[go: up one dir, main page]

JPH04350702A - Method for optimizing set condition of machine tool - Google Patents

Method for optimizing set condition of machine tool

Info

Publication number
JPH04350702A
JPH04350702A JP12394991A JP12394991A JPH04350702A JP H04350702 A JPH04350702 A JP H04350702A JP 12394991 A JP12394991 A JP 12394991A JP 12394991 A JP12394991 A JP 12394991A JP H04350702 A JPH04350702 A JP H04350702A
Authority
JP
Japan
Prior art keywords
multiple regression
setting
machining
fuzzy
processing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12394991A
Other languages
Japanese (ja)
Inventor
Hideo Kuroda
英夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12394991A priority Critical patent/JPH04350702A/en
Publication of JPH04350702A publication Critical patent/JPH04350702A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/766Measuring, controlling or regulating the setting or resetting of moulding conditions, e.g. before starting a cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Devices For Executing Special Programs (AREA)
  • Feedback Control In General (AREA)
  • Control By Computers (AREA)

Abstract

PURPOSE:To accurately and easily reduce a defect of working of a machine tool and improve the quality of working by using fuzzy multiple regression to calculate an optimum condition. CONSTITUTION:A calculation condition and a set condition are inputted from a keyboard 5 and are sent to a fuzzy multiple regression and optimization calculating device 3 through a controller 2. A machine tool 1 is driven in accordance with the set condition to perform working. The quality of a worked article in the set condition is visually evaluated by a person; and if the number of data does not satisfy a certain condition, the set condition is inputted again from the keyboard 5 to perform visual evaluation. When the number of data satisfies the condition, fuzzy multiple regression analysis is performed by the fuzzy multiple regression and optimization calculating device 3 to display the optimum condition on a CRT 4 through the controller 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えばプラスチック成
形機などの加工機械に適用される加工機械の設定条件最
適化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for optimizing processing machine settings, which is applied to processing machines such as plastic molding machines.

【0002】0002

【従来の技術】一般に、プラスチック成形機などの加工
機械は機械の設定条件と加工品質とが密接な関係を有し
ており、良好な加工品質を得るのに機械の設定条件が大
きな影響を及ぼすことが知られている。このような加工
品質を最適化する方法として本出願人は、先に特願昭6
0−90424号(特開昭61−248723号)「加
工機械の設定条件最適化方法」を出願した。この出願に
おける加工機械の設定条件最適化方法は、図4のフロー
チャートに示すように加工品質を評価し、加工機械運転
の設定条件因子との間で、ファジイでない通常の重回帰
を行ない、その重回帰式から最適条件を算出している。 この方法は、重回帰のために加工品質が数値として実測
されることが前提となっている。しかるに、たいていの
加工品質は、容易に実測することが困難で、目視でラン
ク分け評価されることが多い。この目視評価のランク値
は、絶対的なものでなく、再度評価すると元のランクか
ら上下にずれることがしばしばであり、あいまいさを持
っている。従って、目視評価のランク値を通常の数値と
して重回帰すると、そのあいまいさを無視したことにな
り、実態と異なった結果になってしまう。
[Prior Art] Generally, in processing machines such as plastic molding machines, there is a close relationship between machine setting conditions and processing quality, and machine setting conditions have a large influence on obtaining good processing quality. It is known. As a method for optimizing processing quality, the present applicant previously proposed a patent application filed in 1983.
No. 0-90424 (Japanese Unexamined Patent Publication No. 61-248723) entitled ``Method for optimizing setting conditions of processing machines.'' The processing machine setting condition optimization method in this application evaluates the processing quality as shown in the flowchart of FIG. The optimal conditions are calculated from the regression equation. This method is based on the premise that machining quality is actually measured numerically due to multiple regression. However, most machining quality is difficult to measure and is often ranked visually. The rank value of this visual evaluation is not absolute, and when re-evaluated, it often deviates up or down from the original rank, and has ambiguity. Therefore, if the rank value of the visual evaluation is used as a normal numerical value and multiple regression is performed, the ambiguity will be ignored, and the result will be different from the actual situation.

