JPH04351943A - Infrared analysis method - Google Patents
Infrared analysis methodInfo
- Publication number
- JPH04351943A JPH04351943A JP3153966A JP15396691A JPH04351943A JP H04351943 A JPH04351943 A JP H04351943A JP 3153966 A JP3153966 A JP 3153966A JP 15396691 A JP15396691 A JP 15396691A JP H04351943 A JPH04351943 A JP H04351943A
- Authority
- JP
- