low boiling point refrigerant after heat exchange, and evaporating the low boiling point refrigerant after being depressurized. In a refrigeration circuit for a non-azeotropic mixed refrigerant that is equipped with an evaporator and returns the high boiling point refrigerant after heat exchange and the low boiling point refrigerant after evaporation to the compressor, the liquid high boiling point refrigerant sent from the gas-liquid separator is a flow divider that divides the boiling point refrigerant into two; a third expansion means that reduces the pressure of the liquid high boiling point refrigerant sent from one branch side of the flow divider; A second heat exchanger is provided for mutually exchanging heat between the boiling point refrigerant and the high boiling point refrigerant whose pressure has been reduced by the third expansion means, and compressing the high boiling point refrigerant on the one branch side that has undergone heat exchange with the second heat exchanger. I'm trying to get it back on the machine.
【0010】0010
【作用】請求項1記載の冷凍回路では、気液分離器から
第1膨張手段に送り込まれる液状の高沸点冷媒と熱交換
器から圧縮機に戻される高沸点冷媒とを第2の熱交換器
で相互に熱交換させることで、第1膨張手段に送り込ま
れる液状の高沸点冷媒を冷却して適当な過冷却度を付与
することができ、送り込み途中で温度上昇や圧力降下が
あってもフラッシュガスが発生し難い。In the refrigeration circuit according to claim 1, the liquid high-boiling refrigerant sent from the gas-liquid separator to the first expansion means and the high-boiling refrigerant returned to the compressor from the heat exchanger are transferred to the second heat exchanger. By exchanging heat with each other, the liquid high-boiling point refrigerant fed into the first expansion means can be cooled and given an appropriate degree of supercooling, and even if there is a temperature rise or pressure drop during feeding, it will not flash. Gas is difficult to generate.
【0011】請求項2記載の冷凍回路では、気液分離器
から送り出される液状の高沸点冷媒を分流器で2分し、
該分流器の一分流側から送り出される液状の高沸点冷媒
を第3膨張手段で減圧した後、該減圧後の高沸点冷媒と
分流器の他分流側から第1膨張手段に送り込まれる液状
の高沸点冷媒とを第2の熱交換器で相互に熱交換させる
ことで、第1膨張手段に送り込まれる液状の高沸点冷媒
を冷却して適当な過冷却度を付与することができ、送り
込み途中で温度上昇や圧力降下があってもフラッシュガ
スが発生し難い。In the refrigeration circuit according to the second aspect of the invention, the liquid high boiling point refrigerant sent out from the gas-liquid separator is divided into two by a flow divider,
After the pressure of the liquid high-boiling refrigerant sent from one branch side of the flow divider is reduced by the third expansion means, the reduced pressure high-boiling refrigerant and the liquid high-boiling refrigerant sent from the other flow side of the flow divider to the first expansion means are combined. By mutually exchanging heat with the boiling point refrigerant in the second heat exchanger, the liquid high boiling point refrigerant sent to the first expansion means can be cooled and given an appropriate degree of supercooling. Flash gas is difficult to generate even if there is a temperature rise or pressure drop.
【0012】0012
【実施例】図1は本発明の一実施例を示す冷凍回路図で
あり、図において1は圧縮機、2は凝縮器、3は気液分
離器、4は高沸点冷媒用の第1膨張弁、5は2重管式の
第1熱交換器、6は低沸点冷媒用の第2膨張弁、7は蒸
発器、8は2重管式の第2熱交換器である。[Embodiment] Fig. 1 is a refrigeration circuit diagram showing one embodiment of the present invention, in which 1 is a compressor, 2 is a condenser, 3 is a gas-liquid separator, and 4 is a first expansion for high boiling point refrigerant. The valves 5 are a double-tube type first heat exchanger, 6 is a second expansion valve for a low boiling point refrigerant, 7 is an evaporator, and 8 is a double-tube type second heat exchanger.
