[go: up one dir, main page]

JPH04340406A - Aspheric surface measurement method - Google Patents

Aspheric surface measurement method

Info

Publication number
JPH04340406A
JPH04340406A JP14082391A JP14082391A JPH04340406A JP H04340406 A JPH04340406 A JP H04340406A JP 14082391 A JP14082391 A JP 14082391A JP 14082391 A JP14082391 A JP 14082391A JP H04340406 A JPH04340406 A JP H04340406A
Authority
JP
Japan
Prior art keywords
eccentricity
measurement
parallel
aspherical
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14082391A
Other languages
Japanese (ja)
Other versions
JP3010786B2 (en
Inventor
Koji Narumi
廣治 鳴海
Keiji Watanabe
渡辺 啓治
Kotaro Hosaka
光太郎 保坂
Kenji Tsubuki
津吹 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3140823A priority Critical patent/JP3010786B2/en
Publication of JPH04340406A publication Critical patent/JPH04340406A/en
Application granted granted Critical
Publication of JP3010786B2 publication Critical patent/JP3010786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は非球面測定方法に関連し
、特に非球面形状誤差を機械的取付誤差により発生する
平行偏心及び回転偏心を除去した状態で評価するような
データ処理方法を用いた非球面測定方法に関するもので
ある。
[Industrial Application Field] The present invention relates to an aspherical surface measurement method, and in particular uses a data processing method for evaluating aspherical surface shape errors with parallel eccentricity and rotational eccentricity caused by mechanical installation errors removed. This paper relates to a method for measuring aspheric surfaces.

【0002】0002

【従来の技術】光学系の高精度化、コンパクト化にとも
ない非球面はますますその応用分野を広げつつある。従
来、非球面の形状を測定する際の面の偏心成分、即ち平
行偏心と回転偏心による軸ずれは測定前に測定装置に対
する被測定物の機械的な軸を人間が微細調整を行うこと
によって補正を行っていた。また面としての軸ずれに関
しては従来は各断面の評価のみで、面全体としての評価
は特に考慮されていなかった。
[Prior Art] As optical systems become more precise and more compact, the fields of application of aspherical surfaces are increasingly expanding. Conventionally, when measuring the shape of an aspheric surface, eccentric components of the surface, that is, axis deviations due to parallel eccentricity and rotational eccentricity, are corrected by humans making fine adjustments to the mechanical axis of the object to be measured relative to the measuring device before measurement. was going on. Furthermore, regarding the axis deviation as a surface, conventionally only each cross section was evaluated, and the evaluation of the entire surface was not particularly considered.

【0003】0003

【発明が解決しようとする課題】しかしながら上記従来
例で非球面測定物の軸ずれを人手によって機械的に除去
するには熟練した作業を要求され、時間がかかるという
欠点がある。この結果として得られる測定結果も再現性
が悪かった。また断面を測定する従来の方法で面全体に
ついて3次元的に評価することは事実上不可能であった
However, in the conventional example described above, manual and mechanical removal of the axis misalignment of the aspherical object to be measured requires skilled work and is time consuming. The resulting measurement results also had poor reproducibility. Furthermore, it is virtually impossible to three-dimensionally evaluate the entire surface using the conventional method of measuring the cross section.

【0004】本発明は上述の問題点を解決するため、非
球面形状の測定結果から平行偏心量及び回転偏心量を計
算機によって自動的に算出することを可能とし、人手に
よる手間を無くした非球面測定方法の提供を目的とする
In order to solve the above-mentioned problems, the present invention makes it possible to automatically calculate the parallel eccentricity and rotational eccentricity by a computer from the measurement results of the aspherical surface shape, thereby eliminating the need for manual labor. The purpose is to provide a measurement method.

【0005】更に本発明では複数個の断面の各偏心量か
ら面全体としての軸ずれを計算によって決定することを
特徴としており、これにより面全体としての形状評価も
可能とした非球面測定方法の提供を目的とする。
Furthermore, the present invention is characterized in that the axis deviation of the entire surface is determined by calculation from the amount of eccentricity of a plurality of cross sections, thereby making it possible to evaluate the shape of the entire surface. For the purpose of providing.

