JPH0432132B2 - - Google Patents
Info
- Publication number
- JPH0432132B2 JPH0432132B2 JP14845685A JP14845685A JPH0432132B2 JP H0432132 B2 JPH0432132 B2 JP H0432132B2 JP 14845685 A JP14845685 A JP 14845685A JP 14845685 A JP14845685 A JP 14845685A JP H0432132 B2 JPH0432132 B2 JP H0432132B2
- Authority
- JP
- Japan
- Prior art keywords
- auger
- molten metal
- chamber
- heating chamber
- melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 97
- 239000002184 metal Substances 0.000 claims abstract description 97
- 230000008018 melting Effects 0.000 claims abstract description 70
- 238000002844 melting Methods 0.000 claims abstract description 70
- 238000010438 heat treatment Methods 0.000 claims abstract description 30
- 239000003923 scrap metal Substances 0.000 claims abstract description 21
- 230000005484 gravity Effects 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims 2
- 238000002955 isolation Methods 0.000 claims 1
- 239000000155 melt Substances 0.000 abstract description 13
- 238000007667 floating Methods 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 239000012530 fluid Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 235000014214 soft drink Nutrition 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
- C22B7/003—Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S266/00—Metallurgical apparatus
- Y10S266/901—Scrap metal preheating or melting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Processing Of Solid Wastes (AREA)
- Furnace Details (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、一般に金属スクラツプを再溶融する
分野、特に軽量のアルミニウムスクラツプ例えば
シート状の金属スクラツプ、機械加工の切削屑、
及びアルミニウム清涼飲料缶を再溶融する分野に
関する。DETAILED DESCRIPTION OF THE INVENTION The invention relates generally to the field of remelting metal scrap, and more particularly to the field of remelting metal scrap, particularly lightweight aluminum scrap, such as sheet metal scrap, machining cuttings,
and relating to the field of remelting aluminum soft drink cans.
2次金属工業の主な関心は、スクラツプ金属の
再溶融中に溶融した金属に含まれ、捕捉され、或
いは溶解する酸化物及び気体の再生である。これ
らの酸化物は、酸化物の前もつての生成が最終生
成物として究極的に販売しうる再溶融したスクラ
ツプ金属の割合を減少させるということに関心が
寄せられている。このスクラツプ部分は、再溶融
中に生成した酸化物が故に使用できなくなつた
「溶融損失物」と呼ばれる。 A major concern of the secondary metal industry is the regeneration of oxides and gases that are contained, trapped, or dissolved in the molten metal during the remelting of scrap metal. These oxides are of interest because the prior formation of oxides reduces the proportion of remelted scrap metal that can ultimately be sold as a final product. This scrap portion is referred to as "melt loss" which is no longer usable due to oxides formed during remelting.
不純物は、非常に反応性の液体金属表面が反応
性の気体例えば酸素又は水素と接する場合の再溶
融中に生成する。水素及び酸素の1次源は再溶融
炉で燃焼させるために用いる空気及び燃焼気体の
組合せ物である。スクラツプ金属の再溶融におけ
る不純物を排除するために、反応性の気体にさら
される反応性スクラツプ金属の表面積を最小にす
るための適当な手段がとられ、またフラツクス
(flux)を含む溶融した金属を再生することによ
つて不純物を除去するための手段が使用される。 Impurities are formed during remelting when highly reactive liquid metal surfaces come into contact with reactive gases such as oxygen or hydrogen. The primary source of hydrogen and oxygen is the combination of air and combustion gases used for combustion in the remelting furnace. In order to eliminate impurities in the remelting of scrap metal, appropriate measures are taken to minimize the surface area of the reactive scrap metal exposed to reactive gases and to eliminate the molten metal containing flux. Means are used to remove impurities by regeneration.
スクラツプ金属を再溶融する分野において、再
溶融中の酸化物の生成を予防し又は禁止するため
に用いる積極的な方策は一般に次の通りである:
最初に高質量(mass)で低表面積(重ゲージ
(heavy gauge)の物質を再溶融することによつ
て溶融した金属の流体浴を炉内に生成せしめ、次
いでこの浴をフラツクス及び浮きかす(dross)
の保護被覆物で覆い、次いで更なるスクラツプ
を、存在する溶融金属浴中に没入させることによ
つてこれを再溶融する、一度溶融した金属プール
が炉内に形成されると、溶融金属は予じめ設定し
た水準になり、更なるスクラツプの添加と比例し
た速度で流出せしめられる。浴を覆う遮へい被覆
物は浴の表面を溶かすことによつて形成される。
フラツクスによつて補助された不純物は表面に浮
かんで浴の上部にクラフト(crust)又は「浮き
かす」を生成する。この浮きかすは固体又はプラ
スチツク状態で存在する。 In the field of remelting scrap metal, the active measures used to prevent or inhibit the formation of oxides during remelting are generally as follows:
A fluid bath of molten metal is created in the furnace by first remelting high mass, low surface area (heavy gauge) material, and this bath is then converted into flux and dross. )
Once the molten metal pool has formed in the furnace, the molten metal is The scrap is then brought to a set level and allowed to flow at a rate proportional to the addition of further scrap. A shielding coating over the bath is formed by melting the surface of the bath.
Impurities assisted by the flux float to the surface and create a crust or "float" at the top of the bath. This scum exists in solid or plastic form.
浮きかすのすぐ下には、種々の程度で不純物を
含む半溶融、半プラスチツク状の金属の「スキ
ム」(skim)が存在する。このスキム及び浮きか
すは通常連続的に又は間断的に炉から除去されて
大きい蓄積を防止するが、いくらかのスキム及び
浮かすを炉の表面上に置いて、その下に存在する
溶融金属の酸素又は他の雰囲気気体との更なる接
触を防止する遮へい剤として作用せしめることが
有利であると考えられる。炉から除去されるスキ
ム及び浮きかすを完全に固化し且つ捨てられるか
又は含まれる金属を再利用するために処理され
る。 Immediately beneath the dross is a semi-molten, semi-plastic metal "skim" containing varying degrees of impurities. Although this skim and float is usually removed continuously or intermittently from the furnace to prevent large build-up, some skim and float may be placed on the surface of the furnace to remove oxygen from the molten metal present below. It may be advantageous to act as a shielding agent to prevent further contact with other atmospheric gases. The skim and flotsam removed from the furnace are processed to fully solidify and either be discarded or the metals contained are recycled.
スクラツプ金属の溶融はエネルギーのかかる工
程であり、金属スクラツプを溶融状態に変え且つ
その状態に保つためには更なるエネルギーが必要
とされる。用いるエネルギーの形は電気又は燃焼
源で生成した熱である。金属スクラツプの熱発生
域への導入は、比較的冷たいスクラツプ金属が熱
発生域へ導入される場合、及びこの熱発生域がス
クラツプの導入中に冷たい大気空気にさらされる
場合、多量の熱エネルギーが失われるということ
に問題がある。更にスクラツプが燃料気体、燃焼
気体、及び大気空気と十分接触して溶融する場合
には不純物が生成する。従つて一般的な提案とし
て、金属溶融する炉は、熱発生域が大気空気にさ
らされる時の熱損失を特に防止する且つ燃料気
体、燃焼気体及び大気空気が溶融するスクラツプ
と反応して不純物を生成するのを特に防止する試
みで改良されてきた。 Melting scrap metal is an energy-intensive process, and additional energy is required to convert and maintain the scrap metal in a molten state. The form of energy used is electricity or heat generated by a combustion source. The introduction of scrap metal into a heat-generating zone generates a large amount of thermal energy when relatively cold scrap metal is introduced into the heat-generating zone and when this heat-generating zone is exposed to cold atmospheric air during the introduction of the scrap. The problem is that it is lost. Additionally, impurities are formed when the scrap comes into sufficient contact with fuel gases, combustion gases, and atmospheric air to melt. Therefore, as a general suggestion, metal melting furnaces are designed to specifically prevent heat losses when the heat generating zone is exposed to atmospheric air and to remove impurities from the reaction of fuel gases, combustion gases and atmospheric air with the molten scrap. Improvements have been made in an attempt to specifically prevent the formation of
炉の改良の試みの1つは、炉床の外に耐火材料
以外の更なる室、即ち「溶融」室を設ける形をと
つた。耐火材の「壁」がバーナーを溶融室から隔
離する。この壁には、溶融室と加熱室の間に溶融
した金属を流させるための出入口を設置する。こ
の口は溶融した金属に通常設定される流体の水準
の下に位置する。スクラツプは溶融室へ導入され
ると、そこで溶融した金属と接触するようにな
る。そのような手段を用いれば、スクラツプはバ
ーナーの望ましくない影響から常に遮閉され、バ
ーナーは有用な熱エネルギーを大気空気へ失なわ
ない。 One attempt to improve the furnace took the form of providing an additional chamber outside the hearth other than the refractory material, a "melting" chamber. A refractory "wall" separates the burner from the melting chamber. This wall is provided with an inlet/outlet for flowing molten metal between the melting chamber and the heating chamber. This port is located below the fluid level normally set in the molten metal. The scrap is introduced into the melting chamber where it comes into contact with molten metal. With such means, the scrap is always shielded from undesirable effects of the burner and the burner does not lose useful thermal energy to the atmosphere.
再溶融炉に対してそのような隔離室を用いる試
みでは、溶融した金属それ自体の、隔離された室
間の壁の出入口を通しての自然対流が溶融した金
属を溶融状態で溶融室中に維持するために且つ添
加しつつある固相スクラツプ金属を溶融するため
に十分な速度で熱を伝達するのに適当でないこと
が決定された。熱を加熱室から溶融室へ伝導する
ように設計された特別な耐火組成物を利用する試
みは限定的に成功であり、比較的少量のスクラツ
プだけが溶融温度を許容しうる程度以下に減じな
いで成功裏に添加できた。特別な溶融金属ポンプ
の付加は、究極的には溶融室的の温度を、固化が
起こりはじめないような十分高い温度に維持する
ことを保証することが必要である。 In attempts to use such isolated chambers for remelting furnaces, natural convection of the molten metal itself through the wall openings between the isolated chambers maintains the molten metal in a molten state within the melting chamber. It was determined that the solid state scrap metal was not suitable for transferring heat at a sufficient rate to melt the solid scrap metal that was being added. Attempts to utilize special refractory compositions designed to conduct heat from the heating chamber to the melting chamber have had limited success, with only relatively small amounts of scrap not reducing the melting temperature below an acceptable level. I was able to successfully add it. The addition of a special molten metal pump is ultimately necessary to ensure that the melter temperature is maintained high enough that solidification does not begin to occur.
市販されているそのようなポンプは、通常グラ
フアイト或いは劣化に耐える他の耐火材料から作
られる。上述した隔離室の溶融炉系への溶融金属
循環ポンプの付加は、溶融とこの系の比較的重い
ゲージのスクラツプの再溶融への商業的適用とを
可能にする。しかしながら、低質量で高表面積
(軽ゲージ(light gauge))の金属が商業的用途
で増加しており、結果としてこの軽ゲージのスク
ラツプは循環使用のために量的に増大している。
特に清涼飲料缶の使用は非常に増大している。こ
の軽ゲージのスクラツプの再溶融に関しては更な
る問題に遭遇し、溶融損失量を許容しうる程度ま
で減ずるために新しい手法が必要とされている。 Such pumps, which are commercially available, are usually made from graphite or other refractory materials that resist degradation. The addition of a molten metal circulation pump to the isolated chamber melting furnace system described above enables commercial application of the system to the melting and remelting of relatively heavy gauge scrap. However, low mass, high surface area (light gauge) metals are increasingly being used in commercial applications, and as a result, this light gauge scrap is increasing in quantity for recycle use.
In particular, the use of soft drink cans has increased significantly. Additional problems are encountered with the remelting of this light gauge scrap and new techniques are needed to reduce the amount of melt loss to an acceptable level.
溶融した金属は非常に高い表面張力が特色であ
る。一般的に言つて、金属を再溶融する炉の場
合、重ゲージのスクラツプは溶融した金属中に落
とせば、重力によつて溶融した流体中に急速に沈
む。しかし表面張力及び溶融金属の表面上の浮き
かすとスキムのために、軽ゲージのスクラツプは
長期缶に亘つて表面上に「浮く」傾向にあるとい
う事実によつて、それを流体中へ没入させること
は更に困難である。使用される軽ゲージのスクラ
ツプの多くは、表面上で溶解しはじめるにつれて
酸化及び他の化学反応のために失なわれる。従つ
て表面張力を迅速に克服する手段の必要なこと、
即ち軽ゲージのスクラツプを、浮きかす及びスキ
ムを通してその下の溶融物中に導入する方法の必
要なことが認識されてきた。 Molten metals are characterized by very high surface tension. Generally speaking, in a metal remelting furnace, if heavy gauge scrap is dropped into the molten metal, gravity will cause it to sink rapidly into the molten fluid. However, due to surface tension and the fact that light gauge scrap tends to "float" above the surface over long periods of time due to scum and skim on the surface of the molten metal, immersing it in the fluid This is even more difficult. Much of the light gauge scrap used is lost to oxidation and other chemical reactions as it begins to dissolve on the surface. There is therefore a need for a means to quickly overcome surface tension;
Thus, a need has been recognized for a method of introducing light gauge scrap through the float and skim into the underlying melt.
最初に、軽ゲージのスクラツプを溶融した金属
表面下に機械的に押しやる試みがなされた。また
軽ゲージのスクラツプを大きい束に圧縮し、この
大きい束を溶融した金属表面下に機械的に押しや
る試みもなされた。これらの両方の方法は、過度
な溶融損失と低いスクラツプ金属の溶融及び回収
割合とのために不成功であつた。この最初の試み
に続いて、軽ゲージのスクラツプを、隔離溶融室
型の炉中で溶融した金属表面下に導入する改良さ
れた方法が開発された。 Initially, attempts were made to mechanically force light gauge scrap beneath the molten metal surface. Attempts have also been made to compress light gauge scrap into large bundles and mechanically force the large bundles below the surface of the molten metal. Both of these methods have been unsuccessful due to excessive melting losses and low scrap metal melting and recovery rates. Following this initial attempt, an improved method was developed in which light gauge scrap was introduced below the surface of the molten metal in an isolated melting chamber type furnace.
そのような改良された系の例は米国特許第
4286985号に示される。この例では、溶融した金
属をポンプによつて加熱室から溶融室の上方部分
へ向わさせ、そして比較的熱い溶融した金属を溶
融室中の溶融物プールの上方部分に付与し且つそ
の室でかきまぜ作用に供し、溶融物表面上のスク
ラツプを溶融物中の下方へ循環させる。 An example of such an improved system is U.S. Pat.
No. 4286985. In this example, molten metal is directed from the heating chamber to an upper portion of the melting chamber by a pump, and the relatively hot molten metal is applied to the upper portion of the melt pool in the melting chamber and in the chamber. The scrap on the melt surface is subjected to a stirring action and circulated downward into the melt.
他の装置は、実質的に溶融した金属プールの表
面水準下の溶融室中へ直接導入するべく設計され
た種々のポンプ羽根車の配置を含んで紹介されて
いる。そのような装置の例は米国特許第3984234
号、第4128415号、及び第4322245号に示されてい
る。これらの装置のすべては、溶融した金属の表
面上に浮くスクラツプ金属は、溶融物プール中の
ポンプの没入した羽根車によつて生じせしめられ
る流体の渦によつて該プールの中央に引きこまれ
る。そのような系のポンプ羽根車は、溶融した金
属を溶融室から加熱室中へ、また加熱室から溶融
室へ循環させるための別の目的にも役立つ。 Other devices have been introduced including various pump impeller arrangements designed to introduce directly into the melting chamber substantially below the surface level of the molten metal pool. An example of such a device is U.S. Pat. No. 3,984,234.