【0003】0003

【発明が解決しようとする課題】上記のように、従来の
技術では、加工品質が目視でランク分け評価される場合
に、ランク分け評価のあいまいさを無視した重回帰を行
なうため、重回帰を利用して加工機械運転の設定条件を
最適化しようとしても、実態と異なった結果になるとい
う問題があった。
[Problems to be Solved by the Invention] As mentioned above, in the conventional technology, when processing quality is visually evaluated by ranking, multiple regression is performed in order to ignore the ambiguity of the ranking evaluation. Even if an attempt was made to utilize this to optimize the setting conditions for processing machine operation, there was a problem in that the results would differ from the actual situation.

【0004】本発明は上記の問題点を解決して、加工品
質が目視でランク分け評価される場合にも、的確に加工
品質と設定条件の関係を把握し、実態に合った設定条件
の最適化方法を提供することを目的とする。
The present invention solves the above-mentioned problems, and even when machining quality is visually ranked and evaluated, the relationship between machining quality and setting conditions can be accurately grasped, and the setting conditions can be optimized to suit the actual situation. The purpose is to provide a method for

【0005】[0005]

【課題を解決するための手段】本発明は、目視評価の加
工品質ランク値をファジイ値として扱って、加工機械運
転の設定条件因子との間でファジイ重回帰を行ない、フ
ァジイ重回帰のMAX問題の上限解・下限解の平均を示
す重回帰式を用いて、加工品質が最適になる設定条件を
算出し、設定するシステムとし、これを問題解決の手段
とするものである。
[Means for Solving the Problems] The present invention treats the machining quality rank value of visual evaluation as a fuzzy value, performs fuzzy multiple regression with the setting condition factors of processing machine operation, and solves the MAX problem of fuzzy multiple regression. This is a system that calculates and sets setting conditions that optimize machining quality using a multiple regression equation that shows the average of the upper and lower limit solutions of , and uses this as a means of problem solving.

【0006】[0006]

【作用】加工品質が目視でランク分け評価される場合に
、その加工品質ランク値をファジイ値として扱って重回
帰するので、ランク分け評価のあいまいさを考慮した重
回帰がなされる。また、ファジイ重回帰のMAX問題は
、上限解と下限解の2つの解が得られるため、そのまま
では設定条件因子との関係を明確化できないが、本発明
のように上限解と下限解の平均を示す重回帰式を用いる
ことにより、加工品質と設定条件因子との関係が一義的
に決まるので、その重回帰式から加工品質が最適になる
設定条件が求まる。従って、目視によるランク分け評価
のあいまいさを考慮した、実態に合った加工機械の設定
条件最適化が可能である。
[Operation] When machining quality is visually evaluated by ranking, multiple regression is performed by treating the machining quality rank value as a fuzzy value, so multiple regression is performed taking into account the ambiguity of the ranking evaluation. In addition, in the MAX problem of fuzzy multiple regression, two solutions, an upper limit solution and a lower limit solution, are obtained, so the relationship with the setting condition factors cannot be clarified as is. By using a multiple regression equation that shows, the relationship between machining quality and setting condition factors is uniquely determined, so the setting conditions that optimize the machining quality can be determined from the multiple regression equation. Therefore, it is possible to optimize the setting conditions of the processing machine to suit the actual situation, taking into account the ambiguity of visual ranking evaluation.

【0007】[0007]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1〜図3に本発明の実施例を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Embodiments of the present invention are shown in FIGS. 1 to 3.

【0008】図1は本実施例のシステム構成を示すもの
で、1はプラスチック成形機等の加工機械、2は制御装
置、3はファジイ重回帰・最適化計算装置、4はCRT
(Cathod  Ray  Tubeでいわゆるブラ
ウン管)、5はキーボードである。また、6はユーザー
インタフェースで、上記制御装置2とCRT4及びキー
ボード5とを接続する。なお、符号11〜15は、それ
ぞれの要素を結ぶ信号線である。
FIG. 1 shows the system configuration of this embodiment, where 1 is a processing machine such as a plastic molding machine, 2 is a control device, 3 is a fuzzy multiple regression/optimization calculation device, and 4 is a CRT.
(Cathode Ray Tube is a so-called cathode ray tube), and 5 is a keyboard. Further, 6 is a user interface, which connects the control device 2, CRT 4, and keyboard 5. Note that numerals 11 to 15 are signal lines connecting the respective elements.

【0009】制御装置2は、加工機械1に対して運転の
設定条件を送ったり、実際の運転状態の情報を受けたり
する。また、制御装置2は、ユーザーインタフェース6
を介して、CRT4に表示情報を送り、キーボード5の
入力情報を受ける。さらに、制御装置2は、ファジイ重
回帰・最適化計算装置3に対して上記の加工機械1の設
定条件・運転状態の情報やキーボード5からの入力情報
を送り、逆に計算装置3の計算結果を受ける。
The control device 2 sends operating setting conditions to the processing machine 1 and receives information on the actual operating state. The control device 2 also has a user interface 6.
Display information is sent to the CRT 4 via the CRT 4, and input information from the keyboard 5 is received. Furthermore, the control device 2 sends information on the setting conditions and operating conditions of the processing machine 1 and input information from the keyboard 5 to the fuzzy multiple regression/optimization calculation device 3, and conversely sends the calculation results of the calculation device 3. receive.

【0010】図2は本システムによる加工機械の設定条
件最適化のフローチャートを示す。同図において、工程
26では最適化を行なおうとする設定条件因子数nおよ
びn個の各設定条件因子名とその変化水準の最小値と最
大値を図1のキーボード5からマニュアルで入力し、制
御装置2を介してファジイ重回帰・最適化計算装置3へ
送る。次に工程27では加工時に設定条件の水準をキー
ボード5または条件設定された制御装置2から計算装置
3に送信する。この場合、キーボード5から入力した設
定条件を制御装置2に送り、加工機械1の条件を設定す
ることも可能である。
FIG. 2 shows a flowchart of optimization of processing machine setting conditions by this system. In the same figure, in step 26, the number n of setting condition factors to be optimized, the name of each of the n setting condition factors, and the minimum and maximum values of their change levels are manually input from the keyboard 5 of FIG. It is sent via the control device 2 to the fuzzy multiple regression/optimization calculation device 3. Next, in step 27, the level of the setting conditions during machining is transmitted to the calculation device 3 from the keyboard 5 or the control device 2 where the conditions have been set. In this case, it is also possible to send the setting conditions input from the keyboard 5 to the control device 2 to set the conditions for the processing machine 1.

【0011】また、工程28では上記設定条件に対応し
て制御装置2を介して加工機械1を駆動せしめ加工を行
なう。そして、工程29では、上記設定条件における加
工品の品質を人間が目視評価してたとえば5段階評価の
ランク3のごとき評価を行なう。
Further, in step 28, processing is performed by driving the processing machine 1 via the control device 2 in accordance with the above set conditions. Then, in step 29, a human visually evaluates the quality of the processed product under the above-mentioned setting conditions and performs an evaluation such as rank 3 on a five-level evaluation.

【0012】次に工程30では上記加工品質目視評価値
のデータ数が後述するファジイ重回帰分析を行なうのに
十分なだけ集まったかどうかの可否を判定し、否状態で
上記の工程27に対してデータ数不足信号を出力し、工
程27〜30を繰り返し行なって不足分のデータを集め
る。この場合、上記データ数とは1組(n個)の設定条
件と、その設定条件における加工品質目視評価値ランク
を合わせたものを改めて1組としたものの組数を言い、
後述のファジイ重回帰を行なうのに(n+1)組以上の
上記データ数が必要である。
[0012] Next, in step 30, it is determined whether or not the number of data of the visual evaluation value of the processing quality has been collected enough to perform the fuzzy multiple regression analysis described later. A data shortage signal is output, and steps 27 to 30 are repeated to collect the data for the shortage. In this case, the above-mentioned number of data refers to the number of sets where one set (n pieces) of setting conditions and the machining quality visual evaluation value rank under that setting condition are set as one set,
To perform fuzzy multiple regression, which will be described later, the number of data sets (n+1) or more is required.

【0013】そして、次の工程31では、加工品質目視
評価値ランクYを特性値、各設定条件因子x1 ,x2
 ,…,xn を説明変数として、ファジイ重回帰分析
を行なう。ここで、加工品質目視評価値ランクYはファ
ジイ値として扱う。たとえばランク3は、(中心3、幅
1)と表示し、2〜4のランク値を取り得るものとする
。説明変数である各設定条件因子は、クリスプ値(ファ
ジイ値でない通常の値)である。
In the next step 31, the machining quality visual evaluation value rank Y is converted into a characteristic value and each setting condition factor x1, x2
,...,xn as explanatory variables, fuzzy multiple regression analysis is performed. Here, the machining quality visual evaluation value rank Y is treated as a fuzzy value. For example, rank 3 is displayed as (center 3, width 1), and can take rank values from 2 to 4. Each setting condition factor that is an explanatory variable is a crisp value (normal value that is not a fuzzy value).

【0014】工程31のファジイ重回帰分析では、先ず
ファジイ重回帰を行なって後述するMAX問題の解を求
め、次にMAX問題の平均解を算出する。そして、この
MAX問題の平均解を解いて、次工程32で最適条件を
算出・表示する。さらに、次の工程33ではこの最適条
件について加工続行の可否を判定し、可状態では上記の
工程27から繰り返し加工を続行する。
In the fuzzy multiple regression analysis in step 31, fuzzy multiple regression is first performed to find a solution to the MAX problem, which will be described later, and then the average solution to the MAX problem is calculated. Then, the average solution of this MAX problem is solved, and in the next step 32, optimal conditions are calculated and displayed. Furthermore, in the next step 33, it is determined whether machining can be continued based on this optimal condition, and if it is possible, the machining is repeated from step 27 described above.

【0015】ファジイ重回帰にはMIN問題とMAX問
題の2つがあり、MIN問題はすべての入力データを包
含する最小幅のものを求めるもので、MAX問題は1個
1個の入力データすべての内部を通る最大幅のものであ
る。これらは次のように定式化される。 〔モデル〕    Y(X)=A0 +A1 x1 +
A2 x2 +…+An xn        ただし
、Y  :目視評価ランク             
           ファジイ値         
       Ai :係数      Ai =(中
心aci、幅awi)  ファジイ値        
        X  :成形要因  X=(x1 、
x2 、…、xn )ファジイ値          
      xi :各因子            
  クリスプ値(通常の数値変数)    従って、Y
(X)=(中心yc (X)、幅yw (X))   
             yc (X)=ac0+a
c1x1 +ac2x2 +…+acnxn     
            yw (X)=aw0+aw
1x1 +aw2x2 +…+awnxn 〔入力デー
タ〕Xj =(x1j、x2j、…、xnj)、   
           Yj =(中心ycj、幅yw
j)        ただし、j=1、2、…、m(組
数)〔MIN問題〕制約条件:yc (Xj )−yw
 (Xj )≦ycj−ywj           
             yc (Xj )+yw 
(Xj )≧ycj+ywj            
                         
 j=1、2、…、m              目
的関数:yw (X1 )+yw (X2 )+…+y
w (Xm )最小〔MAX問題〕制約条件:yc (
Xj )−yw (Xj )≧ycj−ywj    
                    yc (X
j )+yw (Xj )≦ycj+ywj     
                         
        j=1、2、…、m        
      目的関数:yw  (X1 )+yw (
X2 )+…+yw (Xm )最大 〔解法〕MIN問題、MAX問題それぞれ線型計画法で
解く。
There are two types of fuzzy multiple regression problems: MIN problem and MAX problem. MIN problem is to find the minimum width that includes all the input data, and MAX problem is to find the minimum width that includes all the input data. It is the widest one that passes through. These are formulated as follows. [Model] Y(X)=A0 +A1 x1 +
A2 x2 +…+An xn However, Y: Visual evaluation rank
fuzzy value
Ai: Coefficient Ai = (center aci, width awi) Fuzzy value
X: Forming factor X=(x1,
x2 ,...,xn) fuzzy value
xi: each factor
Crisp value (ordinary numeric variable) Therefore, Y
(X) = (center yc (X), width yw (X))
yc (X)=ac0+a
c1x1 +ac2x2 +...+acnxn
yw (X)=aw0+aw
1x1 +aw2x2 +...+awnxn [Input data] Xj = (x1j, x2j,..., xnj),
Yj = (center ycj, width yw
j) However, j = 1, 2, ..., m (number of sets) [MIN problem] Constraint condition: yc (Xj ) - yw
(Xj)≦ycj−ywj
yc (Xj)+yw
(Xj)≧ycj+ywj

