[go: up one dir, main page]

JPH0432276A - josephson junction element - Google Patents

josephson junction element

Info

Publication number
JPH0432276A
JPH0432276A JP2139461A JP13946190A JPH0432276A JP H0432276 A JPH0432276 A JP H0432276A JP 2139461 A JP2139461 A JP 2139461A JP 13946190 A JP13946190 A JP 13946190A JP H0432276 A JPH0432276 A JP H0432276A
Authority
JP
Japan
Prior art keywords
thin film
josephson junction
critical current
current density
temperature superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2139461A
Other languages
Japanese (ja)
Other versions
JP2861265B2 (en
Inventor
Junichi Kita
純一 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2139461A priority Critical patent/JP2861265B2/en
Publication of JPH0432276A publication Critical patent/JPH0432276A/en
Application granted granted Critical
Publication of JP2861265B2 publication Critical patent/JP2861265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はジョセフソン接合を有する素子に関し、更に詳
しくは、高温超電導体等の臨界電流密度やコヒーレント
長に結晶異方性のある超電導体を用いたジョセフソン接
合素子に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a device having a Josephson junction, and more specifically, to a device having a Josephson junction, and more specifically to a device having a crystal anisotropy in critical current density or coherence length such as a high temperature superconductor. Regarding the Josephson junction device used.

なお、本発明は、例えば5QUIDや赤外線検出器、ミ
キサ、三端子素子、コンピュータ等のジョセフソン効果
を利用したあらゆる素子に応用可能である。
Note that the present invention can be applied to any device that utilizes the Josephson effect, such as a 5QUID, an infrared detector, a mixer, a three-terminal device, and a computer.

〈従来の技術〉 YBCO等を初めとする高温超電導体薄膜を用いたジぢ
セフソン接合素子については、既に多くの提案や報告が
なされているが(例えばAkinobuIrie et
、al、、Japanese Jounal of A
pplied PhysicsVol、28.No、1
0,0ctober、1989.1)IP、L1816
−1819)、現時点において実現しているものはその
殆どが粒界接合を利用したものである。
<Prior art> Many proposals and reports have already been made regarding di-Sefson junction devices using high-temperature superconductor thin films such as YBCO (for example, Akinobu Irie et al.
,al,,Japanese Journal of A
pplied Physics Vol, 28. No.1
0,0ctober, 1989.1) IP, L1816
-1819), and most of those currently realized utilize grain boundary bonding.

その理由は、高温超電導体のコヒーレント長が入オーダ
ーから士数人と短いため、トンネル型にしろ、弱結合型
にしろ、人為的にジョセフソン効果が得られる形状がで
きないことに起因している。
The reason for this is that the coherence length of high-temperature superconductors is short by several orders of magnitude, so it is impossible to create a shape that artificially produces the Josephson effect, whether it is a tunnel type or a weakly coupled type. .

〈発明が解決しようとする課題〉 ところで、粒界を利用したジョセフソン接合接合では、
粒界という本来人為的にコントロールできないものを使
用しているため、接合の位置や接合部の臨界温度、臨界
電流密度あるい臨界電流等、その重要なファクタにおい
てばらつきが多く、再現性良く良好な特性を持つ素子を
得ることはできない。
<Problem to be solved by the invention> By the way, in the Josephson junction using grain boundaries,
Because grain boundaries, which cannot be controlled artificially, are used, there are many variations in important factors such as the position of the bond, critical temperature of the bond, critical current density, and critical current. It is not possible to obtain an element with specific characteristics.

本発明の目的は、再現性良(製造することができ、かつ
、高性能の粒界ジョセフソン接合素子を提供することに
ある。
An object of the present invention is to provide a grain boundary Josephson junction element that can be manufactured with good reproducibility and has high performance.

〈R1!を解決するための手段〉 上記の目的を達成するための構成を、実施例に対応する
第1図を参照しつつ説明すると、本発明は、基板10表
面に、第1の面11に対して鈍角θで交差する第2の面
12が形成され、その基板1の表面に、臨界電流密度お
よびコヒーレント長に結晶異方性を有する超電導体薄膜
製の細線2が、第1と第2の面11と12の交線3を横
切るように形成されていることによって特徴付けられる
<R1! Means for Solving> The configuration for achieving the above object will be described with reference to FIG. 1 corresponding to the embodiment. A second plane 12 intersecting at an obtuse angle θ is formed on the surface of the substrate 1, and a thin wire 2 made of a superconducting thin film having crystal anisotropy in critical current density and coherent length is formed between the first and second planes. It is characterized by being formed to cross the intersection line 3 of 11 and 12.