No. 4128415 and No. 4322245. In all of these devices, the scrap metal floating on the surface of the molten metal is drawn into the center of the melt pool by a fluid vortex created by a submerged impeller of a pump in the melt pool. . The pump impeller of such a system also serves the additional purpose of circulating molten metal from the melting chamber into the heating chamber and from the heating chamber to the melting chamber.
これらの系は、比較的多量の軽ゲージの金属ス
クラツプを、そのような物質が溶融するにつれて
汚染物及び酸化にさらされないようにして溶融物
中に没入せしめうるという点でいくらか成功して
いることが証明された。しかしながらこれらの系
は、羽根車を、軽ゲージのスクラツプの実質的に
すべてを溶融物プール中へ迅速に没入させるのに
十分な速度で駆動する場合に過度な渦が生ずるか
ら実際上完全には成功できなかつた。この過度な
濁は取りまく雰囲気の気体を吸引によつて溶融物
中に引き込む傾向がある。これらの気体は溶融し
た金属と容易に結合して、高量の不純物を生成す
る。この現象は米国特許第4322245号第4欄42〜
50行に詳述されている。斯くして軽ゲージのスク
ラツプのすべてを雰囲気の気体を含むことなしに
溶融した金属中へ積極的に駆動させる且つ溶融し
た金属を加熱室から溶融室へ良好に循環させる系
が必要とされる。 These systems have had some success in allowing relatively large quantities of light gauge metal scrap to be immersed in the melt without being exposed to contaminants and oxidation as such material melts. has been proven. However, these systems are not perfect in practice due to the excessive vortices created when the impeller is driven at a speed sufficient to rapidly immerse substantially all of the light gauge scrap into the melt pool. I couldn't succeed. This excessive turbidity tends to draw surrounding atmospheric gases into the melt by suction. These gases easily combine with the molten metal, producing high amounts of impurities. This phenomenon is described in U.S. Patent No. 4,322,245, column 4, 42~
Detailed in 50 lines. Thus, a system is needed that positively drives all of the light gauge scrap into the molten metal without the inclusion of atmospheric gases and that provides good circulation of the molten metal from the heating chamber to the melting chamber.
本発明は軽ゲージのスクラツプ金属を再溶融す
る系である。本系は加熱室及び溶融室に隔離され
た再溶融炉を含む。溶融室中の溶融した金属の表
面に向うバーナー手段は存在しない。加熱室と溶
融室との間の耐熱性隔離壁には、溶融した金属を
加熱室から溶融室へ循環させる且つ次いで溶融室
から加熱室へ戻すのに役立つ出入口手段が備えて
ある。溶融した金属の循環は、溶融した金属の流
れを加熱室から溶融室へ向わせるように配置され
た溶融金属のポンプ装置によつて行なわれる。溶
融室には、溶融した金属表面の重力流を溶融室中
に生じさせるように働く、例えば溶融金属の表面
上の浮く軽ゲージのスクラツプを、その表面の下
の溶融した金属プールの部分(溶融した金属プー
ルの中央域)の下方へ流下させるように働くオー
ガー(auger)手段も含まれる。重力流と並流し
て、軽ゲージのスクラツプ金属を、溶融した金属
プールの中央域への機械的に没入させる機械的力
が付与される。 The present invention is a system for remelting light gauge scrap metal. The system includes a remelting furnace separated into a heating chamber and a melting chamber. There is no burner means directed towards the surface of the molten metal in the melting chamber. The refractory partition between the heating chamber and the melting chamber is provided with entry and exit means to facilitate circulation of molten metal from the heating chamber to the melting chamber and then back from the melting chamber to the heating chamber. Circulation of the molten metal is effected by a molten metal pump arrangement arranged to direct the flow of molten metal from the heating chamber to the melting chamber. The melting chamber has a structure that acts to create a gravity flow of the molten metal surface into the melting chamber, e.g., to remove floating light gauge scrap above the surface of the molten metal from the portion of the molten metal pool below that surface (the molten metal surface). Also included is an auger means which serves to direct the flow down the central area of the metal pool. In parallel with the gravity flow, a mechanical force is applied that mechanically immerses the light gauge scrap metal into the central region of the molten metal pool.
これらの特徴、並びに本発明の他の特徴は、以
下の明細書、添付する図面及び特許請求の範囲に
より完全に開示され且つ記述される。 These and other features of the invention are more fully disclosed and described in the following specification, accompanying drawings, and claims.
第1図は部分的に切り取られた駆動軸部分に取
り付けられているオーガーの立面図を例示する。 FIG. 1 illustrates an elevational view of an auger attached to a partially cut away drive shaft section.
第2図は第1図の−から見た羽根車の平面
図を例示する。 FIG. 2 illustrates a plan view of the impeller seen from - in FIG. 1.
第3図はオーガードラムの立面断面図を例示す
る。 FIG. 3 illustrates an elevational cross-sectional view of the auger drum.
第4図はオーガードラムの断面図とオーガー駆
動軸の切り取られた部分図を含むオーガーの組立
品を例示する。 FIG. 4 illustrates an auger assembly including a cross-sectional view of the auger drum and a cut away partial view of the auger drive shaft.
第5図はオーガーにおいてドラムとオーガーが
1つのユにツトであるオーガー組立品の他の具体
例の部分に切り取られた立面図である。 FIG. 5 is a cut away elevational view of another embodiment of an auger assembly in which the drum and auger are a single unit in the auger.
第6図は第5図に示したオーガー組立品の他の
具体例の平面図である。 FIG. 6 is a plan view of another embodiment of the auger assembly shown in FIG. 5.
第7図は軽ゲージの金属スクラツプを溶融する
系の断面立面概略図である。 FIG. 7 is a schematic cross-sectional elevation view of a system for melting light gauge metal scrap.
第8図は軽ゲージの金属スクラツプを溶融する
系の平面概略図である。 FIG. 8 is a schematic plan view of a system for melting light gauge metal scrap.
第9図は軽ゲージの金属スクラツプを溶融する
系の別の配置の断面立面概略図である。 FIG. 9 is a schematic cross-sectional elevation view of an alternative arrangement of a system for melting light gauge metal scrap.
第10図は軽ゲージの金属スクラツプを溶融す
る系の別の配置の平面概略図である。 FIG. 10 is a schematic plan view of an alternative arrangement of a system for melting light gauge metal scrap.
第1図を参照すると、オーガー11が部分的に
切り取られた形で示される。オーガー11は3枚
の羽根13とハブ15を有する。オーガー11は
一般に軸流タービンの形であり、3枚の羽根の各
はら線断面を含んでなるら線の溝(flute)とし
て形成される。ハブ15は内側にねじ山19が付
けられていて、駆動軸23のぴつたり合う外側の
ねじ山を受ける貫通してない孔17を含む。駆動
軸23をハブ15中へねじ込んで合体させた時、
この合体物の横方向に孔25を開け、ピン27を
挿入してオーガー11が運転中に駆動軸23から
脱着しないようにする。 Referring to FIG. 1, auger 11 is shown in partially cut-away form. The auger 11 has three blades 13 and a hub 15. The auger 11 is generally in the form of an axial turbine and is formed as a spiral flute comprising the spiral cross-section of each of three blades. The hub 15 is internally threaded 19 and includes a solid bore 17 that receives a snug outer thread of the drive shaft 23. When the drive shaft 23 is screwed into the hub 15 and assembled,
A hole 25 is made in the lateral direction of this combined body, and a pin 27 is inserted to prevent the auger 11 from detaching from the drive shaft 23 during operation.
第2図を参照すると、羽根13の外端29はオ
ーガー11を円筒形中にぴつたりさせうるように
孔17と同心的に作られている。前縁31及び復
縁33は羽根13の外端29に垂直な平行面にあ
るように作られている。 Referring to FIG. 2, the outer end 29 of the vane 13 is made concentric with the hole 17 to allow the auger 11 to fit snugly into the cylinder. The leading edge 31 and the trailing edge 33 are made to lie in parallel planes perpendicular to the outer end 29 of the blade 13.
本発明において、オーガー11は少くとも1つ
の羽根を必要とするけれど、3枚が好ましい。し
かしながら各羽根13の前縁31は、第2及び6
図に最良に示されるように次の隣る羽根13の後
縁33に重なる程度までオーガーの外端29の周
りに円周的に延びていることが重要である。1枚
羽根13を用いる状態では、その羽根の前縁31
は、同一の羽根13の後縁に重なる程度までその
羽根13の外端29の周りに円周的に延びる。 In the present invention, the auger 11 requires at least one blade, but preferably three blades. However, the leading edge 31 of each blade 13
Importantly, it extends circumferentially around the outer end 29 of the auger to the extent that it overlaps the trailing edge 33 of the next adjacent vane 13 as best shown in the figure. When a single blade 13 is used, the leading edge 31 of the blade
extends circumferentially around the outer end 29 of the same vane 13 to the extent that it overlaps the trailing edge of that vane 13.
第3図を参照すると、一般に中央円筒断面形で
あるオーガードラムが例示される。これは図に示
されるように軸的に孔が開けられている。孔37
はドラム35が第5図に示されるようにオーガー
上に配置しうるような寸法である。カウンターボ
ア(counterbore)39はリツプ(lip)41が形
成されるように直径の寸法が小さい。リツプ41
は第4図に示されるように羽根13の前縁31上
に位置する。 Referring to FIG. 3, an auger drum having a generally central cylindrical cross section is illustrated. It is axially perforated as shown in the figure. Hole 37
are sized so that drum 35 can be placed on the auger as shown in FIG. The counterbore 39 has a small diameter dimension so that a lip 41 is formed. lip 41
is located on the leading edge 31 of the vane 13 as shown in FIG.
第3及び4図に示すように、ドラムの上端は半
径43に加工されている。ドラム35は耐火性セ
メントによつてオーガー11に取り付けられてい
る。他に、ドラム35はオーガー11の外端29
中に横に孔が開けられ、ピンが挿入されていても
よい。但しこれは図面には示されていない。上述
したようにオーガー11、駆動軸23及び35の
組合せは、以下総じてオーガー組立品45として
言及される。 As shown in FIGS. 3 and 4, the upper end of the drum is machined to a radius 43. Drum 35 is attached to auger 11 by refractory cement. In addition, the drum 35 is connected to the outer end 29 of the auger 11.
A hole may be drilled laterally inside and a pin may be inserted. However, this is not shown in the drawings. As mentioned above, the combination of auger 11 and drive shafts 23 and 35 will be referred to hereinafter collectively as auger assembly 45.
第5及び6図を参照すると、オーガー11′と
ドラム35′を1つの部品に含体させた本発明の
オーガー組立品の別の具体例が示される。この別
のデザインには、ハブ15′が軸的に貫通して延
びる孔37′を有する。第6図を参照すると、孔
37′は鍵溝47を含む。この別の具体例におい
ては、駆動軸(図示していない)はハブ15′に
ねじ込まれていなくて、むしろそれぞれ第5及び
6図の駆動軸(図示してない)中の対応する鍵溝
及びハブ15′の鍵溝の適合する鍵(図示してな
い)によつてその場に固定される。更にハブ1
5′の壁を通して及びハブ15′の孔37′内にぴ
つたり入る駆動軸23′を通して延びる横孔4
9′も使用できる。すべての他の観点において、
このオーガー組立品は第1〜4図を参照して例示
し且つ記述した通りである。 5 and 6, another embodiment of the auger assembly of the present invention is shown incorporating the auger 11' and drum 35' in one piece. In this alternative design, the hub 15' has a hole 37' extending axially therethrough. Referring to FIG. 6, hole 37' includes a keyway 47. Referring to FIG. In this alternative embodiment, the drive shaft (not shown) is not threaded into the hub 15', but rather has a corresponding keyway in the drive shaft (not shown) of FIGS. 5 and 6, respectively. It is secured in place by a matching key (not shown) in the keyway of the hub 15'. Furthermore, hub 1
5' wall and through the drive shaft 23' which fits snugly into the bore 37' of the hub 15'.
9' can also be used. In all other respects,
The auger assembly is as illustrated and described with reference to FIGS. 1-4.
第7図及び8図は、それぞれ本発明の系の概略
的な形での立面図及び本発明の系の概略的な形で
の平面図である。再溶融炉49は加熱室51及び
溶融室53を含む。強力な駆動組立品55、例え
ば電動機で回転せしめられるオーガー組立て品4
5は溶融室53の凡そ中央に挿入され且つその付
近に位置する。加熱室51を溶融室53から隔離
する壁は、流入口59と流出口61を含む。溶融
金属ポンプ63は加熱室51に配置され、その運
転によつて溶融した金属が流入口59を通して溶
融室53へ流入し且つ流出口61を通して溶融室
53から加熱室51へ戻り結果として第8図に最
良に示す如くこの溶融金属ポンプ63の方へ再循
環するように配置される。 7 and 8 are respectively an elevational view of the system of the invention in schematic form and a plan view of the system of the invention in schematic form. Remelting furnace 49 includes a heating chamber 51 and a melting chamber 53. A powerful drive assembly 55, for example an auger assembly 4 rotated by an electric motor.
5 is inserted into approximately the center of the melting chamber 53 and located near it. The wall separating heating chamber 51 from melting chamber 53 includes an inlet 59 and an outlet 61 . The molten metal pump 63 is disposed in the heating chamber 51, and as a result of its operation, molten metal flows into the melting chamber 53 through the inlet 59 and returns from the melting chamber 53 to the heating chamber 51 through the outlet 61, as a result of which FIG. The molten metal pump 63 is arranged for recirculation as best shown in FIG.
第7図において、軽ゲージの金属スクラツプ6
5は溶融室53内の溶融した金属プールの表面上
に位置して示されている。溶融した金属表面65
の水準はオーガー組立品45のリツプ51よりも
高い垂直の高さに維持されていて、溶融室53中
の溶融金属がドラム35のリツプ41の上を流れ
且つその孔37を通つて下方へ流れるようになつ
ている。この流れのパターンは、溶融金属表面及
び溶融金属の表面の動力流の方向を含む第4図に
概略的に示されている。 In FIG. 7, light gauge metal scrap 6
5 is shown positioned above the surface of the molten metal pool within the melting chamber 53. molten metal surface 65
is maintained at a vertical height above the lip 51 of the auger assembly 45 so that molten metal in the melting chamber 53 flows over the lip 41 of the drum 35 and downwardly through the holes 37 thereof. It's becoming like that. This flow pattern is shown schematically in FIG. 4, including the molten metal surface and the direction of power flow at the surface of the molten metal.
運転中オーガー組立品45は第2図において矢
印67で示される方向に回転する。オーガー組立
品45の運転の本質は、前縁31がオーガー組立
品45に遭遇する溶融金属及び軽ゲージスクラツ
プのいずれかのユニツト(unit)と最初に接触す
るようになるということである。オーガー組立品
の回転は、溶融物の表面下において溶融金属の下
方向へのら線的動きを生じさせる。溶融室53及
びドラム35の領域に存在する溶融した金属は、
一般にオーガー11から下方へ流れ、ポンプ63
によつて生じた流れに乗つて溶融室53を通つて
移動する溶融金属流と接触する。オーガー11及
びオーガー組立品45の回転によつて生ずる溶融
金属の流れは、ドラム35によつて限定される如
く、オーガー11上のオーガー組立品45内にお
いて溶融金属の水準を減少させる。即ち溶融室5
3の取り囲まれている部分からの溶融した金属は
重力によつてリツプ41を越えてドラム35の限
定内に流れる。 During operation, auger assembly 45 rotates in the direction indicated by arrow 67 in FIG. The nature of the operation of the auger assembly 45 is that the leading edge 31 first comes into contact with any unit of molten metal and light gauge scrap that the auger assembly 45 encounters. Rotation of the auger assembly causes downward spiral movement of molten metal below the surface of the melt. The molten metal present in the region of the melting chamber 53 and the drum 35 is
generally flows downwardly from auger 11 and pump 63
contact with the molten metal stream moving through the melting chamber 53 on the flow generated by the melting chamber 53. The flow of molten metal caused by the rotation of auger 11 and auger assembly 45 reduces the level of molten metal within auger assembly 45 on auger 11, as confined by drum 35. That is, the melting chamber 5
Molten metal from the enclosed portion of drum 3 flows by gravity over lip 41 and into the confines of drum 35.