【0006】[0006]

【課題を解決するための手段】本発明の非球面測定方法
は、非球面の測定、検査を行なう際、測定デ−タに含ま
れる回転及び平行偏心誤差を設計データと比較し測定値
の補正を行なう非球面測定方法において、非球面形状設
計値と参照球面の各々の傾き即ち微分値が等しくなる点
で平行偏心の補正を行なうことを特徴としている。
[Means for Solving the Problems] The aspherical surface measurement method of the present invention compares rotational and parallel eccentricity errors contained in measured data with design data when measuring and inspecting an aspherical surface, and corrects the measured value. The method for measuring an aspheric surface is characterized in that parallel eccentricity is corrected at a point where the inclination, or differential value, of each of the aspheric shape design values and the reference spherical surface becomes equal.

【0007】[0007]

【実施例】図1、図2は非球面レンズ形状測定装置で採
取されたデータを処理する本発明に係る計算処理のフロ
ーチャート、図3は本発明に係る非球面レンズ形状測定
装置の概略図である。
[Example] Figures 1 and 2 are flowcharts of calculation processing according to the present invention for processing data collected by an aspherical lens shape measuring device, and Figure 3 is a schematic diagram of the aspherical lens shape measuring device according to the present invention. be.

【0008】図中、被検物体である非球面レンズ30は
被検物のホールダ8にマウントされており、割り出し軸
モータ9と旋回軸モータ2,3により非球面測定の非接
触式プローブに対して移動できる様になっている。従来
熟練を要したのは、この部分に被検物体である非球面レ
ンズをセットすることであった。
In the figure, an aspherical lens 30, which is an object to be measured, is mounted on a holder 8 of the object, and is moved to a non-contact type probe for aspherical surface measurement by an indexing axis motor 9 and rotation axis motors 2, 3. It is now possible to move around. Conventionally, what required skill was setting the aspherical lens, which is the object to be tested, in this area.

【0009】一方、非球面形状を測定するセンサ部は1
0〜20に示される部分である。非接触プローブ20は
非球面レンズ30の表面に合焦させることによって形状
を測定する。その際のプローブの動きが微動スライド移
動機構18,19と、粗動スライド移動機構13,14
によって検出される。12は粗動スライド用の移動モー
タ、11はセンサヘッド部を載せた定盤である。
On the other hand, the sensor section for measuring the aspherical shape is
This is the part indicated by 0 to 20. The non-contact probe 20 measures the shape by focusing on the surface of the aspherical lens 30. The movement of the probe at that time is caused by the fine slide movement mechanisms 18 and 19 and the coarse slide movement mechanisms 13 and 14.
detected by. Reference numeral 12 represents a movement motor for a coarse slide, and reference numeral 11 represents a surface plate on which a sensor head is mounted.

【0010】以上のような測定系のハードウェアから得
られるデータの処理について図1、図2を用いて説明す
る。測定を開始するとまずステップS1では非球面形状
に関する諸データ、即ち合焦状態検出器50、傾斜角検
出器51、微動スライド移動量検出器53、粗動スライ
ド移動量検出器55、被検物の位置を示す旋回角検出器
57からのデータを制御コンピュータ60を介してデー
タ処理コンピュータ61に処理データとして入力する。
Processing of data obtained from the hardware of the measurement system as described above will be explained using FIGS. 1 and 2. When the measurement is started, first in step S1, various data regarding the aspherical shape, that is, the focusing state detector 50, the tilt angle detector 51, the fine slide movement amount detector 53, the coarse slide movement amount detector 55, and the object to be inspected are collected. Data from the turning angle detector 57 indicating the position is input as processing data to the data processing computer 61 via the control computer 60.

【0011】この状態での測定値と設計値との関係を図
4に示す。図中実線302で示されているのが設計値、
破線304で示されているのが測定値である。実際の測
定値には平行偏心も回転偏心も含まれているため、一般
には図4で示されているような複雑な関係となる。非球
面形状の設計値302の頂点311と被測定物の有効径
309,310を通過する円を参照球面303とすると
、非球面設計値の軸301と測定した非球面304の軸
306の軸ずれ量は回転偏心αb 307と平行偏心α
a 308に分解される。2つの成分への分解は図4に
示した様に、参照球面303の中心305を中心として
設計値の軸を測定値の軸と平行となる位置まで回転した
時の回転量αb と、回転後の設計値の軸に垂直な方向
の成分として残る平行偏心αa として定義される。
FIG. 4 shows the relationship between the measured values and the designed values in this state. The design value is indicated by a solid line 302 in the figure.
The measured value is indicated by a broken line 304. Since the actual measured values include both parallel eccentricity and rotational eccentricity, the relationship is generally complicated as shown in FIG. 4. If a circle passing through the apex 311 of the design value 302 of the aspherical surface shape and the effective diameters 309 and 310 of the object to be measured is the reference spherical surface 303, the axis misalignment between the axis 301 of the aspherical surface design value and the axis 306 of the measured aspherical surface 304 The amount is rotational eccentricity αb 307 and parallel eccentricity α
a decomposed into 308. As shown in Fig. 4, the decomposition into two components is the amount of rotation αb when the axis of the design value is rotated to a position parallel to the axis of the measured value around the center 305 of the reference spherical surface 303, and the amount of rotation αb after rotation. is defined as the parallel eccentricity αa remaining as the component in the direction perpendicular to the axis of the design value of .

【0012】非球面形状を正確に評価するためには上記
の2つの偏心量を除去しなければならない。ところで非
球面形状は頂点311以外に参照球面と、傾き即ち微分
値が等しくなる点が左右に必ず存在する。本実施例では
微分値が等しくなる点における設計値と測定値の差分中
には回転偏心による誤差が含まれず、平行偏心による誤
差のみとなることに着目する。
[0012] In order to accurately evaluate the aspherical shape, the above two eccentricities must be removed. Incidentally, in an aspherical shape, in addition to the apex 311, there are always points on the left and right sides where the inclination, that is, the differential value, is equal to that of the reference spherical surface. In this embodiment, attention is paid to the fact that the difference between the design value and the measured value at the point where the differential values become equal does not include an error due to rotational eccentricity, but only an error due to parallel eccentricity.

【0013】図1、図2のステップS2ではまず初めに
上記の微分値の等しくなる点を平行偏心を計算する演算
の初期ポイントとし、平行偏心量を計算する。次にステ
ップS3ではステップS2とは異なるポイント例えば設
計値と測定値の差分が回転偏心によって最も大きく現れ
る点を演算ポイントとして選び、回転偏心量の計算を行
う。この二つの初期ポイントより算出された平行偏心量
及び回転偏心量は真の値とは少し異なっている。初期値
として平行偏心量αsa(1)=0、回転偏心量αsb
(1)=0として算出された回転及び平行偏心量αa、
αbをそれぞれ足し込む。さらに、αa、αbによって
次の演算ポイントを補正する。
In step S2 of FIGS. 1 and 2, first, the point where the above-mentioned differential values are equal is used as an initial point for calculation of parallel eccentricity, and the amount of parallel eccentricity is calculated. Next, in step S3, a point different from step S2, for example, a point where the difference between the design value and the measured value appears largest due to rotational eccentricity, is selected as a calculation point, and the amount of rotational eccentricity is calculated. The parallel eccentricity and rotational eccentricity calculated from these two initial points are slightly different from the true values. As initial values, parallel eccentricity αsa(1)=0, rotational eccentricity αsb
(1) Rotation and parallel eccentricity αa calculated as = 0,
Add each αb. Furthermore, the next calculation point is corrected by αa and αb.

【0014】ステップS4、S5では求められた誤差量
αa ,αb が所定の許容量A,B以内に入ったかど
うかの判断が行われ、Noの場合にはステップS2〜5
のループを繰り返す。次々に算出されるαa ,αb 
が前のループでの偏心量の出発値αsa(1)、αsb
(1)に加えられて補正が行われる。ステップS2〜S
5のループを抜けた時のαsa(1)、αsb(1)が
第1の断面での偏心量演算結果となる。ステップS2〜
S5までのループはいわゆる収束法と呼ばれる演算の手
法である。
[0014] In steps S4 and S5, it is determined whether the obtained error amounts αa and αb are within predetermined tolerances A and B, and if no, steps S2 to S5 are performed.
Repeat the loop. αa, αb calculated one after another
are the starting values αsa(1) and αsb of the eccentricity in the previous loop
Correction is performed in addition to (1). Steps S2-S
αsa(1) and αsb(1) when exiting the loop of No. 5 are the calculation results of the amount of eccentricity in the first cross section. Step S2~
The loop up to S5 is a calculation method called a so-called convergence method.