j=1, 2,...,m Objective function: yw (X1)+yw (X2)+...+y
w (Xm) Minimum [MAX problem] Constraint condition: yc (
Xj )-yw (Xj)≧ycj-ywj
yc (X
j )+yw (Xj)≦ycj+ywj

j=1, 2,..., m
Objective function: yw (X1) + yw (
X2 ) +...+yw (Xm) Maximum [Solution method] Solve the MIN problem and MAX problem using linear programming.

【0016】加工品質目視評価値ランクYを2要因x1
 、x2 についてファジイ重回帰した結果を図3に示
す。ただし、2要因の内、x2 =C(一定)としてい
る。同図で、MIN問題の上限解、下限解はそれぞれ(
1)、(4)であり、同様にMAX問題の上限解、下限
解は(2)、(3)である。図からわかるように、MI
N問題の解(1)、(4)は、それらの間の幅が広すぎ
て利用価値が小さい。他方、MAX問題の解(2)、(
3)は、それらの間の幅が元のファジイ値データYから
見てまずまずの広さであり実用できる。なお、通常の重
回帰Bは1本の線であり、元のファジイ値データYの幅
が全く考慮されていないので不適切と考えられる。上述
のようにMAX問題の解(2)、(3)が適切と考えら
れるが、本例の場合(2)は右上がりの直線で、(3)
は右下がりの直線であるため、加工品質目視評価値ラン
クYを向上させるには要因x1を増やすべきか、減らす
べきかが判定できない。このため、両者(2)、(3)
の平均(5)を新に作成し、(5)の傾向により最適条
件を求めるよう工夫した。本図では(5)がやや右下が
りであるので、要因x1 の値は小さい方がYが大きく
なる。従って要因x1 の最大値、最小値が与えられて
いる場合は、x1 を最小値にすればYは最大になる。 同様に加工品質目視評価値ランクYの増減を調べること
により、Yを最大にする各要因の値、すなわち最適条件
を求めることができる。なお、上記ではファジイ重回帰
式が1次式の場合を説明したが、次のように2次式であ
ってもよい。
[0016] Processing quality visual evaluation value rank Y is determined by 2 factors x 1
, x2 is shown in FIG. 3. However, of the two factors, x2 = C (constant). In the same figure, the upper and lower bound solutions of the MIN problem are (
1) and (4), and similarly, the upper and lower limit solutions of the MAX problem are (2) and (3). As can be seen from the figure, MI
Solutions (1) and (4) for the N problem have little utility value because the range between them is too wide. On the other hand, solution (2) of the MAX problem, (
In 3), the width between them is a reasonable width when viewed from the original fuzzy value data Y, and can be put to practical use. Note that the normal multiple regression B is considered inappropriate because it is a single line and the width of the original fuzzy value data Y is not considered at all. As mentioned above, solutions (2) and (3) for the MAX problem are considered appropriate, but in this example, (2) is a straight line that slopes upward to the right, and (3)
Since is a straight line that slopes downward to the right, it cannot be determined whether factor x1 should be increased or decreased in order to improve the processing quality visual evaluation value rank Y. Therefore, both (2) and (3)
We created a new average (5) of , and devised a way to find the optimal conditions based on the tendency of (5). In this figure, since (5) slopes slightly to the right, the smaller the value of factor x1, the larger Y becomes. Therefore, if the maximum and minimum values of factor x1 are given, Y will be maximized if x1 is set to the minimum value. Similarly, by examining increases and decreases in the processing quality visual evaluation value rank Y, it is possible to determine the values of each factor that maximize Y, that is, the optimal conditions. Although the case where the fuzzy multiple regression equation is a linear equation has been described above, it may be a quadratic equation as follows.

