JPH04356387A - Eliminating method for adherent fragment - Google Patents
Eliminating method for adherent fragmentInfo
- Publication number
- JPH04356387A JPH04356387A JP3155592A JP15559291A JPH04356387A JP H04356387 A JPH04356387 A JP H04356387A JP 3155592 A JP3155592 A JP 3155592A JP 15559291 A JP15559291 A JP 15559291A JP H04356387 A JPH04356387 A JP H04356387A
- Authority
- JP
- Japan
- Prior art keywords
- fragments
- ozone
- fragment
- laser
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012634 fragment Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 19
- 230000001464 adherent effect Effects 0.000 title abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 32
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229920000642 polymer Polymers 0.000 claims abstract description 11
- 238000009832 plasma treatment Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 230000001678 irradiating effect Effects 0.000 abstract description 6
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 15
- 230000010355 oscillation Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000002861 polymer material Substances 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920001187 thermosetting polymer Polymers 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 239000009719 polyimide resin Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 229920005749 polyurethane resin Polymers 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XBJJRSFLZVLCSE-UHFFFAOYSA-N barium(2+);diborate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]B([O-])[O-].[O-]B([O-])[O-] XBJJRSFLZVLCSE-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 238000006552 photochemical reaction Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- VZPPHXVFMVZRTE-UHFFFAOYSA-N [Kr]F Chemical compound [Kr]F VZPPHXVFMVZRTE-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- -1 styrene-ethylene-butylene-styrene Chemical class 0.000 description 1
- 229920006346 thermoplastic polyester elastomer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、高分子物質に加工等の
ためレーザ光を照射したとき発生しこれに付着するフラ
グメントを除去する方法の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for removing fragments that are generated and adhere to a polymeric substance when it is irradiated with a laser beam for processing or the like.
【0002】0002
【従来の技術】レーザは1960年代に出現して以来、
その発振波長は真空紫外領域(10nm)からミリ波(
10mm)までの広い領域に及んでおり、計測、分析、
医療、光通信、加工などの広い分野で利用されている。
レーザ光を金属、セラミックスあるいは高分子物質など
に照射すると、様々な加工例えば、穴明け、切断、マー
キングあるいはトリミング等の微細加工が可能で、加工
用レーザとしてはエキシマレーザ(発振波長が0.19
3〜0.308μm )、YAGレーザ(発振波長が1
.06μm )、CO2 レーザ(発振波長が10.6
μm )などがあり、現在これらのレーザに関する研究
や産業への実用化が盛んに進められている。[Prior Art] Since the appearance of lasers in the 1960s,
Its oscillation wavelength ranges from vacuum ultraviolet region (10 nm) to millimeter wave (
It covers a wide area up to 10mm) and can be used for measurement, analysis,
It is used in a wide range of fields such as medicine, optical communications, and processing. When laser light is irradiated onto metals, ceramics, or polymeric materials, various types of microprocessing such as drilling, cutting, marking, and trimming are possible.
3 to 0.308 μm), YAG laser (oscillation wavelength is 1
.. 06 μm), CO2 laser (oscillation wavelength is 10.6 μm), CO2 laser (oscillation wavelength is 10.6
.mu.m), and research on these lasers and their practical application in industry are currently actively progressing.
【0003】高分子物質は一般に赤外線領域から紫外線
領域において強い光吸収を起こすが、その理由は、この
領域の光が高分子物質を構成している化学結合の吸収波
長領域に相当するためである。よって、この領域で強い
エネルギー値をもつレーザ光を高分子物質に照射すると
光化学反応が起こり、強い光吸収により高分子物質を構
成する炭素、水素、窒素、塩素などの間の分子結合が切
断されて、質量のより小さい分子あるいは原子等いわゆ
るフラグメントが発生する。[0003] Polymer materials generally exhibit strong light absorption in the infrared to ultraviolet region, and the reason for this is that light in this region corresponds to the absorption wavelength region of the chemical bonds that make up the polymer material. . Therefore, when a polymer substance is irradiated with a laser beam with a strong energy value in this region, a photochemical reaction occurs, and the molecular bonds between carbon, hydrogen, nitrogen, chlorine, etc. that make up the polymer substance are broken due to strong light absorption. As a result, so-called fragments such as molecules or atoms with smaller masses are generated.