【0015】ステップS6は計算する断面数のチェック
を行う部分である。αsa,αsbの中の引数は測定断
面の番号を表わすパラメータで、計算を行った断面数が
あらかじめ定められた測定断面数Na に達したかどう
かが判断される。NoであればステップS7で断面番号
の引数を1つ加えて、次の断面の偏心量を計算すべくス
テップS2〜S6を繰り返す。
Step S6 is a part for checking the number of cross sections to be calculated. The arguments in αsa and αsb are parameters representing the number of measurement cross sections, and it is determined whether the number of calculated cross sections has reached the predetermined number Na of measurement cross sections. If No, one argument of the section number is added in step S7, and steps S2 to S6 are repeated to calculate the eccentricity of the next section.

【0016】ステップS6がYesの場合に進むステッ
プS8は、測定が1断面のみであるか、多断面の測定な
のかの判断の部分である。1断面のみの場合にはステッ
プS9で断面の測定データから求められた偏心量αsa
(1)、αsb(1)を用いて測定データを補正し、計
算を終了する。また多断面測定の場合にはステップ各断
面で求められた偏心量の間の相関から面全体としての形
状を求めるためステップS10〜S14に進む。
[0016] Step S8, which is proceeded to when step S6 is Yes, is a part for determining whether the measurement is of only one cross-section or of multiple cross-sections. In the case of only one cross section, the eccentricity αsa obtained from the measurement data of the cross section is determined in step S9.
(1), the measurement data is corrected using αsb(1), and the calculation is completed. Further, in the case of multi-section measurement, the process proceeds to steps S10 to S14 in order to obtain the shape of the entire surface from the correlation between the eccentricity values obtained for each step section.

【0017】ステップS10、S11に至った段階は各
断面の平行偏心量αsa(1)〜αsa(Na)及び回
転偏心量αsb(1)〜αsb(Na)がそれぞれ独立
に求められた状態である。これらのデータより面として
の平行偏心量Sd とその方向Sr、回転偏心量Rd 
とその方向Rr をFFTの第1項を演算する方法で算
出する。これが非球面全体の形状を考慮した場合の平行
偏心並びに回転偏心の軸である。
At the stage when steps S10 and S11 have been reached, the parallel eccentricity αsa(1) to αsa(Na) and the rotational eccentricity αsb(1) to αsb(Na) of each cross section have been independently determined. . From these data, the parallel eccentricity Sd as a surface, its direction Sr, and the rotational eccentricity Rd
and its direction Rr are calculated by the method of calculating the first term of FFT. This is the axis of parallel eccentricity and rotational eccentricity when considering the shape of the entire aspherical surface.

【0018】次のステップS12、S13はステップS
10、S11で求められた面全体としての軸ずれを改め
て各断面の成分に分解し、各断面における真の平行偏心
量{αsan(1)〜αsan(Na)}、及び真の回
転偏心量{αsbn(1)〜αsbn(Na)}を計算
する部分である。次いでステップS14においてステッ
プS12、S13で求めた偏心誤差より各断面の測定デ
ータを補正し、処理が終了する。補正された測定データ
と偏心量は図3に示されたプロッタ63、プリンタ64
等の出力デバイスによって断面形状、あるいは面として
の表示が行われる。
The next steps S12 and S13 are step S
10. Decompose the axial deviation of the entire surface obtained in S11 into components of each cross section, and calculate the true parallel eccentricity {αsan(1) to αsan(Na)} and the true rotational eccentricity {αsan(1) to αsan(Na)} in each crosssection. This is the part that calculates αsbn(1) to αsbn(Na)}. Next, in step S14, the measurement data of each cross section is corrected based on the eccentricity error obtained in steps S12 and S13, and the process ends. The corrected measurement data and the amount of eccentricity are printed on the plotter 63 and printer 64 shown in FIG.
A cross-sectional shape or surface is displayed using an output device such as .

【0019】本実施例では被測定物体をマウントに保持
したままの状態で複数の断面の測定を行うことが可能で
あるため、測定断面間の相互関係から総合的に面全体と
しての平行偏心、回転偏心を計算処理し、決定すること
ができる。この結果、非球面の形状を正確な偏心データ
で除去した状態で評価することが可能となった。
In this embodiment, since it is possible to measure multiple cross sections while the object to be measured is held on the mount, it is possible to comprehensively determine the parallel eccentricity of the entire surface from the mutual relationship between the measured cross sections. Rotational eccentricity can be calculated and determined. As a result, it has become possible to evaluate the shape of the aspheric surface with accurate eccentricity data removed.

【0020】図1、図2に示した本発明の実施例1では
ステップS2、S3において平行及び回転偏心量を参照
球面の中心を原点とする極座標系で考えた。しかしなが
ら偏心量を求める手法はこのほかにも種々考えられる。 例えば本発明の実施例2として示すのは、偏心量の検出
をxyの直交座標系で行うものである。直交座標系での
偏心量の考え方を示す概念図を図5に示す。
In the first embodiment of the present invention shown in FIGS. 1 and 2, in steps S2 and S3, the parallel and rotational eccentricities were considered in a polar coordinate system with the center of the reference sphere as the origin. However, there are various other methods of determining the amount of eccentricity. For example, in the second embodiment of the present invention, the amount of eccentricity is detected using an xy orthogonal coordinate system. A conceptual diagram showing the concept of eccentricity in the orthogonal coordinate system is shown in FIG.

【0021】図5で401は非球面の設計値、402は
測定による入力データである。この場合、回転による軸
ずれはαb 406となるが、平行偏心成分は単純な軸
ずれでなく測定範囲405がαa 407だけ、設計範
囲403を反映した被検物上での設計範囲404に対し
ずれることとなって現れる。そこで本実施例2では各断
面について測定値fn と設計値Fn からδ=Σ(f
n ーFn)2 を計算し、δが最小となる条件を満たす平行偏心量αa
 及び回転偏心量αb を求めることを特徴としている
。この条件は Lagrange の未定定数法でαa
 及びαbでδを偏微分した連立方程式より、いわゆる
減衰最小2乗法によって算出することができる。
In FIG. 5, 401 is the design value of the aspherical surface, and 402 is input data obtained by measurement. In this case, the axis deviation due to rotation is αb 406, but the parallel eccentric component is not a simple axis deviation, but the measurement range 405 deviates by αa 407 from the design range 404 on the test object that reflects the design range 403. It appears as a result. Therefore, in Example 2, δ=Σ(f
n - Fn)2, and find the parallel eccentricity αa that satisfies the condition that δ is the minimum.
It is characterized by determining the amount of rotational eccentricity αb. This condition is expressed as αa by Lagrange's undetermined constant method.
It can be calculated by the so-called damped least squares method from simultaneous equations in which δ is partially differentiated by αb and αb.

【0022】各断面の平行及び回転偏心量を計算し終え
た段階は図1、図2の計算フローチャートのステップS
6の状態であるが、これより以降は実施例1と同様であ
る。
The stage at which the parallel and rotational eccentricity of each cross section has been calculated is step S in the calculation flowchart of FIGS. 1 and 2.
6, but the rest is the same as in the first embodiment.

【0023】以上本発明の非球面測定法では(イ)測定
が極座標方式か、直交座標方式か。
In the aspheric surface measurement method of the present invention, (a) Is the measurement performed using polar coordinates or rectangular coordinates?

【0024】(ロ)計算法が収束法か、減衰最小自乗法
か。また図3の測定系では非接触のプローブを持った測
定センサを示したが、これは勿論接触型のものでも構わ
ず、従って第3のパラメータとして (ハ)プローブが接触法か、非接触法か。といった選択
肢がある。本発明はこれらのどの組み合わせでも実施す
ることができる。
(b) Is the calculation method a convergence method or a damped least squares method? In addition, although the measurement system in Figure 3 shows a measurement sensor with a non-contact probe, this can of course be a contact type, so the third parameter is (c) whether the probe is a contact method or a non-contact method. mosquito. There are such options. The invention can be practiced with any combination of these.

【0025】[0025]

【発明の効果】以上説明したように本発明では従来熟練
した人手に頼っていた非球面形状測定を、自動測定する
とともに、測定時の被測定物の軸ずれ補正を計算機によ
って統計的かつ自動的に行うことを特徴としている。自
動化の結果、長時間を要した検査時間を大幅に短縮する
ことが可能となった。また本発明では長時間と熟練を要
した軸ずれ補正の作業を基本的に削除することができる
ため、装置の取り扱いが容易となり、測定の再現性を向
上させることができた。
[Effects of the Invention] As explained above, in the present invention, aspherical surface shape measurement, which conventionally relied on skilled hands, can be automatically measured, and the axis deviation of the measured object can be corrected statistically and automatically by a computer. It is characterized by being carried out. As a result of automation, it has become possible to significantly shorten the long inspection time. Further, in the present invention, since the work of correcting axis deviation, which requires a long time and skill, can basically be omitted, the handling of the apparatus becomes easier and the reproducibility of measurement can be improved.