〈作用〉 YBCoを初めとする高温超電導体薄膜では、一般に、
臨界電流密度およびコヒーレント長に結晶異方性が存在
し、特にC軸に直交する方向に対して臨界電流密度が大
となる。
<Function> In general, high-temperature superconductor thin films such as YBCo,
Crystal anisotropy exists in the critical current density and coherence length, and the critical current density is particularly large in the direction perpendicular to the C-axis.

また、結晶の相互の結合状態によって、臨界電流密度が
変化することが知られている(PHYSICALRf!
VIEW LETTER5,Vol 61.No、2.
 pp219−222) 、更に、YBCOI膜を用い
て、その自然発生的にできたC軸が数度ずれたジョセフ
ソン接合を用いて、良好な5QUIDを得た報告もある
(Current 1nYBCOBridge by 
MO−CVD Th1n Fila+、 by Tsu
tomuYamashita  et  al、)  
It is also known that the critical current density changes depending on the mutual bonding state of crystals (PHYSICALRf!
VIEW LETTER5, Vol 61. No, 2.
There is also a report that a good 5QUID was obtained using a YBCOI film with a naturally occurring Josephson junction in which the C axis was shifted by several degrees (Current 1nYBCOBridge by
MO-CVD Th1n Fila+, by Tsu
tomu Yamashita et al.)
.

本発明はこのような事実を利用している。The present invention takes advantage of this fact.

すなわち、高温超電導体薄膜等の臨界電流密度およびコ
ヒーレント長に結晶異方性のある超電導体薄膜製の細線
2を、基板1上に相互に鈍角θで交差する第1と第2の
面11と12のその交線3を横切るように形成すること
で、第1と第2の面11と12上のff膜細線2の結晶
軸方向を、第2図に模式的に示すように、その交差角θ
だけ強制的にずらせることが可能となり、この部分でい
わゆる亜粒界を人為的に形成することができる。つまり
、この部分の臨界電流密度を強制的に低下させることに
より、弱結合を人為的に得ることが可能となる。
That is, a thin wire 2 made of a superconducting thin film such as a high-temperature superconducting thin film having crystal anisotropy in critical current density and coherent length is placed on a substrate 1 with first and second surfaces 11 intersecting each other at an obtuse angle θ. 12 so that the crystal axis direction of the FF film thin wire 2 on the first and second surfaces 11 and 12 is formed so as to cross the intersection line 3 of the FF film, as schematically shown in FIG. angle θ
This makes it possible to forcibly shift the grain by a certain amount, and it is possible to artificially form a so-called sub-grain boundary in this part. In other words, by forcibly lowering the critical current density in this portion, it is possible to artificially obtain weak coupling.

〈実施例〉 第1図は本発明実施例の構成を示す図で、(a)は要部
平面図、(b)はそのA−A断面図である。
<Embodiment> FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, in which (a) is a plan view of the main part, and (b) is a sectional view taken along the line AA.

Mg0(100)基Fi1の表面には、底面に平行な平
面である第1の面11と、これに鈍角θで交差し、かつ
、その交差部分から離れるに従って次第に底面に平行に
近づくような曲面である第2の面12が形成されている
The surface of the Mg0 (100) base Fi1 has a first plane 11 that is a plane parallel to the bottom surface, and a curved surface that intersects this plane at an obtuse angle θ and gradually becomes parallel to the bottom surface as it moves away from the intersection. A second surface 12 is formed.

そして、この第1と第2の面11と12の交線3を横切
るように、微小な幅寸法を持つC軸配向のYBCO高温
超電導体薄膜細線2が形成されている。なお、この細線
2の両端は同じYBCO高温超電導体薄膜からなる電極
部4および5に接続される。
A C-axis oriented YBCO high temperature superconductor thin film wire 2 having a minute width dimension is formed so as to cross the intersection line 3 of the first and second surfaces 11 and 12. Note that both ends of this thin wire 2 are connected to electrode parts 4 and 5 made of the same YBCO high temperature superconductor thin film.

以上のような構造は、次のような手順によって製造でき
る。
The structure described above can be manufactured by the following procedure.

まず、MgO(100)基板1の表面に、角度θで交わ
る第1と第2の面11と12を形成するには、平板上の
基板に第1の面11の部分を覆うようにレジストをパタ
ーニングした後、Arイオンミリングでその基板表面を
ミリングする。このとき、ミリング条件を調整すること
により、交差部分の角度が比較的急峻で、そこから離れ
るに連れて次第に底面に対して平行に近づくような曲面
状の第2の面12を得ることができる。
First, in order to form first and second surfaces 11 and 12 that intersect at an angle θ on the surface of the MgO (100) substrate 1, a resist is applied to the flat substrate so as to cover the first surface 11. After patterning, the surface of the substrate is milled by Ar ion milling. At this time, by adjusting the milling conditions, it is possible to obtain a curved second surface 12 in which the angle at the intersection is relatively steep and gradually approaches parallel to the bottom surface as it moves away from the angle. .

次に、基板1を550〜650°Cに加熱した状態で、
第1と第2の面11と12の交線3を横切るようにYB
CO薄膜を製膜する。
Next, with the substrate 1 heated to 550 to 650°C,
YB across the intersection line 3 of the first and second surfaces 11 and 12
A CO thin film is formed.

これにより、各部分には各部において基板表面に垂直な
方向にC軸配向したYBCO薄膜が成長する。
As a result, a YBCO thin film with C-axis orientation perpendicular to the substrate surface is grown in each portion.

以上のような本発明実施例の構造によると、第2図にそ
の細線2の軸線方向に直交する方向から見た模式図を示
すように、YBCO高温超電導体薄膜細線2の第1の面
11上の部分のC軸方向と、同じ<YBCO高温超電導
体薄膜細線2の第2の面12上の交線3近傍の部分のC
軸方向とは、それぞれ図中矢印で示すように、はぼ角度
(π−θ)だけ相互にずれることになる。従って、ここ
に結晶の不連続部分ができ、いわゆる亜粒界20が得ら
れることになる。この亜粒界20の部分は、他の部分と
比較して臨界電流密度が大幅に低くなり、従ってこの部
分においてYBCO高温超電導体薄膜細線2はウィーク
に接合し、ジョセフソン接合が得られる。
According to the structure of the embodiment of the present invention as described above, the first surface 11 of the YBCO high temperature superconductor thin film thin wire 2 is shown in FIG. The C axis direction of the upper part and the same <C of the part near the intersection line 3 on the second surface 12 of the YBCO high temperature superconductor thin film thin wire 2
As shown by the arrows in the figure, they are offset from each other by an angle (π-θ) with respect to the axial direction. Therefore, a discontinuous portion of the crystal is formed here, and a so-called sub-grain boundary 20 is obtained. The critical current density in this sub-grain boundary 20 portion is significantly lower than in other portions, and therefore the YBCO high temperature superconductor thin film thin wire 2 is weakly bonded in this portion, resulting in a Josephson junction.

そして、この部分にできる亜粒界2oは、2面の交差角
θ、YBCO高温超電導体vR膜細線2の幅および膜厚
等によって人為的にコントロール可能であり、再現性良
く所望の臨界電流を持つジョセフソン接合を得ることが
できる。
The sub-grain boundary 2o formed in this part can be artificially controlled by the intersection angle θ of the two planes, the width and film thickness of the YBCO high temperature superconductor vR film thin wire 2, etc., and the desired critical current can be achieved with good reproducibility. We can obtain a Josephson junction with

なお、基板の材料としては、上記したMgOのほか、5
rTiO,(100)、  (110)、YSZ、00
0等使用する高温超電導体薄膜に対してダメージを与え
ないものなら何でもよい。
In addition to the above-mentioned MgO, the material for the substrate is 5
rTiO, (100), (110), YSZ, 00
Any material may be used as long as it does not damage the high temperature superconductor thin film used.

また、超電導体薄膜についても、結晶性の強いものであ
れば何でもよいことは勿論である。
Moreover, it goes without saying that any superconductor thin film may be used as long as it has strong crystallinity.

更に、超電導体薄膜の結晶軸方向は、特にC軸に限定さ
れることなく、他の方向でもよい。
Furthermore, the crystal axis direction of the superconductor thin film is not particularly limited to the C-axis, and may be in other directions.

〈発明の効果〉 以上説明したように、本発明によれば、基板表面に鈍角
で交差する2つの面を形成し、その2面の交線を横切る
ように、結晶異方性のある超電導体薄膜細線を形成した
ので、この交線上の超電導体薄膜に結晶軸方向が急峻に
変化する不連続面が生じて人為的に亜粒界が形成される
ことになり、高温超電導体薄膜等を使用しても、人為的
に■。
<Effects of the Invention> As explained above, according to the present invention, two planes intersecting at an obtuse angle are formed on the substrate surface, and a superconductor with crystal anisotropy is formed so as to cross the line of intersection of the two planes. Since thin film wires are formed, a discontinuous surface where the crystal axis direction changes sharply occurs in the superconductor thin film on this intersection line, and a subgrain boundary is artificially formed. Therefore, it is necessary to use a high temperature superconductor thin film, etc. However, it is artificially■.