【0004】このように分子結合が切断され発生したフ
ラグメントはもとの分子よりも大きな比体積を有するの
で、大部分は揮発性の分子、例えばCO2、NOなどと
して飛散するが、一部は飛散しきれず炭素、炭素化合物
、窒素化合物などとして高分子物質の加工部周辺に付着
して残存する。たとえば図2〜4に示すように、高分子
物質1にレーザ光2で穴3を明けると、フラグメント4
が発生して穴3の周辺に付着残存する(図2参照)。
この高分子物質に残存した付着フラグメントは被加工物
の外観を損うのみならず、これが周囲に飛散、再付着し
て作業性を低下させたり、場合によっては以後の加工工
程に悪影響を及ぼすおそれがあるので、付着フラグメン
トを除去する方法が種々検討され、有機溶剤で拭き取っ
たり、図3に示すように、穴3をあける際生じたフラグ
メント4の付着した高分子物1を有機溶剤5中で超音波
洗浄する方法の他に、図4に示すように、ガス(アシス
トガスと呼ばれる)6を吹き付けながらレーザ光2を照
射し、フラグメント4を付着させずに加工する方法も検
討されている。[0004] Since the fragments generated by the cleavage of molecular bonds have a larger specific volume than the original molecules, most of them are dispersed as volatile molecules such as CO2 and NO, but some are dispersed as volatile molecules. It remains as carbon, carbon compounds, nitrogen compounds, etc. attached to the periphery of the processed parts of the polymeric material. For example, as shown in Figures 2 to 4, when a hole 3 is made in a polymer material 1 with a laser beam 2, fragments 4
is generated and remains attached around the hole 3 (see Fig. 2). The adhering fragments remaining on the polymer material not only damage the appearance of the workpiece, but also scatter and re-adhere to the surrounding area, reducing workability and, in some cases, potentially having a negative impact on subsequent processing steps. Therefore, various methods have been studied to remove the adhered fragments, such as wiping with an organic solvent, and as shown in FIG. In addition to the method of sonic cleaning, as shown in FIG. 4, a method of processing without adhering fragments 4 by irradiating laser light 2 while spraying gas (referred to as assist gas) 6 is also being considered.
【0005】[0005]
【発明が解決しようとする課題】上記のように、加工部
周辺に付着した付着フラグメントを除去する方法が種々
提案されているが、有機溶剤を使用する方法は簡単にで
き除去効果が高いものの、穴明け加工や微細な形状の加
工を行った場合などでは付着フラグメントを拭き取りき
れないうえ、高分子物質が有機溶剤に犯される危険があ
り、適用できる高分子物質や有機溶剤の種類が限定され
る、湿式なので付着フラグメントを除去した後乾燥工程
が必要であるなどの問題がある。一方、アシストガスを
吹き付けながらレーザ光を照射する方法では、乾式で除
去できる利点があるものの、フラグメントの付着量は減
少するが完全には付着を防止できない、アシストガスと
しては空気は付着防止に効果がなく、ヘリウムガス等の
特殊ガスを吹き付けるとコスト的にも不利であるといっ
た問題がある。[Problems to be Solved by the Invention] As mentioned above, various methods have been proposed for removing adhering fragments that have adhered to the periphery of processed parts, but although the method using an organic solvent is simple and has a high removal effect, When drilling holes or processing minute shapes, adhering fragments cannot be wiped off, and there is a risk that the polymeric substance will be attacked by the organic solvent, which limits the types of polymeric substances and organic solvents that can be used. However, since it is a wet method, there are problems such as the need for a drying process after removing the attached fragments. On the other hand, the method of irradiating laser light while spraying assist gas has the advantage of being able to remove fragments in a dry manner, but although it reduces the amount of fragments adhering, it cannot completely prevent adhesion.As an assist gas, air is effective in preventing adhesion. There is a problem that spraying special gas such as helium gas is disadvantageous in terms of cost.