【0026】更に本発明では測定を自動的、かつ連続的
に行うことで複数個の面を測定し、相互に関係付けなが
らデータ処理を行うことが可能となった。この結果、こ
れまで個々の断面としてしか処理できなかった非球面形
状を面全体の3次元的な視点から総合的に評価すること
が可能となった。
Further, according to the present invention, by automatically and continuously performing measurements, it has become possible to measure a plurality of surfaces and perform data processing while correlating them with each other. As a result, it has become possible to comprehensively evaluate aspherical shapes, which could only be processed as individual cross sections, from a three-dimensional perspective of the entire surface.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の実施例1のフローチャート[Figure 1] Flowchart of Embodiment 1 of the present invention

【図2
】  本発明の実施例1のフローチャート
[Figure 2
] Flowchart of Embodiment 1 of the present invention

【図3】  
本発明を適用した非球面測定装置のブロック図
[Figure 3]
Block diagram of an aspheric surface measuring device to which the present invention is applied

【図4】  測定値の設計値に対する偏心関係を極座標
系で示した概念図
[Figure 4] Conceptual diagram showing the eccentricity relationship between measured values and design values using a polar coordinate system

【図5】  測定値の設計値に対する偏心関係を直交座
標系で示した概念図
[Figure 5] Conceptual diagram showing the eccentricity relationship between measured values and design values using an orthogonal coordinate system

【符号の説明】[Explanation of symbols]

2,3  旋回軸モータ 8  被検物のホールダ 9  割り出し軸モータ 11  定盤 12  粗動モータ 13,14  粗動スライド機構 18,19  微動スライド機構 20  測定プローブ 30  被検物体 50  合焦状態検出器 51  傾斜角検出器 52  サーボドライバ 53  微動スライド移動量検出器 54  粗動モータドライバ 55  粗動スライド移動量検出器 56  旋回軸モータドライバ 57  旋回角検出器 58  割り出し軸モータドライバ 59  走査盤 60  制御コンピュータ 61  データ処理コンピュータ 62  ディスク 63  プロッタ 64  プリンタ 301  非球面設計値の軸 302,401  設計値 303  参照球面 304,402  測定値 305  設計値の参照球面の中心 306  測定非球面の軸 307,406  回転偏心量 308,407  平行偏心量 311  設計値の頂点 403,404  設計範囲 405  測定範囲 2, 3 Swivel axis motor 8 Test object holder 9 Index axis motor 11 Surface plate 12 Coarse motor 13,14 Coarse slide mechanism 18, 19 Fine movement slide mechanism 20 Measurement probe 30 Test object 50 Focus state detector 51 Tilt angle detector 52 Servo driver 53 Fine slide movement amount detector 54 Coarse motor driver 55 Coarse slide movement amount detector 56 Rotation axis motor driver 57 Turning angle detector 58 Index axis motor driver 59 Scanning board 60 Control computer 61 Data processing computer 62 Disc 63 Plotter 64 Printer 301 Axis of aspheric design value 302,401 Design value 303 Reference sphere 304,402 Measured value 305 Center of reference sphere of design value 306 Axis of measurement aspheric surface 307,406 Rotational eccentricity 308,407 Parallel eccentricity 311 Vertex of design value 403,404 Design range 405 Measurement range

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  非球面の測定、検査を行なう際、測定
デ−タに含まれる回転及び平行偏心誤差を設計データと
比較し測定値の補正を行なう非球面測定方法において、
非球面形状設計値と参照球面の各々の傾き即ち微分値が
等しくなる点で平行偏心の補正を行なうことを特徴とす
る非球面測定方法。
Claim 1. An aspherical surface measurement method in which rotational and parallel eccentricity errors contained in measurement data are compared with design data and correction of the measured values is performed when measuring and inspecting an aspherical surface.
An aspherical surface measurement method characterized in that parallel eccentricity is corrected at a point where the inclination, that is, the differential value of each of the aspherical surface shape design values and the reference spherical surface becomes equal.
【請求項2】  非球面の測定を同時に複数個の断面に
対し行い、該複数個の断面から独立に求められた各回転
及び平行偏心量より、該非球面全体としての回転及び平
行偏心量を求め、前記求められた面全体としての偏心量
より該複数個の断面の測定データを補正することを特徴
とした非球面測定方法。
2. The aspheric surface is measured simultaneously on a plurality of cross sections, and the amount of rotation and parallel eccentricity of the aspheric surface as a whole is determined from the amounts of rotation and parallel eccentricity obtained independently from the plurality of cross sections. . An aspheric surface measuring method, comprising: correcting measurement data of the plurality of cross sections based on the obtained eccentricity of the entire surface.
JP3140823A 1991-05-16 1991-05-16 Aspheric measurement method Expired - Fee Related JP3010786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3140823A JP3010786B2 (en) 1991-05-16 1991-05-16 Aspheric measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3140823A JP3010786B2 (en) 1991-05-16 1991-05-16 Aspheric measurement method