【0013】圧縮機1の吐出口は凝縮器2の入口に接続
され、該凝縮器2の出口は気液分離器3の入口に接続さ
れている。気液分離器3の低沸点冷媒出口は第1熱交換
器5の一方の流路5aを介して第2膨張弁6の入口に接
続され、該第2膨張弁6の出口は蒸発器7の入口に接続
され、該蒸発器7の出口は圧縮機1の吸入口に接続され
ている。A discharge port of the compressor 1 is connected to an inlet of a condenser 2, and an outlet of the condenser 2 is connected to an inlet of a gas-liquid separator 3. The low boiling point refrigerant outlet of the gas-liquid separator 3 is connected to the inlet of the second expansion valve 6 via one flow path 5a of the first heat exchanger 5, and the outlet of the second expansion valve 6 is connected to the inlet of the second expansion valve 6. The outlet of the evaporator 7 is connected to the inlet of the compressor 1.
【0014】また、気液分離器3の高沸点冷媒出口は第
2熱交換器8の一方の流路8aを介して第1膨張弁4の
入口に接続され、該第1膨張弁4の出口は第1熱交換器
5の他方の流路5bと第2熱交換器8の他方の流路8b
を順に介して圧縮機1の吸入口に接続されている。Further, the high boiling point refrigerant outlet of the gas-liquid separator 3 is connected to the inlet of the first expansion valve 4 via one flow path 8a of the second heat exchanger 8, and the outlet of the first expansion valve 4 are the other flow path 5b of the first heat exchanger 5 and the other flow path 8b of the second heat exchanger 8.
are connected to the suction port of the compressor 1 through the .
【0015】図中矢印で示すように圧縮機1から吐出さ
れた非共沸混合冷媒は、凝縮器2でその一部を凝縮され
て気液分離器3に送り込まれ、該気液分離器3の上層に
ガス状の低沸点冷媒が、また下層に液状の高沸点冷媒が
夫々収容される。実際には凝縮器2で高沸点冷媒を完全
に凝縮することができないので、気液分離器3の上層に
は高沸点冷媒のガスが、また下層には低沸点冷媒の液が
夫々多少混入する。As shown by the arrow in the figure, the non-azeotropic mixed refrigerant discharged from the compressor 1 is partially condensed in the condenser 2 and sent to the gas-liquid separator 3. A gaseous low boiling point refrigerant is contained in the upper layer, and a liquid high boiling point refrigerant is contained in the lower layer. In reality, the high boiling point refrigerant cannot be completely condensed in the condenser 2, so some high boiling point refrigerant gas is mixed in the upper layer of the gas-liquid separator 3, and some low boiling point refrigerant liquid is mixed in the lower layer. .
【0016】液状の高沸点冷媒は、気液分離器3の高沸
点冷媒出口から第2熱交換器8の流路8aに送り込まれ
、他方の流路8bとの相互熱交換で冷却される。第2熱
交換器8で凝縮した後の高沸点冷媒は、第1膨張弁4で
減圧された後に第1熱交換器5の流路5bに送り込まれ
、他方の流路5aと相互熱交換されて蒸発する。第1熱
交換器5で蒸発した後の高沸点冷媒は、第2熱交換器8
の流路8bに送り込まれ、他方の流路8aと相互熱交換
されて圧縮機1に戻る。The liquid high-boiling refrigerant is sent from the high-boiling refrigerant outlet of the gas-liquid separator 3 to the flow path 8a of the second heat exchanger 8, and is cooled by mutual heat exchange with the other flow path 8b. The high boiling point refrigerant that has been condensed in the second heat exchanger 8 is depressurized in the first expansion valve 4 and then sent into the flow path 5b of the first heat exchanger 5, where it is mutually heat exchanged with the other flow path 5a. and evaporate. The high boiling point refrigerant after evaporating in the first heat exchanger 5 is transferred to the second heat exchanger 8
It is sent into the flow path 8b, exchanges heat with the other flow path 8a, and returns to the compressor 1.
【0017】一方、ガス状の低沸点冷媒は、気液分離器
3の低沸点冷媒出口から第1熱交換器5の流路5aに送
り込まれ、他方の流路5bとの相互熱交換で冷却されて
凝縮した後、第2膨張弁6に送り込まれて減圧され、さ
らに蒸発器7に送り込まれて蒸発し圧縮機1に戻る。On the other hand, the gaseous low boiling point refrigerant is sent from the low boiling point refrigerant outlet of the gas-liquid separator 3 to the flow path 5a of the first heat exchanger 5, and is cooled by mutual heat exchange with the other flow path 5b. After being condensed, it is sent to the second expansion valve 6 where the pressure is reduced, and further sent to the evaporator 7 where it is evaporated and returned to the compressor 1.
【0018】この冷凍回路では、気液分離器3の高沸点
冷媒出口から送り出される液状の高沸点冷媒と第1熱交
換器5から圧縮機1に戻される高沸点冷媒とを第2熱交
換器8で相互に熱交換させることで、第1膨張手段4に
送り込まれる液状の高沸点冷媒を冷却して適当な過冷却
度を付与できるので、送り込み途中で温度上昇や圧力降
下があってもフラッシュガスが発生することがない。こ
れにより第1膨張弁4における減圧作用及び第1熱交換
器5における熱交換作用を適正に行なって冷凍能力の低
下を防止することができ、また第2熱交換器8で得られ
た過冷却分だけ冷凍能力を向上させることができる。In this refrigeration circuit, the liquid high boiling point refrigerant sent out from the high boiling point refrigerant outlet of the gas-liquid separator 3 and the high boiling point refrigerant returned to the compressor 1 from the first heat exchanger 5 are transferred to the second heat exchanger 3. By exchanging heat with each other in step 8, the liquid high-boiling point refrigerant fed into the first expansion means 4 can be cooled and given an appropriate degree of supercooling, so even if there is a temperature rise or pressure drop during feeding, it will not flash. No gas is generated. This makes it possible to properly perform the pressure reduction action in the first expansion valve 4 and the heat exchange action in the first heat exchanger 5 to prevent a decrease in refrigerating capacity. Refrigeration capacity can be improved by that amount.
【0019】図3は本発明の他の一実施例を示す冷凍回
路図であり、図において11は圧縮機、12は凝縮器、
13は気液分離器、14は高沸点冷媒用の第1膨張弁、
15は2重管式の第1熱交換器、16は低沸点冷媒用の
第2膨張弁、17は蒸発器、18は分流器、19は高沸
点冷媒用の第3膨張弁、20は2重管式の第2熱交換器
である。FIG. 3 is a refrigeration circuit diagram showing another embodiment of the present invention, in which 11 is a compressor, 12 is a condenser,
13 is a gas-liquid separator, 14 is a first expansion valve for high boiling point refrigerant,
15 is a double tube type first heat exchanger, 16 is a second expansion valve for low boiling point refrigerant, 17 is an evaporator, 18 is a flow divider, 19 is a third expansion valve for high boiling point refrigerant, 20 is 2 This is a double-tube type second heat exchanger.
【0020】圧縮機11の吐出口は凝縮器12の入口に
接続され、該凝縮器12の出口は気液分離器13の入口
に接続されている。気液分離器13の低沸点冷媒出口は
第1熱交換器15の一方の流路15aを介して第2膨張
弁16の入口に接続され、該第2膨張弁16の出口は蒸
発器17の入口に接続され、該蒸発器17の出口は圧縮
機11の吸入口に接続されている。A discharge port of the compressor 11 is connected to an inlet of a condenser 12, and an outlet of the condenser 12 is connected to an inlet of a gas-liquid separator 13. The low boiling point refrigerant outlet of the gas-liquid separator 13 is connected to the inlet of the second expansion valve 16 via one flow path 15a of the first heat exchanger 15, and the outlet of the second expansion valve 16 is connected to the inlet of the second expansion valve 16. The outlet of the evaporator 17 is connected to the inlet of the compressor 11.