【0006】[0006]
【課題を解決するための手段】本発明はオゾンが酸化効
果をもつこと、あるいは気体プラズマが分子を活性化し
て化学反応を引き起こすことに着眼し、前記した従来の
問題を解決するためなされたもので、これは高分子物質
にレーザ光を照射したときに発生しこれに付着するフラ
グメントを、オゾン処理あるいはプラズマ処理して除去
することを特徴とするする付着フラグメントの除去方法
を要旨とする。以下図面によって本発明の方法を説明す
ると、図1(a)に示すように、高分子物質1にレーザ
光2を照射して穴3を明けると、フラグメンと4が発生
して、穴3の周辺に付着する。このフラグメンと4が付
着した高分子物質1を、(b)に示すように、オゾン雰
囲気7の中で処理すると、(c)に示すように、付着フ
ラグメンと4を完全に除去した加工済の高分子物質1が
得られる。[Means for Solving the Problems] The present invention has been made to solve the above-mentioned conventional problems by focusing on the fact that ozone has an oxidizing effect or that gaseous plasma activates molecules and causes chemical reactions. The gist of this is a method for removing adhering fragments, which is characterized in that fragments generated when a polymer substance is irradiated with a laser beam and adhering thereto are removed by ozone treatment or plasma treatment. The method of the present invention will be explained below with reference to the drawings.As shown in FIG. Adheres to the surrounding area. When the polymer material 1 with these fragments and 4 attached is treated in an ozone atmosphere 7 as shown in (b), a processed product with the attached fragments and 4 completely removed is obtained as shown in (c). A polymer substance 1 is obtained.
【0007】オゾンが強い酸化力をもち、有機物や有機
金属化合物と容易に反応することは広く知られている。
上記の付着フラグメントの付着した高分子物質をオゾン
雰囲気中で酸化処理すると、オゾンのもつ酸化効果で付
着フラグメントはCO、CO2 、NOなどの揮発性の
分子に酸化され、付着フラグメントを高分子物質の表面
から飛散、除去できることが可能となる。ここでいうオ
ゾン雰囲気とはオゾンを含有する気体のことで、オゾン
濃度については特に制限はないが10〜100000p
pmが好ましい。その理由は、オゾン濃度は10ppm
未満では付着フラグメントを除去するのに長時間を要し
、逆に100000ppmを超えると爆発の危険が生じ
たり、高濃度のオゾンが漏れた場合に人体に悪影響があ
るためである。オゾン雰囲気を作製するにはいろいろな
方法があるが、最も一般的な方法としては、空気や酸素
に紫外線照射やコロナ放電を行う方法、あるいはオゾナ
イザーと呼ばれる装置で乾燥空気または酸素中に無声放
電を行う方法があり、これらの方法を組み合わせてもよ
い。[0007] It is widely known that ozone has strong oxidizing power and easily reacts with organic substances and organometallic compounds. When a polymer substance with the above-mentioned attached fragments is oxidized in an ozone atmosphere, the oxidation effect of ozone oxidizes the attached fragments into volatile molecules such as CO, CO2, NO, etc. It becomes possible to scatter and remove it from the surface. The ozone atmosphere here refers to a gas containing ozone, and there is no particular limit to the ozone concentration, but it is between 10 and 100,000 p.
pm is preferred. The reason is that the ozone concentration is 10 ppm.
This is because if it is less than 100,000 ppm, it will take a long time to remove the attached fragments, and if it exceeds 100,000 ppm, there will be a risk of explosion, or if high-concentration ozone leaks, it will have an adverse effect on the human body. There are various ways to create an ozone atmosphere, but the most common methods include irradiating air or oxygen with ultraviolet rays or corona discharge, or using a device called an ozonizer to create a silent discharge in dry air or oxygen. There are several ways to do this, and these methods may be combined.
【0008】オゾン発生のメカニズムについては、下記
の式(1)および式(2)に示すように、184.9n
mの紫外線が酸素分子に吸収されて励起酸素原子Oを発
生し、発生した励起酸素原子は反応性に富むのでただち
に酸素分子に作用してオゾンO3 となる。
O2 → O+O (1)O
+O2 → O3 (2)この
ようにして発生したオゾンは強い電子親和性をもつため
強い酸化作用を有し、さらにはオゾンを発生させる過程
で生じる励起酸素原子も酸化効果があるので一層酸化効
果が高まり、付着フラグメントを酸化、分解、気化して
除去することが可能になる。Regarding the mechanism of ozone generation, as shown in the following equations (1) and (2), 184.9n
The ultraviolet rays of m are absorbed by oxygen molecules to generate excited oxygen atoms O, and since the generated excited oxygen atoms are highly reactive, they immediately act on oxygen molecules and become ozone O3. O2 → O+O (1)O
+O2 → O3 (2) Ozone generated in this way has a strong oxidizing effect because it has a strong electron affinity, and the excited oxygen atoms generated in the process of generating ozone also have an oxidizing effect, so the oxidizing effect is even stronger. This makes it possible to oxidize, decompose, and vaporize the attached fragments to remove them.