溶融した金属が重力によつてオーガー組立品の
リツプ41を越えて流れるにつれて、その金属の
表面に浮いている軽ゲージのスクラツプ金属はそ
れと一緒に重力によつて流れ、それが溶融室53
中の溶融物の中央域中へら線的に加工する流体の
流路に従う、更に且つ同時に、溶融した金属の表
面上に浮ぶ軽金属スクラツプは、オーガー11の
羽根13の配置のお陰で溶融室53の限定内にお
いて、溶融した金属溶融物の中央に物理的に下方
へ没入せしめられる。軽金属スクラツプは究極的
にはポンプ63により溶融室53を通流する溶融
した金属と接触せしめられる。オーガー組立品4
5の回転によつて生ずる下方向へのら線流は、ド
ラム35の限定内において溶融した金属の表面水
準の低下を生じさせるのに十分激しいことだけが
必要である。オーガー組立品45は溶融した金属
表面65の比較的近くに位置し、リツプ41はオ
ーガー45の回転によつて生ずる下方向のら線流
で誘導される重力流を生じさせるのに十分な程度
まで表面下に配置されている。本発明の範囲内に
おいて、溶融した金属表面65に対するリツプ4
1の高さは、オーガー組立品45が回転する毎分
の回転数に関して変えることができる。オーガー
組立品45が好ましくは実質的な量の雰囲気の気
体が金属の下方向へのら線流に包含される速度に
近い速度で回転せしめはしない。 As the molten metal flows by gravity over the lip 41 of the auger assembly, the light gauge scrap metal floating on the surface of the metal flows by gravity with it, and it flows into the melting chamber 53.
Further and at the same time, the light metal scrap floating on the surface of the molten metal follows the flow path of the working fluid in the central region of the melt in the melting chamber 53 thanks to the arrangement of the vanes 13 of the auger 11. Within limits, it is physically immersed downward into the center of the molten metal melt. The light metal scrap is ultimately brought into contact with molten metal flowing through melting chamber 53 by pump 63. Auger assembly 4
It is only necessary that the downward spiral flow produced by the rotation of drum 5 be sufficiently intense to cause a drop in the surface level of the molten metal within the confines of drum 35. The auger assembly 45 is located relatively close to the molten metal surface 65 and the lip 41 is closed to an extent sufficient to create a downward spiral induced gravity flow created by the rotation of the auger 45. located below the surface. Within the scope of the invention, the lip 4 on the molten metal surface 65 is
The height of 1 can vary with respect to the number of revolutions per minute at which the auger assembly 45 rotates. The auger assembly 45 is preferably not allowed to rotate at a speed approaching that at which a substantial amount of atmospheric gas is entrained in the downward spiral flow of metal.
軽ゲージ金属スクラツプの溶融系の他の系は第
9及び10図に示される。この他の具体例ではオ
ーガー11を使用する。しかしながらオーガード
ラム69は単に直すぐな内部孔71を有し、カウ
ンターボア39に類似の階段的な孔を有さない中
空円筒断面形であるという点で、僅かに異なるデ
ザインのオーガードラム69を使用する。この内
部孔71は羽根13の外端29よりも僅かに大き
い寸法である。オーガードラム69は溶融室内に
静置して取りつけられており、第9図に示すよう
に取りつけスペーサー73によつて壁に固定され
ている。この取りつけスペーサー73は耐火物或
いは壁57と同様の耐熱性を有する他の材料を有
しているべきである。オーガードラム69はオー
ガードラム35に対して使用したものと同様の材
料から作られていてよいが、他に同業者には公知
である科学的及び機械的性質が高温金属溶融炉に
おける使用に対して許容されている耐火材料又は
セラミツク材料からなつていてよい。 Another system for melting light gauge metal scrap is shown in FIGS. 9 and 10. In other embodiments, an auger 11 is used. However, a slightly different design of the auger drum 69 is used in that the auger drum 69 has a hollow cylindrical cross-section with only a straight internal bore 71 and no stepped bore similar to the counterbore 39. do. This internal hole 71 is slightly larger in size than the outer end 29 of the vane 13. The auger drum 69 is installed stationary within the melting chamber, and is fixed to the wall by a mounting spacer 73 as shown in FIG. This mounting spacer 73 should comprise a refractory or other material with similar heat resistance as the wall 57. Auger drum 69 may be made from materials similar to those used for auger drum 35, but with other chemical and mechanical properties known to those skilled in the art for use in high temperature metal melting furnaces. It may be constructed of acceptable refractory or ceramic materials.
運転中、オーガー11が回転するにつれてオー
ガードラム69は静止のままである。すべての他
の観点において、この軽ゲージの金属スクラツプ
を溶融する系の運転は前述した通りである。 During operation, auger drum 69 remains stationary as auger 11 rotates. In all other respects, the operation of this light gauge scrap metal melting system is as previously described.
特許法の条項によれば、本発明の最良の具体
例、その好適な構造物、及びその最良に運転法を
表わすと考えられるものを例示し且つ記述した。
しかしながら本発明は特許請求の範囲内において
特に例示し且つ記述したもの以外に実施しうるこ
とを理解すべきである。 In accordance with the provisions of the patent statutes, there has been illustrated and described what is believed to represent the best embodiment of the invention, its preferred construction, and its best method of operation.
However, it is to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically illustrated and described.
第1図は部分的なに切り取られた駆動軸部分に
取り付けられているオーガーの立面図を例示し;
第2図は第1図の−から見たオーガーの平面
図を例示し;第3図はオーガードラムの立面断面
図を例示し;第4図はオーガードラムに断面図と
オーガー駆動軸の切り取られた部分図を含むオー
ガーの組立品を例示し;第5図はオーガーにおい
てドラムとオーガーが1つのユニツトであるオー
ガー組立品の他の具体例の部分に切り取られた立
面図であり;第6図は第5図に示したオーガー組
立品の他の具体例の平面図であり;第7図は軽ゲ
ージの金属スクラツプを溶融する系の断面立面概
略図であり;第8図は軽ゲージの金属スクラツプ
を溶融する系の平面概略図であり;第9図は軽ゲ
ージの金属スクラツプを溶融する系の別の配置の
断面立面概略図であり;そして第10図は軽ゲー
ジの金属スクラツプを溶融する系の別の配置の平
面概略図である。
FIG. 1 illustrates an elevational view of an auger attached to a partially cut away drive shaft section;
Figure 2 illustrates a plan view of the auger seen from - in Figure 1; Figure 3 illustrates an elevational sectional view of the auger drum; Figure 4 illustrates a cross-sectional view of the auger drum and a cutaway of the auger drive shaft. FIG. 5 is a cut-away elevational view of another embodiment of an auger assembly in which the drum and auger are one unit in the auger; FIG. 6 is a plan view of another embodiment of the auger assembly shown in FIG. 5; FIG. 7 is a schematic cross-sectional elevation view of a system for melting light gauge metal scrap; FIG. 9 is a schematic plan view of a system for melting light gauge metal scrap; FIG. 9 is a cross-sectional elevational schematic view of an alternative arrangement of the system for melting light gauge metal scrap; and FIG. 3 is a schematic plan view of another arrangement of the system for melting scrap; FIG.
Claims (1)
の溶融室に分けられた再溶融炉手段; b 該少くとも1つの加熱室の各と関連し且つ該
各に対して操作できるが、該少くとも1つの溶
融室の各とは別の加熱手段; c 該少くとも1つの加熱室の各と該少くとも1
つの溶融室の少くとも1つの間で溶融金属を流
させるために位置し且つ該再溶融炉手段内の溶
融金属の表面レベルの下に配置された出入口手
段; d 溶融金属の流れを生じさせるために運転でき
且つ該少くとも1つの加熱室の各から該少くと
も1つの溶融室の少くとも1つへ及び該少くと
も1つの溶融室の各から該少くとも1つの加熱
室の少くとも1つへ該溶融金属流を該出入口手
段を通して移動させるべく配置された溶融金属
ポンプ手段;及び e 該溶融金属ポンプ手段とは別であり、該少く
とも1つの溶融室の各の内部に位置し、該溶融
金属の該表面レベルの下及びその近くに配置さ
れて該溶融金属の該表面レベルの重力流を下方
へ生じせしめ、そして該溶融金属の該表面レベ
ルに隣つて位置する軽ゲージのスクラツプ金属
を下方へ且つ実質的に該溶融金属の該表面レベ
ルの該重力流と並流する該溶融金属の該表面レ
ベルの下へ機械的に向わさせるべく運転でき
る、オーガー手段、 を含んでなる軽ゲージのスクラツプ金属を再溶融
するための装置。 2 該少くとも1つの加熱室の各及び該少くとも
1つの溶融室の少くとも1つが断熱壁手段で隔離
されている特許請求の範囲第1項記載の装置。 3 該耐熱壁手段が該少くとも1つの加熱室の各
を該少くとも1つの溶融室の少くとも1つから隔
離するように位置する少くとも1つの耐火壁を含
んでなる特許請求の範囲第3項記載の装置。 4 該出入口手段が該少くとも1つの加熱室と該
少くとも1つの溶融室の少くとも1つの間を、該
耐熱壁手段を通して連絡する少くとも1つの通路
を含んでなる特許請求の範囲第2又は2項記載の
装置。 5 該再溶融炉手段を1つの加熱室と1つの溶融
室に隔離し、そしてこの隔離を耐熱壁手段で行な
う特許請求の範囲第1項記載の装置。 6 該出入口手段が該1つの加熱室と該1つの溶
融室の間を連絡する少くとも1つの通路を含んで
なる特許請求の範囲第5項記載の装置。 7 該少くとも1つの通路が、互いに相対して且
つ間隔をおいて位置し、そして溶融した金属が該
出入口の1つを通る実質的な直線路で該加熱室か
ら該溶融室へ、次いで第2の該出入口を通して該
溶融室から該加熱室へ流れるように配置されてい
る1対の出入口を含んでなる特許請求の範囲第6
項記載の装置。 8 該オーガー手段が少くとも1つのら線の溝を
含む軸流タービンの形のオーガーを包含する特許
請求の範囲第1項記載の装置。 9 該オーガーが、 a 少くとも1つのら線の溝を有する軸流タ−ビ
ンのオーガー; b 該オーガーを軸方向に包囲し且つ該オーガー
の取付けられた中空円筒断面形のオーガードラ
ム;及び c 該オーガーと該オーガードラムを回転させる
ための手段、 を含んでなる特許請求の範囲第1,2,3,4,
5,6,7又は8項記載の装置。 10 該オーガーが、 a 少くとも1つのら線の溝を有する軸流タービ
ンのオーガー; b 該オーガーを軸方向に包囲するが、それから
隔離され、且つ該少くとも1つの溶融室内に静
置して取りつけられている中空円筒断面形のオ
ーガードラム;及び c 該オーガーを該ドラム内で回転させるための
手段、 を含んでなる特許請求の範囲第1,2,3,4,
5,6,7又は8項記載の装置。 11 該軸流タービンのオーガーが3つのら線の
溝を有する特許請求の範囲第9又は10項記載の
装置。Claims: 1 a. Remelting furnace means divided into at least one heating chamber and at least one melting chamber; b. Remelting furnace means associated with and operating on each of the at least one heating chamber; c. heating means separate from each of the at least one melting chamber; c. each of the at least one heating chamber and the at least one heating chamber;
an inlet/outlet means located for causing the flow of molten metal between at least one of the two melting chambers and below the surface level of the molten metal within the remelting furnace means; d. and from each of the at least one heating chamber to at least one of the at least one melting chamber and from each of the at least one melting chamber to at least one of the at least one heating chamber. molten metal pumping means arranged to move said molten metal flow through said inlet/outlet means; and e separate from said molten metal pumping means and located within each of said at least one melting chamber; disposed below and near the surface level of the molten metal to cause a downward gravity flow of the surface level of the molten metal, and light gauge scrap metal located adjacent to the surface level of the molten metal; auger means operable to mechanically direct the molten metal downwardly and below the surface level of the molten metal substantially co-current with the gravity flow at the surface level of the molten metal. Equipment for remelting scrap metal. 2. Apparatus according to claim 1, wherein each of the at least one heating chamber and at least one of the at least one melting chamber are separated by insulating wall means. 3. Claim 3, wherein said refractory wall means comprises at least one refractory wall positioned to isolate each of said at least one heating chamber from at least one of said at least one melting chamber. The device according to item 3. 4. Claim 2, wherein said inlet/outlet means comprises at least one passage communicating between said at least one heating chamber and at least one of said at least one melting chamber through said heat-resistant wall means. Or the device according to item 2. 5. Apparatus according to claim 1, in which the remelting furnace means is isolated into one heating chamber and one melting chamber, and this isolation is effected by heat-resistant wall means. 6. The apparatus of claim 5, wherein said inlet/outlet means includes at least one passageway communicating between said one heating chamber and said one melting chamber. 7. said at least one passageway being located opposite and spaced apart from one another, and molten metal passing from said heating chamber to said melting chamber in a substantially straight path through one of said ports; Claim 6 comprising a pair of inlets and outlets arranged to flow from the melting chamber to the heating chamber through two of the inlets and outlets.
Apparatus described in section. 8. The apparatus of claim 1, wherein said auger means comprises an auger in the form of an axial turbine containing at least one helical groove. 9. the auger comprises: a an auger of an axial flow turbine having at least one helical groove; b an auger drum of hollow cylindrical cross-section axially surrounding the auger and to which the auger is mounted; and c. Claims 1, 2, 3, 4, comprising an auger and means for rotating the auger drum.
Apparatus according to item 5, 6, 7 or 8. 10 said auger is: a an axial turbine auger having at least one helical groove; b axially surrounding but isolated from said auger and mounted stationary within said at least one melting chamber; an auger drum having a hollow cylindrical cross-section; and c. means for rotating the auger within the drum.
Apparatus according to item 5, 6, 7 or 8. 11. The apparatus of claim 9 or 10, wherein the auger of the axial turbine has three spiral grooves.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US629525 | 1984-07-10 | ||
| US06/629,525 US4598899A (en) | 1984-07-10 | 1984-07-10 | Light gauge metal scrap melting system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6134123A JPS6134123A (en) | 1986-02-18 |
| JPH0432132B2 true JPH0432132B2 (en) | 1992-05-28 |
Family
ID=24523370
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP14845685A Granted JPS6134123A (en) | 1984-07-10 | 1985-07-08 | System for re-melting scrap metal |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US4598899A (en) |
| EP (1) | EP0168250B1 (en) |
| JP (1) | JPS6134123A (en) |
| AT (1) | ATE54337T1 (en) |
| AU (1) | AU567222B2 (en) |
| BR (1) | BR8503285A (en) |
| CA (1) | CA1248753A (en) |
| DE (1) | DE3578534D1 (en) |
| NO (1) | NO852756L (en) |
Families Citing this family (69)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4747583A (en) * | 1985-09-26 | 1988-05-31 | Gordon Eliott B | Apparatus for melting metal particles |
| US4685822A (en) * | 1986-05-15 | 1987-08-11 | Union Carbide Corporation | Strengthened graphite-metal threaded connection |
| JP2554510B2 (en) * | 1987-11-17 | 1996-11-13 | 三建産業 株式会社 | Non-ferrous metal chip melting device |
| US4940214A (en) * | 1988-08-23 | 1990-07-10 | Gillespie & Powers, Inc. | Apparatus for generating a vortex in a melt |
| US4884786A (en) * | 1988-08-23 | 1989-12-05 | Gillespie & Powers, Inc. | Apparatus for generating a vortex in a melt |
| JPH03129286A (en) * | 1989-10-14 | 1991-06-03 | Hitachi Metals Ltd | Melting device for machine chips |
| US5143357A (en) * | 1990-11-19 | 1992-09-01 | The Carborundum Company | Melting metal particles and dispersing gas with vaned impeller |
| US5268020A (en) * | 1991-12-13 | 1993-12-07 | Claxton Raymond J | Dual impeller vortex system and method |
| JP3299332B2 (en) * | 1992-04-24 | 2002-07-08 | 株式会社宮本工業所 | Aluminum alloy waste melting equipment |
| US5308045A (en) * | 1992-09-04 | 1994-05-03 | Cooper Paul V | Scrap melter impeller |
| US5597289A (en) * | 1995-03-07 | 1997-01-28 | Thut; Bruno H. | Dynamically balanced pump impeller |
| WO1997026101A1 (en) * | 1996-01-17 | 1997-07-24 | Metaullics Systems Co. L.P. | Improved molten metal charge well |
| JP2796274B2 (en) * | 1996-08-12 | 1998-09-10 | 川崎重工業株式会社 | Melting furnace and melting method |
| US5944496A (en) * | 1996-12-03 | 1999-08-31 | Cooper; Paul V. | Molten metal pump with a flexible coupling and cement-free metal-transfer conduit connection |
| US6036745A (en) * | 1997-01-17 | 2000-03-14 | Metaullics Systems Co., L.P. | Molten metal charge well |
| US5951243A (en) * | 1997-07-03 | 1999-09-14 | Cooper; Paul V. | Rotor bearing system for molten metal pumps |
| US6019576A (en) * | 1997-09-22 | 2000-02-01 | Thut; Bruno H. | Pumps for pumping molten metal with a stirring action |
| US6027685A (en) * | 1997-10-15 | 2000-02-22 | Cooper; Paul V. | Flow-directing device for molten metal pump |
| US6093000A (en) | 1998-08-11 | 2000-07-25 | Cooper; Paul V | Molten metal pump with monolithic rotor |
| EP1522735B1 (en) * | 1998-11-09 | 2006-12-20 | Pyrotek, Inc. | Shaft and post assemblies for molten metal pumping apparatus |
| US6887425B2 (en) * | 1998-11-09 | 2005-05-03 | Metaullics Systems Co., L.P. | Shaft and post assemblies for molten metal apparatus |
| EP1129295B1 (en) * | 1998-11-09 | 2005-03-16 | Metaullics Systems Co., L.P. | Shaft and post assemblies for molten metal pumping apparatus |
| US6074455A (en) * | 1999-01-27 | 2000-06-13 | Metaullics Systems Co., L.P. | Aluminum scrap melting process and apparatus |
| US6303074B1 (en) | 1999-05-14 | 2001-10-16 | Paul V. Cooper | Mixed flow rotor for molten metal pumping device |
| US6602462B2 (en) * | 1999-09-30 | 2003-08-05 | Alain Renaud Boulet | Auger pump for handling magnesium and magnesium alloys |
| US6689310B1 (en) | 2000-05-12 | 2004-02-10 | Paul V. Cooper | Molten metal degassing device and impellers therefor |
| US6723276B1 (en) | 2000-08-28 | 2004-04-20 | Paul V. Cooper | Scrap melter and impeller |
| US6717026B2 (en) * | 2001-02-27 | 2004-04-06 | Clean Technologies International Corporation | Molten metal reactor utilizing molten metal flow for feed material and reaction product entrapment |
| US7402276B2 (en) | 2003-07-14 | 2008-07-22 | Cooper Paul V | Pump with rotating inlet |
| US7470392B2 (en) | 2003-07-14 | 2008-12-30 | Cooper Paul V | Molten metal pump components |
| US20070253807A1 (en) | 2006-04-28 | 2007-11-01 | Cooper Paul V | Gas-transfer foot |
| US7507367B2 (en) | 2002-07-12 | 2009-03-24 | Cooper Paul V | Protective coatings for molten metal devices |
| US20050013715A1 (en) | 2003-07-14 | 2005-01-20 | Cooper Paul V. | System for releasing gas into molten metal |
| US7731891B2 (en) | 2002-07-12 | 2010-06-08 | Cooper Paul V | Couplings for molten metal devices |
| US7906068B2 (en) | 2003-07-14 | 2011-03-15 | Cooper Paul V | Support post system for molten metal pump |
| US7453177B2 (en) * | 2004-11-19 | 2008-11-18 | Magnadrive Corporation | Magnetic coupling devices and associated methods |
| US7556766B2 (en) * | 2005-11-15 | 2009-07-07 | Alcoa Inc. | Controlled free vortex scrap ingester and molten metal pump |
| ES2528114T3 (en) | 2006-01-26 | 2015-02-04 | Digimet 2013 Sl | Waste treatment method |
| US20090064821A1 (en) * | 2006-08-23 | 2009-03-12 | Air Liquide Industrial U.S. Lp | Vapor-Reinforced Expanding Volume of Gas to Minimize the Contamination of Products Treated in a Melting Furnace |
| US20080184848A1 (en) * | 2006-08-23 | 2008-08-07 | La Sorda Terence D | Vapor-Reinforced Expanding Volume of Gas to Minimize the Contamination of Products Treated in a Melting Furnace |
| US8366993B2 (en) | 2007-06-21 | 2013-02-05 | Cooper Paul V | System and method for degassing molten metal |
| US8337746B2 (en) * | 2007-06-21 | 2012-12-25 | Cooper Paul V | Transferring molten metal from one structure to another |
| US9643247B2 (en) | 2007-06-21 | 2017-05-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer and degassing system |
| US9409232B2 (en) | 2007-06-21 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Molten metal transfer vessel and method of construction |
| US9156087B2 (en) | 2007-06-21 | 2015-10-13 | Molten Metal Equipment Innovations, Llc | Molten metal transfer system and rotor |
| US8613884B2 (en) | 2007-06-21 | 2013-12-24 | Paul V. Cooper | Launder transfer insert and system |
| US9205490B2 (en) | 2007-06-21 | 2015-12-08 | Molten Metal Equipment Innovations, Llc | Transfer well system and method for making same |
| US9410744B2 (en) | 2010-05-12 | 2016-08-09 | Molten Metal Equipment Innovations, Llc | Vessel transfer insert and system |
| US8449814B2 (en) | 2009-08-07 | 2013-05-28 | Paul V. Cooper | Systems and methods for melting scrap metal |
| US8444911B2 (en) | 2009-08-07 | 2013-05-21 | Paul V. Cooper | Shaft and post tensioning device |
| US10428821B2 (en) | 2009-08-07 | 2019-10-01 | Molten Metal Equipment Innovations, Llc | Quick submergence molten metal pump |
| US8524146B2 (en) | 2009-08-07 | 2013-09-03 | Paul V. Cooper | Rotary degassers and components therefor |
| US8535603B2 (en) | 2009-08-07 | 2013-09-17 | Paul V. Cooper | Rotary degasser and rotor therefor |
| US8714914B2 (en) | 2009-09-08 | 2014-05-06 | Paul V. Cooper | Molten metal pump filter |
| US9108244B2 (en) | 2009-09-09 | 2015-08-18 | Paul V. Cooper | Immersion heater for molten metal |
| US9903383B2 (en) | 2013-03-13 | 2018-02-27 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened top |
| US9011761B2 (en) | 2013-03-14 | 2015-04-21 | Paul V. Cooper | Ladle with transfer conduit |
| US10052688B2 (en) | 2013-03-15 | 2018-08-21 | Molten Metal Equipment Innovations, Llc | Transfer pump launder system |
| US9803922B2 (en) | 2014-05-09 | 2017-10-31 | Altek L.L.C. | System and method for melting light gauge scrap |
| US10138892B2 (en) | 2014-07-02 | 2018-11-27 | Molten Metal Equipment Innovations, Llc | Rotor and rotor shaft for molten metal |
| US10947980B2 (en) | 2015-02-02 | 2021-03-16 | Molten Metal Equipment Innovations, Llc | Molten metal rotor with hardened blade tips |
| KR101735425B1 (en) * | 2015-12-14 | 2017-05-16 | (주)디에스리퀴드 | System and method for aluminium black dross recycling |
| US10267314B2 (en) | 2016-01-13 | 2019-04-23 | Molten Metal Equipment Innovations, Llc | Tensioned support shaft and other molten metal devices |
| EP3504499A4 (en) * | 2016-08-29 | 2020-04-01 | Pyrotek, Inc. | SCRAP SACKING DEVICE |
| US11149747B2 (en) | 2017-11-17 | 2021-10-19 | Molten Metal Equipment Innovations, Llc | Tensioned support post and other molten metal devices |
| US11358216B2 (en) | 2019-05-17 | 2022-06-14 | Molten Metal Equipment Innovations, Llc | System for melting solid metal |
| US11873845B2 (en) | 2021-05-28 | 2024-01-16 | Molten Metal Equipment Innovations, Llc | Molten metal transfer device |
| CN216712212U (en) * | 2021-12-20 | 2022-06-10 | 中信戴卡股份有限公司 | Aluminum alloy material smelting device |
| US12146508B2 (en) | 2022-05-26 | 2024-11-19 | Molten Metal Equipment Innovations, Llc | Axial pump and riser |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1729631A (en) * | 1921-10-28 | 1929-10-01 | Aluminum Co Of America | Process of reclaiming scrap metals |
| US1522765A (en) * | 1922-12-04 | 1925-01-13 | Metals Refining Company | Apparatus for melting scrap metal |
| US2038221A (en) * | 1935-01-10 | 1936-04-21 | Western Electric Co | Method of and apparatus for stirring materials |
| US2515478A (en) * | 1944-11-15 | 1950-07-18 | Owens Corning Fiberglass Corp | Apparatus for increasing the homogeneity of molten glass |
| US2488447A (en) * | 1948-03-12 | 1949-11-15 | Glenn M Tangen | Amalgamator |
| US3276758A (en) * | 1963-04-24 | 1966-10-04 | North American Aviation Inc | Metal melting furnace system |
| US3400923A (en) * | 1964-05-15 | 1968-09-10 | Aluminium Lab Ltd | Apparatus for separation of materials from liquid |
| SE388437B (en) * | 1970-08-13 | 1976-10-04 | J B Menendez | REFINING PROCEDURE FOR RECYCLING ZINC FROM THE GALVANIZATION CIRCUIT, SCRAP OR RESIDUES OF THIS METAL |
| US3873305A (en) * | 1974-04-08 | 1975-03-25 | Aluminum Co Of America | Method of melting particulate metal charge |
| US3984234A (en) * | 1975-05-19 | 1976-10-05 | Aluminum Company Of America | Method and apparatus for circulating a molten media |
| US3997336A (en) * | 1975-12-12 | 1976-12-14 | Aluminum Company Of America | Metal scrap melting system |
| US4128415A (en) * | 1977-12-09 | 1978-12-05 | Aluminum Company Of America | Aluminum scrap reclamation |
| US4322245A (en) * | 1980-01-09 | 1982-03-30 | Claxton Raymond J | Method for submerging entraining, melting and circulating metal charge in molten media |
| US4286985A (en) * | 1980-03-31 | 1981-09-01 | Aluminum Company Of America | Vortex melting system |
| CA1226738A (en) * | 1983-03-14 | 1987-09-15 | Robert J. Ormesher | Metal scrap reclamation system |
| GB8308449D0 (en) * | 1983-03-28 | 1983-05-05 | Alcan Int Ltd | Melting scrap metal |
-
1984
- 1984-07-10 US US06/629,525 patent/US4598899A/en not_active Expired - Lifetime
-
1985
- 1985-06-21 CA CA000484846A patent/CA1248753A/en not_active Expired
- 1985-07-02 AU AU44484/85A patent/AU567222B2/en not_active Ceased
- 1985-07-08 JP JP14845685A patent/JPS6134123A/en active Granted
- 1985-07-09 NO NO852756A patent/NO852756L/en unknown
- 1985-07-09 BR BR8503285A patent/BR8503285A/en not_active IP Right Cessation
- 1985-07-10 DE DE8585304939T patent/DE3578534D1/en not_active Expired - Fee Related
- 1985-07-10 EP EP19850304939 patent/EP0168250B1/en not_active Expired - Lifetime
- 1985-07-10 AT AT85304939T patent/ATE54337T1/en not_active IP Right Cessation
Also Published As
| Publication number | Publication date |
|---|---|
| AU4448485A (en) | 1986-01-16 |
| AU567222B2 (en) | 1987-11-12 |
| DE3578534D1 (en) | 1990-08-09 |
| ATE54337T1 (en) | 1990-07-15 |
| CA1248753A (en) | 1989-01-17 |
| BR8503285A (en) | 1986-04-01 |
| US4598899A (en) | 1986-07-08 |
| EP0168250B1 (en) | 1990-07-04 |
| EP0168250A2 (en) | 1986-01-15 |
| JPS6134123A (en) | 1986-02-18 |
| EP0168250A3 (en) | 1986-09-17 |
| NO852756L (en) | 1986-01-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH0432132B2 (en) | ||
| CA2322654C (en) | Metal scrap submergence system for scrap charging/melting well of furnace | |
| KR850000876B1 (en) | Apparatus for refining molten metal | |
| KR0144657B1 (en) | High shear mixer and glass melting apparatus and method | |
| US5968223A (en) | Method for heating molten metal using heated baffle | |
| NO180309B (en) | Insulated refractory refining chamber for aluminum refining | |
| JPH01132724A (en) | Apparatus for melting chip of non-ferrous metal | |
| US6066289A (en) | Method for heating molten metal using heated baffle | |
| US6508977B2 (en) | Reinforced refractory shaft design for fluxing molten metal | |
| US6521015B1 (en) | Method and apparatus for treating molten aluminum using improved filter media | |
| CN101104888B (en) | Molten aluminum refining apparatus | |
| US6299828B1 (en) | Shaft design for fluxing molten metal | |
| US6162279A (en) | Method for fluxing molten metal using shaft design | |
| JPS589944A (en) | Molten metal refining apparatus | |
| WO2021178429A1 (en) | Mechanical auger recirculation well | |
| CS212305B2 (en) | Method of rafination of the melted metal | |
| JP2007204843A (en) | Nozzle device for blowing gas, and gas-blowing facility provided with the same | |
| US6217631B1 (en) | Method and apparatus for treating molten aluminum | |
| JP3314993B2 (en) | Molten metal cleaning equipment | |
| JP2853134B2 (en) | Equipment for dissolving aluminum metal chips | |
| RU2238990C1 (en) | Device for degassing and refining melts of metals and their alloys (versions) | |
| JP4243711B2 (en) | Crucible furnace | |
| JPH0711350A (en) | Impeller for cleaning molten metal | |
| JPH02232323A (en) | Device for melting aluminum metal swarf by using electromagnetic trough | |
| JPS62205236A (en) | Parts that come into contact with molten metal |