【0021】また、気液分離器13の高沸点冷媒出口は
分流器18の入口に接続され、該分流器18の一方(図
中上側)の出口は第2熱交換器20の一方の流路20a
を介して第1膨張弁14の入口に接続され、該第1膨張
弁14の出口は第1熱交換器15の他方の流路15bを
介して圧縮機1の吸入口に接続されている。また、分流
器18の他方(図中下側)の出口は第3膨張弁19の入
口に接続され、該第3膨張弁19の出口は第2熱交換器
20の他方の流路20bを介して圧縮機1の吸入口に接
続されている。Further, the high boiling point refrigerant outlet of the gas-liquid separator 13 is connected to the inlet of a flow divider 18, and one outlet of the flow divider 18 (upper side in the figure) is connected to one flow path of the second heat exchanger 20. 20a
The outlet of the first expansion valve 14 is connected to the suction port of the compressor 1 via the other flow path 15b of the first heat exchanger 15. Further, the other (lower side in the figure) outlet of the flow divider 18 is connected to the inlet of a third expansion valve 19, and the outlet of the third expansion valve 19 is connected to the other flow path 20b of the second heat exchanger 20. and is connected to the suction port of the compressor 1.
【0022】図中矢印で示すように圧縮機11から吐出
された非共沸混合冷媒は、凝縮器12でその一部を凝縮
されて気液分離器13に送り込まれ、該気液分離器13
の上層にガス状の低沸点冷媒が、また下層に液状の高沸
点冷媒が夫々収容される。実際には凝縮器12で高沸点
冷媒を完全に凝縮することができないので、気液分離器
13の上層には高沸点冷媒のガスが、また下層には低沸
点冷媒の液が夫々多少混入する。As shown by the arrow in the figure, the non-azeotropic mixed refrigerant discharged from the compressor 11 is partially condensed in the condenser 12 and sent to the gas-liquid separator 13.
A gaseous low boiling point refrigerant is contained in the upper layer, and a liquid high boiling point refrigerant is contained in the lower layer. In reality, the high boiling point refrigerant cannot be completely condensed in the condenser 12, so some high boiling point refrigerant gas is mixed in the upper layer of the gas-liquid separator 13, and some low boiling point refrigerant liquid is mixed in the lower layer. .
【0023】液状の高沸点冷媒は、気液分離器13の高
沸点冷媒出口から分流器18に送り込まれて2分される
。分流器18の上側出口から送り出される液状の高沸点
冷媒は、第2熱交換器20の流路20aに送り込まれ、
他方の流路20bとの相互熱交換で冷却される。第2熱
交換器20で冷却された後の高沸点冷媒は、第1膨張弁
14で減圧された後に第1熱交換器15の流路15bに
送り込まれ、他方の流路15aとの相互熱交換で蒸発し
圧縮機1に戻る。また、分流器18の下側出口から送り
出される液状の高沸点冷媒は、第3膨張弁19で減圧さ
れた後に第2熱交換器20の流路20bに送り込まれ、
他方の流路20aと相互熱交換されて蒸発し圧縮機1に
戻る。The liquid high-boiling refrigerant is sent from the high-boiling refrigerant outlet of the gas-liquid separator 13 to the flow divider 18 and divided into two parts. The liquid high boiling point refrigerant sent out from the upper outlet of the flow divider 18 is sent into the flow path 20a of the second heat exchanger 20,
It is cooled by mutual heat exchange with the other flow path 20b. After being cooled in the second heat exchanger 20, the high boiling point refrigerant is depressurized in the first expansion valve 14 and then sent into the flow path 15b of the first heat exchanger 15, where it exchanges heat with the other flow path 15a. It evaporates during exchange and returns to compressor 1. Further, the liquid high boiling point refrigerant sent out from the lower outlet of the flow divider 18 is depressurized by the third expansion valve 19 and then sent into the flow path 20b of the second heat exchanger 20,
It exchanges heat with the other flow path 20a, evaporates, and returns to the compressor 1.
【0024】一方、ガス状の低沸点冷媒は、気液分離器
13の低沸点冷媒出口から第1熱交換器15の流路15
aに送りこまれ、他方の流路15bとの熱交換で冷却さ
れて凝縮した後、第2膨張弁16に送り込まれて減圧さ
れ、さらに蒸発器17に送り込まれて蒸発し圧縮機11
に戻る。On the other hand, the gaseous low boiling point refrigerant flows from the low boiling point refrigerant outlet of the gas-liquid separator 13 to the flow path 15 of the first heat exchanger 15.
a, is cooled and condensed by heat exchange with the other flow path 15b, and then sent to the second expansion valve 16 to be depressurized, and further sent to the evaporator 17, where it evaporates and becomes the compressor 11.