【0009】一方、プラズマは正負に帯電した可動粒子
の集合体であり、電子およびイオン源として、金属、無
機物、高分子物質などの各種材料の熱処理、接合、薄膜
形成やエッチングに利用されている。また、有機物など
の材料を活性化させ化学反応を引き起こすのにも使用で
き、プラズマによって分子は活性化、異性体化され、構
成元素の脱離や分子の崩壊が起こる。この反応を応用し
て、付着フラグメントを気体状態のプラズマを含有する
プラズマ雰囲気中に投入しプラズマ処理すると、高分子
物質の表面にあった付着フラグメントが励起、活性化さ
れて分子構造が崩壊、気体化して容易に付着フラグメン
トを除去できる。気体プラズマは、例えばプラズマ発生
装置の反応容器を1〜0.1Torrの低圧に保ち高周
波電力を印加すれば容易に気体を解離して得ることがで
きる。本発明は、乾式であるために乾燥工程が不要で、
微細加工を施した被加工物であっても完全に除去が可能
で、さらには低コストで付着フラグメントを除去できる
。On the other hand, plasma is an aggregate of positively and negatively charged movable particles, and is used as an electron and ion source for heat treatment, bonding, thin film formation, and etching of various materials such as metals, inorganic substances, and polymeric substances. . It can also be used to activate materials such as organic substances and cause chemical reactions, with the plasma activating and isomerizing molecules, causing the elimination of constituent elements and the collapse of molecules. Applying this reaction, when the attached fragments are introduced into a plasma atmosphere containing gaseous plasma and subjected to plasma treatment, the attached fragments on the surface of the polymer material are excited and activated, the molecular structure collapses, and the gaseous The attached fragments can be easily removed by oxidation. Gas plasma can be easily obtained by dissociating gas by, for example, maintaining a reaction vessel of a plasma generator at a low pressure of 1 to 0.1 Torr and applying high frequency power. Since the present invention is a dry method, there is no need for a drying process.
Even micro-machined workpieces can be completely removed, and adhering fragments can be removed at low cost.
【0010】本発明に用いられるレーザ光には特に制限
はなく、固体レーザ、気体レーザ、半導体レーザ、色素
レーザなどのレーザ光が挙げられ、固体レーザとしては
YAGレーザ、YLFレーザ、ルビーレーザなど、気体
レーザとしてはArレーザ、He−Neレーザ、He−
Cdレーザ、エキシマレーザなど、半導体レーザとして
はGaAsレーザ、GaAlAsレーザなどが挙げられ
る。The laser beam used in the present invention is not particularly limited, and includes laser beams such as solid-state lasers, gas lasers, semiconductor lasers, and dye lasers. Examples of solid-state lasers include YAG lasers, YLF lasers, ruby lasers, etc. Gas lasers include Ar laser, He-Ne laser, He-
Examples of semiconductor lasers include Cd lasers and excimer lasers, and GaAs lasers and GaAlAs lasers.
【0011】また、上記レーザ光の高調波であってもよ
い。高調波とはレーザ光を非線形光学物質に照射したと
きに発生する光であり、例えば入射したレーザ光の角周
波数が非線形光学物質を伝搬中に2倍あるいは3倍に変
換されたレーザ光、すなわち波長が1/2あるいは1/
3に変換されたレーザ光であって、それぞれ第2高調波
、第3高調波と呼ばれる。本発明では、第4高調波以上
のより高次の高調波も適用可能であるが、高次になると
光エネルギーが低下するので、多くの場合は第2高調波
、第3高調波を用いるとよい。具体的には、例えばYA
Gレーザの発振するレーザ光は1.06μm であり、
その第2高調波は0.532μm 、第3高調波は0.
355μm である。また、ここで言う非線形光学物質
としては、リン酸チタン酸カリウム(KTP)、ホウ酸
バリウム(BBO)などが例示される。[0011] Furthermore, harmonics of the above laser light may be used. A harmonic is light generated when a nonlinear optical material is irradiated with a laser beam. For example, a laser beam whose angular frequency of the incident laser beam is doubled or tripled while propagating through a nonlinear optical material, i.e. The wavelength is 1/2 or 1/2
3, which are called the second harmonic and the third harmonic, respectively. In the present invention, higher harmonics higher than the fourth harmonic can also be applied, but since the optical energy decreases as the order becomes higher, in many cases, it is preferable to use the second harmonic or the third harmonic. good. Specifically, for example, YA
The laser beam oscillated by the G laser is 1.06 μm,
The second harmonic is 0.532 μm, and the third harmonic is 0.532 μm.
It is 355 μm. Furthermore, examples of the nonlinear optical substance mentioned here include potassium titanate phosphate (KTP), barium borate (BBO), and the like.
【0012】レーザ光の波長としては特に制限はないが
、高分子物質は一般に赤外線領域から紫外線領域におい
て強い光吸収があるので、高分子物質にレーザ光を照射
したときにフラグメントが発生するのは、レーザ光の波
長が0.05〜20μm 特には0.1〜2μm にお
いていちじるしいことは広く知られている。従って、本
発明はこの領域の波長を発振するレーザに適用すると多
大の効果がある。この領域の波長を有する加工用レーザ
としてはエキシマレーザ(発振波長が0.193〜0.
308μm )、YAGレーザ(発振波長が1.06μ
m )、CO2 レーザ(発振波長が10.6μm )
などが挙げられる。[0012] Although there is no particular restriction on the wavelength of the laser beam, since polymeric substances generally have strong light absorption in the infrared to ultraviolet range, it is difficult for fragments to be generated when a polymeric substance is irradiated with a laser beam. It is widely known that the wavelength of laser light is most noticeable in the range of 0.05 to 20 μm, particularly in the range of 0.1 to 2 μm. Therefore, the present invention has great effects when applied to lasers that emit wavelengths in this range. As a processing laser having a wavelength in this range, an excimer laser (oscillation wavelength of 0.193 to 0.05 cm) is used.
308μm), YAG laser (oscillation wavelength is 1.06μm)
m ), CO2 laser (oscillation wavelength is 10.6 μm)
Examples include.
【0013】高分子物質としては、熱可塑性樹脂、熱可
塑性エラストマー、熱硬化性樹脂、熱硬化性ゴムなどが
挙げられる。これらの高分子物質の具体的な例としては
、熱可塑性樹脂としてポリエステル樹脂、ポリメチルメ
タクリレート樹脂、塩化ビニル樹脂、ポリカーボネート
樹脂などがあり、熱硬化性樹脂としてエポキシ樹脂、不
飽和ポリエステル樹脂、熱硬化性ポリウレタン樹脂、ポ
リイミド樹脂、フェノール樹脂などがあり、熱可塑性エ
ラストマーとしてスチレン−エチレン−スチレンブロッ
ク共重合体、スチレン−エチレン−ブチレン−スチレン
ブロック共重合体、熱可塑性ポリエステルエラストマー
などがあり、熱硬化可能なゴムとしてイソブチレンゴム
、ブチルゴム、シリコーンゴムなどがあげられ、これら
は単体であってもよいし2種以上の混合体であってもよ
く、特に制限はない。これら高分子物質の中でも、特に
は、熱的に安定な高分子物質でレーザ光照射による微細
加工が適用されている熱硬化性樹脂、例えばポリイミド
樹脂が好適である。また、高分子物質は金属やセラミッ
クスなどを積層した積層体であってもよく、例えばポリ
イミド樹脂と金属の積層体としては、フレキシブルプリ
ント基板やTABテープが例示される。[0013] Examples of the polymeric substance include thermoplastic resins, thermoplastic elastomers, thermosetting resins, and thermosetting rubbers. Specific examples of these polymeric substances include thermoplastic resins such as polyester resins, polymethyl methacrylate resins, vinyl chloride resins, and polycarbonate resins, and thermosetting resins such as epoxy resins, unsaturated polyester resins, and thermosetting resins. Thermoplastic elastomers include styrene-ethylene-styrene block copolymers, styrene-ethylene-butylene-styrene block copolymers, and thermoplastic polyester elastomers, which can be thermoset. Examples of the rubber include isobutylene rubber, butyl rubber, silicone rubber, etc., and these rubbers may be used alone or in a mixture of two or more types, and are not particularly limited. Among these polymeric substances, thermosetting resins such as polyimide resins, which are thermally stable polymeric substances and are subjected to microfabrication by laser beam irradiation, are particularly suitable. Further, the polymer substance may be a laminate of metals, ceramics, etc., and examples of the laminate of polyimide resin and metal include flexible printed circuit boards and TAB tape.