【0017】[0017]

【数1】[Math 1]

【0018】あるいは、xi xj ,xi /xj 
などの複合因子がはいったモデルでもよい。これらの1
次式以外のモデルでは、ファジイ重回帰のMAX問題の
平均の式が1次式でないため、各説明変数xi の最大
値、または最小値が必ずしも最適条件とはならないが、
上記平均の式から一般の数学的手法により最適条件を計
算することができる。
Alternatively, xi xj , xi /xj
A model including multiple factors such as the following may also be used. 1 of these
In models other than the following formula, the average formula for the MAX problem of fuzzy multiple regression is not a linear formula, so the maximum or minimum value of each explanatory variable xi is not necessarily the optimal condition.
Optimal conditions can be calculated from the above average formula using general mathematical techniques.

【0019】[0019]

【発明の効果】以上詳述したように、この発明によれば
加工品質を目視でランク分け評価する場合に、ランク値
をファジイ値とするファジイ重回帰と、そのMAX問題
の上限解と下限解の平均の式を採用した最適条件の算出
により、目視によるランク分け評価のあいまいさを考慮
した、実態に合った加工機械の設定条件最適化を実施で
きる。このような目視評価ランク値をファジイ値として
扱って加工機械の設定条件を最適化する技術は過去にな
かったので、本発明の設定条件最適化を実用することに
より、加工機械の加工不良低減や加工品質向上を従来よ
りも的確にかつ容易に実現することができる。
[Effects of the Invention] As described in detail above, according to the present invention, when visually evaluating machining quality by ranking, the fuzzy multiple regression in which the rank value is a fuzzy value, and the upper and lower limit solutions of the MAX problem are used. By calculating the optimal conditions using the average formula, it is possible to optimize the processing machine settings to suit the actual situation, taking into account the ambiguity of visual ranking evaluation. There has been no technology in the past to optimize the setting conditions of processing machines by treating such visual evaluation rank values as fuzzy values, so by putting into practice the setting condition optimization of the present invention, it is possible to reduce processing defects in processing machines. Processing quality can be improved more accurately and easily than before.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示すシステム構成図。FIG. 1 is a system configuration diagram showing an embodiment of the present invention.

【図2】同システムによる加工機械の設定条件最適化方
法のフローチャート。
FIG. 2 is a flowchart of a method for optimizing setting conditions of a processing machine using the same system.

【図3】ファジイ重回帰の結果図。FIG. 3 is a diagram showing the results of fuzzy multiple regression.

【図4】従来における加工機械の設定条件最適化方法を
示すフローチャート。
FIG. 4 is a flowchart showing a conventional method for optimizing setting conditions of a processing machine.

【符号の説明】[Explanation of symbols]

1…加工機械、2…制御装置、3…ファジイ重回帰・最
適化計算装置、4…CRT、5…キーボード、6…ユー
ザーインタフェース、1〜15…信号線、26〜33…
システムの各工程。
DESCRIPTION OF SYMBOLS 1...Processing machine, 2...Control device, 3...Fuzzy multiple regression/optimization calculation device, 4...CRT, 5...Keyboard, 6...User interface, 1-15...Signal line, 26-33...
Each process of the system.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加工機械の設定条件因子の変化水準を
設定する第1の工程と、前記設定条件因子の変化水準に
応じて前記加工機械の条件設定を行なう第2の工程と、
前記加工機械を設定した条件に対応して駆動して加工を
行なう第3の工程と、この第3の工程で加工された加工
品の品質を目視によりランク分け評価する第4の工程と
、この第3の工程でランク分けされた加工品質評価値の
データ数がファジイ重回帰分析を行なうのに十分かの可
否を判定し、否状態で前記第2の工程にデータ数不足信
号を出力して所定のデータ数を集める第5の工程と、こ
の第5の工程の可状態で前記加工品質評価値ランクを特
性値、前記設定条件因子を説明変数として前記ファジイ
重回帰分析を行ない、ファジイ重回帰のMAX問題の上
限解・下限解を求めると共にその平均解を算出する第6
の工程と、この第6の工程で求めたファジイ重回帰のM
AX問題の上限解・下限解の平均解の傾向により成形品
質が最適になる設定条件を算出して表示する第7の工程
と、前記設定条件因子の最適値から加工続行の可否を判
定して可状態で前記第2の工程に加工続行信号を出力し
て前記設定条件で加工を続行せしめ、否状態で加工を停
止せしめる第8の工程とを具備したことを特徴とする加
工機械の設定条件最適化方法。
1. A first step of setting a change level of a setting condition factor of a processing machine; a second step of setting a condition of the processing machine according to a change level of the setting condition factor;
a third step in which the processing machine is driven to perform processing according to set conditions; a fourth step in which the quality of the processed product processed in this third step is visually ranked and evaluated; In the third step, it is determined whether the number of data of the ranked machining quality evaluation values is sufficient to perform the fuzzy multiple regression analysis, and if the number is not, a data number shortage signal is output to the second step. A fifth step of collecting a predetermined amount of data, and in a state where this fifth step is possible, the fuzzy multiple regression analysis is performed using the machining quality evaluation value rank as a characteristic value and the setting condition factor as an explanatory variable. The sixth step is to find the upper and lower limit solutions of the MAX problem and calculate the average solution.
process and the fuzzy multiple regression M obtained in this sixth process.
A seventh step of calculating and displaying the setting conditions that optimize the forming quality based on the tendency of the average solution of the upper limit solution and the lower limit solution of the AX problem, and determining whether or not to continue processing based on the optimum value of the setting condition factor. Setting conditions for a processing machine characterized by comprising: an eighth step of outputting a machining continuation signal to the second step in a possible state to cause the machining to continue under the set conditions, and stopping the machining in a negative state. Optimization method.
JP12394991A 1991-05-28 1991-05-28 Method for optimizing set condition of machine tool Withdrawn JPH04350702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12394991A JPH04350702A (en) 1991-05-28 1991-05-28 Method for optimizing set condition of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12394991A JPH04350702A (en) 1991-05-28 1991-05-28 Method for optimizing set condition of machine tool

Publications (1)

Publication Number Publication Date
JPH04350702A true JPH04350702A (en) 1992-12-04

Family

ID=14873336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12394991A Withdrawn JPH04350702A (en) 1991-05-28 1991-05-28 Method for optimizing set condition of machine tool

Country Status (1)

Country Link
JP (1) JPH04350702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196372A (en) * 1998-10-05 2009-09-03 Husky Injection Molding Syst Ltd Integrated control platform for injection-molding system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196372A (en) * 1998-10-05 2009-09-03 Husky Injection Molding Syst Ltd Integrated control platform for injection-molding system

Similar Documents

Publication Publication Date Title
CN114275912B (en) Aeration system dissolved oxygen control method based on adaptive neural network model
EP0467297B1 (en) Intelligent machining system
DE102020106239B4 (en) GRIP FORCE ADJUSTMENT DEVICE AND GRIP FORCE ADJUSTMENT SYSTEM
JP3637412B2 (en) Time-series data learning / prediction device
CN113649420B (en) Temper mill rolling force obtaining method and device
JP2019082894A (en) Working condition adjusting device and machine learning device
CN115081257B (en) Chip loss optimization method and system for electric power energy
WO2021253689A1 (en) Multiple regression model-based method and system for predicting price of product processing
US20080234840A1 (en) Multi-Variable Operations
JPH04350702A (en) Method for optimizing set condition of machine tool
JPS61248723A (en) Optimizing method for setting condition for working machine
US5463718A (en) Learning method and apparatus
CN113762754A (en) A low-entropy adaptive scheduling method for hybrid workshops
CN119204715A (en) An intelligent management system for high-frequency transformer production
JPH0581228A (en) Method for constructing neural network and learning / remembering system
CN118658600A (en) A medical equipment operation and maintenance management system based on data analysis
JPH0772907A (en) Device or method for changing criterion for evaluation and device or method for generating production planning
JPH07156238A (en) Setting condition optimizing method for processing machine
CN117464115B (en) Beam control method and system of laser tin ball welding machine
JP2002006928A (en) Manufacturing cost calculating device
CN112462699A (en) Hot rolling production power consumption management system and method
CN114971395B (en) Monitoring system and method for statistical multiple load change processes based on machine learning calculation
CN119918978B (en) An intelligent wastewater treatment method and system based on sensor data monitoring
CN116360369B (en) A ceramic blade intelligent batching control method and system
JP3100803B2 (en) Fuzzy control device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806