Return to
【0025】この冷凍回路では、気液分離器13から送
り出される液状の高沸点冷媒を分流器18で2分し、該
分流器18の下側出口から送り出される液状の高沸点冷
媒を第3膨張手段19で減圧した後、該減圧後の高沸点
冷媒と分流器18の上側出口から送り出される液状の高
沸点冷媒とを第2熱交換器20で相互に熱交換させるこ
とで、第1膨張手段14に送り込まれる液状の高沸点冷
媒を冷却して適当な過冷却度を付与できるので、送り込
み途中で温度上昇や圧力降下があってもフラッシュガス
が発生することがない。これにより第1膨張弁14にお
ける減圧作用及び第1熱交換器15における熱交換作用
を適正に行なって冷凍能力の低下を防止することができ
、また第2熱交換器20で得られた過冷却分だけ冷凍能
力を向上させることができる。In this refrigeration circuit, the liquid high boiling point refrigerant sent out from the gas-liquid separator 13 is divided into two by the flow divider 18, and the liquid high boiling point refrigerant sent out from the lower outlet of the flow divider 18 is subjected to a third expansion. After the pressure is reduced by the means 19, the high boiling point refrigerant after the pressure reduction and the liquid high boiling point refrigerant sent out from the upper outlet of the flow divider 18 are exchanged with each other in the second heat exchanger 20. Since the liquid high boiling point refrigerant fed into the refrigerant 14 can be cooled and given an appropriate degree of supercooling, flash gas will not be generated even if there is a temperature rise or pressure drop during the feeding. This makes it possible to appropriately perform the pressure reduction action in the first expansion valve 14 and the heat exchange action in the first heat exchanger 15 to prevent a decrease in refrigerating capacity, and also to prevent the refrigerating capacity from decreasing due to the supercooling obtained in the second heat exchanger 20. Refrigeration capacity can be improved by that amount.
【0026】尚、実施例で示した2重管式の各熱交換器
は冷媒相互で熱交換を行なえるものであれば他の形態の
ものであってもよく、また必要に応じて圧縮機の吸入口
側にアキュ−ムレ−タを設けたり、凝縮器用送風機や蒸
発器用送風機を設置してもよい。The double tube type heat exchangers shown in the examples may be of other types as long as they can exchange heat between the refrigerants, and if necessary, the compressor An accumulator may be provided on the suction port side of the pump, or a condenser blower or an evaporator blower may be installed.
【0027】[0027]
【発明の効果】以上詳述したように、請求項1記載の冷
凍回路によれば、気液分離器から送り出される液状の高
沸点冷媒と熱交換器から圧縮機に戻される高沸点冷媒と
を第2の熱交換器で相互に熱交換させ、第1膨張手段に
送り込まれる液状の高沸点冷媒を冷却して適当な過冷却
度を付与しているので、送り込み途中で温度上昇や圧力
降下があってもフラッシュガスが発生することがなく、
第1膨張手段における減圧作用及び熱交換器における熱
交換作用を適正に行なって冷凍能力の低下を防止できる
ことに加え、第2の熱交換器で得られた過冷却分だけ冷
凍能力を向上できる利点がある。As described in detail above, according to the refrigeration circuit according to claim 1, the liquid high-boiling refrigerant sent out from the gas-liquid separator and the high-boiling refrigerant returned to the compressor from the heat exchanger can be combined. The second heat exchanger exchanges heat with each other and cools the liquid high-boiling refrigerant fed into the first expansion means to give it an appropriate degree of supercooling, so there is no temperature rise or pressure drop during feeding. Even if there is, no flash gas is generated,
In addition to being able to properly perform the pressure reduction action in the first expansion means and the heat exchange action in the heat exchanger to prevent a decrease in refrigeration capacity, the advantage is that the refrigeration capacity can be improved by the amount of supercooling obtained by the second heat exchanger. There is.