【0014】これら高分子物質にはレーザ光の吸収を向
上させる目的でフィラーを添加してもよく、フィラーと
しては紫外線吸収剤、カーボンブラックなどが例示され
る。紫外線吸収剤として具体的には、2,4−ジヒドロ
キシベンゾフェノンなどのベンゾフェノン系紫外線吸収
剤や、2−(2′−ヒドロキシ−5′−メチルフェニル
)ベンゾトリアゾールなどのベンゾトリアゾール系紫外
線吸収剤などが挙げられ、カーボンブラックの具体例と
してはアセチレンブラック、ケッチェンブラック、天然
あるいは人造の黒鉛などが挙げられる。また、高分子物
質には、可塑剤、安定剤、酸化防止剤、帯電防止剤、難
燃剤、滑剤などを必要に応じて添加してもよい。Fillers may be added to these polymeric substances for the purpose of improving absorption of laser light, and examples of fillers include ultraviolet absorbers and carbon black. Specific examples of UV absorbers include benzophenone UV absorbers such as 2,4-dihydroxybenzophenone, and benzotriazole UV absorbers such as 2-(2'-hydroxy-5'-methylphenyl)benzotriazole. Specific examples of carbon black include acetylene black, Ketjen black, and natural or artificial graphite. Furthermore, plasticizers, stabilizers, antioxidants, antistatic agents, flame retardants, lubricants, and the like may be added to the polymeric substance as necessary.
【0015】上記の高分子物質にレーザ光を照射すると
、レーザ光の波長が高分子物質を構成している化学結合
の吸収波長領域に相当するために強い光吸収があり、光
化学反応が起こり、高分子物質を構成する炭素、水素、
窒素、フッ素、塩素、ケイ素などの原子間の結合が切断
されて、質量のより小さい分子あるいは原子、いわゆる
フラグメントが発生する。このように結合が切断して発
生したフラグメントはもとの分子よりも非常に大きな比
体積を有し、大部分は揮発性の分子、例えばCO2 、
HCHO、NOなどとなり飛散するが、一部は飛散しき
れず、炭素、炭素化合物、窒素化合物などとなり高分子
物質の加工部周辺に付着フラグメントとして残存するの
である。When the above-mentioned polymeric substance is irradiated with laser light, there is strong light absorption because the wavelength of the laser beam corresponds to the absorption wavelength region of the chemical bonds constituting the polymeric substance, and a photochemical reaction occurs. Carbon, hydrogen, and
Bonds between atoms such as nitrogen, fluorine, chlorine, and silicon are broken to generate molecules or atoms with lower mass, so-called fragments. The fragments generated by bond cleavage have a much larger specific volume than the original molecule and are mostly volatile molecules, such as CO2,
It scatters as HCHO, NO, etc., but some of it is not completely dispersed and becomes carbon, carbon compounds, nitrogen compounds, etc. and remains as attached fragments around the processed parts of the polymeric material.
【0016】[0016]
(実施例1)使用したレーザー光はフッ化クリプトン(
KrF)ガスを使用しエキシマレーザで発振させたもの
で、波長が0.248μm 、エネルギー密度は100
mJ/cm2 であった。このレーザ光をレンズで集束
して、エネルギー密度を900mJ/cm2 に増加さ
せた後、厚さ50μm のポリイミド樹脂フィルムに照
射し、穴径100μm の貫通穴を100穴作製したと
ころ、加工部周辺に黒色の付着フラグメントが堆積した
。このポリイミド樹脂フィルムを付着フラグメントが付
着したまま、オゾン照射装置中でオゾン処理したところ
、3分経過後には穴内壁の付着フラグメントは完全に除
去できた。(Example 1) The laser beam used was krypton fluoride (
KrF) gas is used to oscillate with an excimer laser, the wavelength is 0.248 μm, and the energy density is 100 μm.