やダイナミック抵抗Rをコントロールすることのできる
5QUID等を安定して再現性良く作成できる。
5QUID, etc., which can control dynamic resistance R, etc., can be produced stably and with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成を示す図、第2図はその模
式的な作用説明図である。 1・・・・基板 11・・・・第1の面 12・・・・第2の面 2・・・・YBCO高温超電導体薄膜細線20・・・・
亜粒界 3・・・・交線 特許出願人   株式会社島津製作所 代 理 人    弁理士 西1)新
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a schematic explanatory diagram of its operation. 1...Substrate 11...First surface 12...Second surface 2...YBCO high temperature superconductor thin film thin wire 20...
Subgrain boundary 3...Intersection line Patent applicant Representative of Shimadzu Corporation Patent attorney Nishi 1) Shin

Claims (1)

【特許請求の範囲】[Claims]  基板表面に、第1の面に対して鈍角で交差する第2の
面が形成され、その基板表面に、臨界電流密度およびコ
ヒーレント長に結晶異方性を有する超電導体薄膜製の細
線が、上記第1と第2の面の交線を横切るように形成さ
れてなるジョセフソン接合素子。
A second plane intersecting the first plane at an obtuse angle is formed on the substrate surface, and a thin wire made of a superconducting thin film having crystal anisotropy in critical current density and coherent length is formed on the substrate surface. A Josephson junction element formed to cross a line of intersection between first and second surfaces.
JP2139461A 1990-05-29 1990-05-29 Josephson junction element Expired - Lifetime JP2861265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139461A JP2861265B2 (en) 1990-05-29 1990-05-29 Josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139461A JP2861265B2 (en) 1990-05-29 1990-05-29 Josephson junction element

Publications (2)

Publication Number Publication Date
JPH0432276A true JPH0432276A (en) 1992-02-04
JP2861265B2 JP2861265B2 (en) 1999-02-24

Family

ID=15245767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139461A Expired - Lifetime JP2861265B2 (en) 1990-05-29 1990-05-29 Josephson junction element

Country Status (1)

Country Link
JP (1) JP2861265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023072A (en) * 1996-07-08 2000-02-08 Trw Inc. Superconductor hetero-epitaxial josephson junction
JP2012235106A (en) * 2011-04-22 2012-11-29 Semiconductor Energy Lab Co Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023072A (en) * 1996-07-08 2000-02-08 Trw Inc. Superconductor hetero-epitaxial josephson junction
JP2012235106A (en) * 2011-04-22 2012-11-29 Semiconductor Energy Lab Co Ltd Semiconductor device
US9660095B2 (en) 2011-04-22 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10388799B2 (en) 2011-04-22 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device

Also Published As

Publication number Publication date
JP2861265B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
CA2084272C (en) Method for manufacturing a josephson junction device having weak link of artificial grain boundary
JP3027549B2 (en) Superconductor hetero-epitaxial Josephson junction
US5472934A (en) Anisotropic superconducting device and fluxon device
JPH0432276A (en) josephson junction element
EP1092984A2 (en) Squid
JP2871516B2 (en) Oxide superconducting thin film device
US6016433A (en) Oxide superconductor Josephson junction element and process for producing same
CA2073831C (en) Josephson junction device of oxide superconductor and process for preparing the same
US5883051A (en) High Tc superconducting Josephson junction element
JP2853251B2 (en) Method of manufacturing wedge-type Josephson junction device
JPS63268206A (en) superconducting magnet
EP0524862A1 (en) Josephson junction device of oxide superconductor and process for preparing the same
JPH04268774A (en) Josephson junction
JPH04332180A (en) Josephson element
JP2853242B2 (en) Josephson junction element
JPH01214178A (en) Manufacturing method of Josephson junction
JP2761504B2 (en) Oxide superconducting device and manufacturing method thereof
JPH04147681A (en) superconducting junction
JPH03108782A (en) weak coupling element
JPH05291632A (en) Superconducting junction structure
Iwasaki et al. Resistive superconducting transition of Y1− xPrxBa2Cu3Oy film in magnetic field
JPH0336771A (en) Weak coupling type josephson junction element
JPH0563247A (en) Superconducting joint structure and production thereof
JPH04152684A (en) superconducting junction
Mashtakov et al. High-T/sub c/superconducting step-edge junction on sapphire fabricated by non-etching technique