【0028】また、請求項2記載の冷凍回路によれば、
気液分離器から送り出される液状の高沸点冷媒を分流器
で2分し、該分流器の一分流側から送り出される液状の
高沸点冷媒を第3膨張手段で減圧した後、該高沸点冷媒
と分流器の他分流側から送り出される液状の高沸点冷媒
とを第2の熱交換器で相互に熱交換させ、第1膨張手段
に送り込まれる高沸点冷媒の飽和液を冷却して適当な過
冷却度を付与しているので、送り込み途中で温度上昇や
圧力降下があってもフラッシュガスが発生することがな
く、第1膨張手段における減圧作用及び熱交換器におけ
る熱交換作用を適正に行なって冷凍能力の低下を防止で
きることに加え、第2の熱交換器で得られた過冷却分だ
け冷凍能力を向上できる利点がある。Furthermore, according to the refrigeration circuit according to claim 2,
The liquid high-boiling point refrigerant sent out from the gas-liquid separator is divided into two by a flow divider, and the liquid high-boiling point refrigerant sent out from the one branch side of the flow divider is depressurized by the third expansion means, and then the high-boiling point refrigerant and the high-boiling point refrigerant are separated. A second heat exchanger mutually exchanges heat with the liquid high-boiling refrigerant sent from the other branch side of the divider, and cools the saturated liquid of the high-boiling refrigerant sent to the first expansion means to achieve appropriate supercooling. Since the temperature is given a certain temperature, flash gas will not be generated even if there is a temperature rise or pressure drop during feeding, and the pressure reduction action in the first expansion means and the heat exchange action in the heat exchanger are performed appropriately. In addition to being able to prevent a decrease in capacity, there is an advantage that refrigeration capacity can be improved by the amount of supercooling obtained by the second heat exchanger.
【図1】本発明の一実施例を示す冷凍回路図[Fig. 1] Refrigeration circuit diagram showing one embodiment of the present invention
【図2】従
来例を示す冷凍回路図[Figure 2] Refrigeration circuit diagram showing a conventional example
【図3】本発明の他の実施例を示す冷凍回路図[Fig. 3] Refrigeration circuit diagram showing another embodiment of the present invention
1…圧縮機、2…凝縮器、3…気液分離器、4…第1膨
張弁、5…第1熱交換器、6…第2膨張弁、7…蒸発器
、8…第2熱交換器、11…圧縮機、12…凝縮器、1
3…気液分離器、14…第1膨張弁、15…第1熱交換
器、16…第2膨張弁、17…蒸発器、18…分流器、
19…第3膨張弁、20…第2熱交換器。1... Compressor, 2... Condenser, 3... Gas-liquid separator, 4... First expansion valve, 5... First heat exchanger, 6... Second expansion valve, 7... Evaporator, 8... Second heat exchanger vessel, 11...compressor, 12...condenser, 1
3... Gas-liquid separator, 14... First expansion valve, 15... First heat exchanger, 16... Second expansion valve, 17... Evaporator, 18... Flow divider,
19... Third expansion valve, 20... Second heat exchanger.
Claims (2)
合冷媒を凝縮させる凝縮器と、凝縮器で凝縮された冷媒
をガス状の低沸点冷媒と液状の高沸点冷媒に分離する気
液分離器と、気液分離器から送り出される液状の高沸点
冷媒を減圧する第1膨張手段と、減圧後の高沸点冷媒と
ガス状の低沸点冷媒とを相互に熱交換させる熱交換器と
、熱交換後の低沸点冷媒を減圧する第2膨張手段と、減
圧後の低沸点冷媒を蒸発させる蒸発器とを具備し、熱交
換後の高沸点冷媒と蒸発後の低沸点冷媒を圧縮機に戻す
ようにした非共沸混合冷媒用の冷凍回路において、気液
分離器から第1膨張手段に送り込まれる液状の高沸点冷
媒と熱交換器から圧縮機に戻される高沸点冷媒とを相互
に熱交換させる第2の熱交換器を設けた、ことを特徴と
する非共沸混合冷媒用の冷凍回路。Claim 1: A compressor, a condenser for condensing a non-azeotropic mixed refrigerant discharged from the compressor, and separating the refrigerant condensed by the condenser into a gaseous low boiling point refrigerant and a liquid high boiling point refrigerant. A gas-liquid separator, a first expansion means for reducing the pressure of the liquid high-boiling refrigerant sent from the gas-liquid separator, and a heat exchanger for mutually exchanging heat between the high-boiling refrigerant after depressurization and the gaseous low-boiling refrigerant. , a second expansion means for reducing the pressure of the low boiling point refrigerant after heat exchange, and an evaporator for evaporating the low boiling point refrigerant after pressure reduction, and compressing the high boiling point refrigerant after heat exchange and the low boiling point refrigerant after evaporation. In a refrigeration circuit for a non-azeotropic mixed refrigerant that is returned to the compressor, the liquid high-boiling refrigerant sent from the gas-liquid separator to the first expansion means and the high-boiling refrigerant returned to the compressor from the heat exchanger are mutually connected. A refrigeration circuit for a non-azeotropic mixed refrigerant, characterized in that a second heat exchanger is provided for exchanging heat with the refrigerant.
合冷媒を凝縮させる凝縮器と、凝縮器で凝縮された冷媒
をガス状の低沸点冷媒と液状の高沸点冷媒に分離する気
液分離器と、気液分離器から送り出される液状の高沸点
冷媒を減圧する第1膨張手段と、減圧後の高沸点冷媒と
ガス状の低沸点冷媒とを相互に熱交換させる熱交換器と
、熱交換後の低沸点冷媒を減圧する第2膨張手段と、減
圧後の低沸点冷媒を蒸発させる蒸発器とを具備し、熱交
換後の高沸点冷媒と蒸発後の低沸点冷媒を圧縮機に戻す
ようにした非共沸混合冷媒用の冷凍回路において、気液
分離器から送り出される液状の高沸点冷媒を2分する分
流器と、分流器の一分流側から送り出される液状の高沸
点冷媒を減圧する第3膨張手段と、分流器の他分流側か
ら第1膨張手段に送り込まれる液状の高沸点冷媒と第3
膨張手段で減圧された高沸点冷媒とを相互に熱交換させ
る第2の熱交換器を設け、第2の熱交換器で熱交換され
た一分流側の高沸点冷媒を圧縮機に戻すようにした、こ
とを特徴とする非共沸混合冷媒用の冷凍回路。Claim 2: A compressor, a condenser for condensing a non-azeotropic mixed refrigerant discharged from the compressor, and separating the refrigerant condensed in the condenser into a gaseous low boiling point refrigerant and a liquid high boiling point refrigerant. A gas-liquid separator, a first expansion means for reducing the pressure of the liquid high-boiling refrigerant sent from the gas-liquid separator, and a heat exchanger for mutually exchanging heat between the high-boiling refrigerant after depressurization and the gaseous low-boiling refrigerant. , a second expansion means for reducing the pressure of the low boiling point refrigerant after heat exchange, and an evaporator for evaporating the low boiling point refrigerant after pressure reduction, and compressing the high boiling point refrigerant after heat exchange and the low boiling point refrigerant after evaporation. In a refrigeration circuit for non-azeotropic mixed refrigerant that is returned to the machine, there is a flow divider that divides the liquid high-boiling refrigerant sent out from the gas-liquid separator into two, and a liquid high-boiling point refrigerant sent out from one branch side of the flow divider. A third expansion means for reducing the pressure of the refrigerant, a liquid high boiling point refrigerant sent from the other branch side of the flow divider to the first expansion means, and a third expansion means for reducing the pressure of the refrigerant.
A second heat exchanger is provided to mutually exchange heat with the high boiling point refrigerant whose pressure has been reduced by the expansion means, and the high boiling point refrigerant on the one branch side that has been heat exchanged with the second heat exchanger is returned to the compressor. A refrigeration circuit for a non-azeotropic mixed refrigerant characterized by:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9536391A JPH04324072A (en) | 1991-04-25 | 1991-04-25 | Refrigeration circuit for non-azeotropic refrigerant |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9536391A JPH04324072A (en) | 1991-04-25 | 1991-04-25 | Refrigeration circuit for non-azeotropic refrigerant |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04324072A true JPH04324072A (en) | 1992-11-13 |
Family
ID=14135549
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9536391A Pending JPH04324072A (en) | 1991-04-25 | 1991-04-25 | Refrigeration circuit for non-azeotropic refrigerant |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04324072A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998006983A1 (en) * | 1996-08-14 | 1998-02-19 | Daikin Industries, Ltd. | Air conditioner |
| WO2002025186A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Heating apparatus with low compression load |
| WO2002025187A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Air-conditioning apparatus with low compression load |
| WO2002025185A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Low compression load type air-conditioning system |
| JP2008170090A (en) * | 2007-01-12 | 2008-07-24 | Mac:Kk | Brazing plate for heat transfer and heat exchanger using the same |
| CN106766325A (en) * | 2016-11-22 | 2017-05-31 | 广东美的暖通设备有限公司 | Low-temperature air-conditioning system and air-conditioning |
-
1991
- 1991-04-25 JP JP9536391A patent/JPH04324072A/en active Pending
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1998006983A1 (en) * | 1996-08-14 | 1998-02-19 | Daikin Industries, Ltd. | Air conditioner |
| AU727320B2 (en) * | 1996-08-14 | 2000-12-07 | Daikin Industries, Ltd. | Air conditioner |
| US6164086A (en) * | 1996-08-14 | 2000-12-26 | Daikin Industries, Ltd. | Air conditioner |
| WO2002025186A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Heating apparatus with low compression load |
| WO2002025187A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Air-conditioning apparatus with low compression load |
| WO2002025185A1 (en) * | 2000-09-25 | 2002-03-28 | Boilcon Co., Ltd. | Low compression load type air-conditioning system |
| JP2008170090A (en) * | 2007-01-12 | 2008-07-24 | Mac:Kk | Brazing plate for heat transfer and heat exchanger using the same |
| CN106766325A (en) * | 2016-11-22 | 2017-05-31 | 广东美的暖通设备有限公司 | Low-temperature air-conditioning system and air-conditioning |
| CN106766325B (en) * | 2016-11-22 | 2019-08-06 | 广东美的暖通设备有限公司 | Low-temperature air-conditioning system and air-conditioning |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3090217B1 (en) | Cooling cycle apparatus for refrigerator | |
| CN108463676B (en) | Refrigeration cycle device | |
| JPH10259962A (en) | Refrigeration unit, refrigerator, air-cooled condenser unit and compressor unit for refrigeration unit | |
| JP2001116376A (en) | Supercritical vapor compression refrigeration cycle | |
| KR101173157B1 (en) | Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling | |
| JPH10332212A (en) | Refrigeration cycle of air conditioner | |
| JPH10318614A (en) | Air conditioner | |
| JPH09196480A (en) | Liquid cooler for refrigeration equipment | |
| JP3487710B2 (en) | Refrigeration cycle operation method and air conditioner using it | |
| JPH04324072A (en) | Refrigeration circuit for non-azeotropic refrigerant | |
| JP2000304380A (en) | Heat exchanger | |
| KR20180056854A (en) | High-capacity rapid-cooling cryogenic freezer capable of controlling the suction temperature of the compressor | |
| EP3423771B1 (en) | Heat exchange device suitable for low pressure refrigerant | |
| JP2711879B2 (en) | Low temperature refrigerator | |
| JP2004232986A (en) | Refrigerator | |
| JPH109714A (en) | Refrigeration equipment | |
| KR0159238B1 (en) | Two stage expansion refrigeration unit using accumulator of air conditioner | |
| JPH09196481A (en) | Method for altering composition of mixture refrigerant and structure of circuit | |
| JPH07208822A (en) | Heat pump type refrigerating cycle | |
| JP2559220Y2 (en) | Refrigeration equipment | |
| KR0184207B1 (en) | Air conditioning cooling cycle device | |
| KR20160143278A (en) | System and method for air conditioning by using multi-evaporator | |
| JPH09145179A (en) | Mixed refrigerant dual type cryogenic refrigerator | |
| JP3219577B2 (en) | Air conditioner | |
| JPH07127926A (en) | Gas-liquid separator in compression heat pump |