It was mJ/cm2. After focusing this laser beam with a lens to increase the energy density to 900 mJ/cm2, it was irradiated onto a polyimide resin film with a thickness of 50 μm to create 100 through holes with a hole diameter of 100 μm. Black adherent fragments were deposited. When this polyimide resin film with attached fragments attached was subjected to ozone treatment in an ozone irradiation device, the attached fragments on the inner wall of the hole were completely removed after 3 minutes.
【0017】(実施例2)YAGレーザの第2高調波(
発振波長0.532μm )をポリウレタン樹脂で被覆
したワイヤに照射して、ポリウレタン樹脂表面に文字や
数字を作製する、いわゆるマーキング加工を行った。加
工部周辺に付着フラグメントが付着したためプラズマ発
生装置に投入してプラズマ処理したところ、1分間で完
全に付着フラグメントを除去できた。(Example 2) Second harmonic of YAG laser (
A so-called marking process was performed in which characters and numbers were created on the surface of the polyurethane resin by irradiating the wire coated with the polyurethane resin with oscillation wavelength 0.532 μm. Since adhering fragments had adhered around the processed area, when it was put into a plasma generator and plasma treatment was performed, the adhering fragments were completely removed in 1 minute.
【0018】(比較例1)実施例1において、レーザ光
を照射し穴を100穴作製して加工部周辺に黒色の付着
フラグメントが堆積したポリイミド樹脂フィルムを、ア
ルコール中で超音波洗浄したところ、付着フラグメント
を完全に除去するのに20分を要し、さらにフィルム表
面のアルコールを乾燥、除去するのに2分を要した。
(比較例2)実施例2において、YAGレーザの第2高
調波でワイヤーのポリウレタン樹脂被覆にマーキング加
工する際に、ヘリウムガスを加工部に吹きつけながらレ
ーザ光を照射したところ、フラグメントの付着量は半分
に減少したが完全に付着を防止することはできなかった
。(Comparative Example 1) In Example 1, the polyimide resin film in which 100 holes were made by irradiating laser light and black adhered fragments were deposited around the processed area was ultrasonically cleaned in alcohol. It took 20 minutes to completely remove the adhered fragments, and an additional 2 minutes to dry and remove the alcohol on the film surface. (Comparative Example 2) In Example 2, when marking the polyurethane resin coating of the wire using the second harmonic of the YAG laser, the laser beam was irradiated while blowing helium gas onto the processed area. was reduced by half, but the adhesion could not be completely prevented.
【0019】[0019]
【発明の効果】本発明は、乾式であるため、付着フラグ
メントを除去後に乾燥工程が不要、微細な加工形状であ
っても完全に除去が可能、さらには安価に除去できるの
で産業上の効果はきわめて大きい。[Effects of the Invention] Since the present invention is a dry method, there is no need for a drying process after removing attached fragments, and even finely processed shapes can be completely removed.Furthermore, it can be removed at low cost, so it has no industrial effect. Extremely large.
【図1】本発明の方法の除去工程を示すもので、(a)
はレーザ光照射中、(b)はオゾン雰囲気中で付着フラ
グメントを除去中、(c)は付着フラグメントを除去後
の各状態を示す説明図である。FIG. 1 shows the removal step of the method of the present invention, (a)
FIG. 6 is an explanatory diagram showing each state during laser beam irradiation, (b) during removal of attached fragments in an ozone atmosphere, and (c) each state after removal of attached fragments.
【図2】レーザ光で穴明け加工した際、加工部周辺にフ
ラグメンとが付着した高分子物質の斜視図である。FIG. 2 is a perspective view of a polymer material with fragments attached around the processed portion when a hole is formed using a laser beam.
【図3】従来の付着フラグメンとの除去方法で、有機溶
剤中で超音波洗浄している状態の断面図である。FIG. 3 is a cross-sectional view of a conventional method for removing adhered fragments during ultrasonic cleaning in an organic solvent.
【図4】従来の付着フラグメンとの除去方法で、ガス処
理しながらレーザ光を照射している状態の断面図である
。FIG. 4 is a cross-sectional view showing a state in which laser light is irradiated while gas treatment is performed in a conventional method for removing adhered fragments.
1 高分子物質 2 レーザ光 3 穴 4 付着フラグメント 5 有機溶剤 6 アシストガス 7 オゾン雰囲気 1. Polymer substances 2 Laser light 3 Hole 4 Adhering fragment 5 Organic solvent 6 Assist gas 7 Ozone atmosphere
Claims (1)
に発生しこれに付着するフラグメントを、オゾン処理あ
るいはプラズマ処理して除去することを特徴とするする
付着フラグメントの除去方法。1. A method for removing adhered fragments, which comprises removing fragments generated when a polymer substance is irradiated with a laser beam and adhered to the same through ozone treatment or plasma treatment.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3155592A JPH04356387A (en) | 1991-05-30 | 1991-05-30 | Eliminating method for adherent fragment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3155592A JPH04356387A (en) | 1991-05-30 | 1991-05-30 | Eliminating method for adherent fragment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04356387A true JPH04356387A (en) | 1992-12-10 |
Family
ID=15609402
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3155592A Pending JPH04356387A (en) | 1991-05-30 | 1991-05-30 | Eliminating method for adherent fragment |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04356387A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6919165B2 (en) * | 2001-05-03 | 2005-07-19 | Heidelberger Druckmaschinen Ag | Imaging and erasing of a printing form made of polymer material containing imide groups |
| CN106735888A (en) * | 2016-12-07 | 2017-05-31 | 深圳市海目星激光科技有限公司 | A kind of ozone auxiliary cutting device and method |
-
1991
- 1991-05-30 JP JP3155592A patent/JPH04356387A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6919165B2 (en) * | 2001-05-03 | 2005-07-19 | Heidelberger Druckmaschinen Ag | Imaging and erasing of a printing form made of polymer material containing imide groups |
| CN106735888A (en) * | 2016-12-07 | 2017-05-31 | 深圳市海目星激光科技有限公司 | A kind of ozone auxiliary cutting device and method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4803021A (en) | Ultraviolet laser treating of molded surfaces | |
| US5709754A (en) | Method and apparatus for removing photoresist using UV and ozone/oxygen mixture | |
| US5669979A (en) | Photoreactive surface processing | |
| US5858106A (en) | Cleaning method for peeling and removing photoresist | |
| US5512123A (en) | Method for using pulsed optical energy to increase the bondability of a surface | |
| JPS5912945A (en) | Polyester etching process | |
| JP4407252B2 (en) | Processing equipment | |
| JP2006229198A (en) | Method and apparatus for UV internal cleaning equipment | |
| JP4088810B2 (en) | Substrate cleaning apparatus and substrate cleaning method | |
| JPH075773B2 (en) | Surface modification method of fluoropolymer moldings using ultraviolet laser | |
| JP3391561B2 (en) | Cleaning equipment using optical shock waves | |
| EP0108189B1 (en) | A method for etching polyimides | |
| JP2540583B2 (en) | Substrate cleaning method and apparatus | |
| JPH04356387A (en) | Eliminating method for adherent fragment | |
| Poulis et al. | UV/ozone cleaning, a convenient alternative for high quality bonding preparation | |
| JPH05282956A (en) | Manufacture of rubber switch cover member | |
| JP2782595B2 (en) | Surface modification method of fluoropolymer molded article using ultraviolet laser | |
| JP2003311226A (en) | Cleaning method and cleaning apparatus | |
| JPS6333824A (en) | Cleaning method for surface | |
| JPH0362831A (en) | Surface-processing of polymer molded article with laser | |
| JP2002151476A (en) | Method and apparatus for removing resist | |
| JPH057064B2 (en) | ||
| JPH02288332A (en) | Method and apparatus for removing photoresist from semiconductor wafer and/or hybrid substrate | |
| CA2134556A1 (en) | Method for using pulsed optical energy to increase the bondability of a surface | |
| JP2777498B2 (en) | Substrate cleaning method |