Publications (2)

Publication Number Publication Date
JPH04340406A true JPH04340406A (en) 1992-11-26
JP3010786B2 JP3010786B2 (en) 2000-02-21

Family

ID=15277553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3140823A Expired - Fee Related JP3010786B2 (en) 1991-05-16 1991-05-16 Aspheric measurement method

Country Status (1)

Country Link
JP (1) JP3010786B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511803B2 (en) 2004-05-28 2009-03-31 Canon Kabushiki Kaisha Method for displaying result of measurement of eccentricity
DE102010001833A1 (en) 2009-02-13 2010-08-19 Mitutoyo Corp. Form measuring device, shape measuring method and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439085B (en) * 2013-08-29 2016-03-09 中国科学院光电研究院 A kind of method of contact type measurement curved surface prism parameter and device
CN106092028B (en) * 2016-06-06 2018-11-09 天津北玻玻璃工业技术有限公司 A kind of detection method of abnormal curved surface glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511803B2 (en) 2004-05-28 2009-03-31 Canon Kabushiki Kaisha Method for displaying result of measurement of eccentricity
US7944552B2 (en) 2004-05-28 2011-05-17 Canon Kabushiki Kaisha Method for displaying result of measurement of eccentricity
DE102010001833A1 (en) 2009-02-13 2010-08-19 Mitutoyo Corp. Form measuring device, shape measuring method and program

Also Published As

Publication number Publication date
JP3010786B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
US6990215B1 (en) Photogrammetric measurement system and method
EP0275428B2 (en) Method for calibrating a coordinate measuring machine and the like
US4982504A (en) Method for determining positional errors and for compensating for such errors, and apparatus for carrying out the method
US4866643A (en) Method for automatic compensation of probe offset in a coordinate measuring machine
EP0631108B1 (en) Apparatus and method for evaluating shape of three-dimensional object
US8526705B2 (en) Driven scanning alignment for complex shapes
JP2764103B2 (en) Method of using analog measuring probe and positioning device
US5313410A (en) Artifact and method for verifying accuracy of a positioning apparatus
US6985238B2 (en) Non-contact measurement system for large airfoils
JPH0236881B2 (en)
CN114396929B (en) Method for detecting form and position tolerance of diaphragm hole of laser gyro cavity
CN112082481B (en) Precision evaluation method of visual detection system for detecting thread characteristics
Li et al. Monocular-vision-based contouring error detection and compensation for CNC machine tools
CN115597524A (en) Hole axis perpendicularity error measuring method, device and equipment
Zuquete-Guarato et al. Towards a new concept of in-line crankshaft balancing by contact less measurement: process for selecting the best digitizing system
D’Emilia et al. Measurement uncertainty estimation of gap and profile in the automotive sector
CA1310092C (en) Method for determining position within the measuring volume of a coordinate measuring machine and the like and system therefor
JPH04340406A (en) Aspheric surface measurement method
JP2000081329A (en) Shape measuring method and device
JP2885422B2 (en) Shape evaluation device and shape evaluation method
Tiscareño et al. Measurement procedure for application of white light scanner in the automotive sector
Dukendjiev et al. Evaluation the performance of stationary coordinate-measuring systems with MSA methodology
Liu et al. The application of the double-readheads planar encoder system for error calibration of computer numerical control machine tools
CN119334394A (en) Uncertainty determination method of rotation measurement system based on optical image measurement
JP2003035529A (en) Systematic error measuring method in flatness measuring system on object surface to be inspected, flatness measuring method and apparatus using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees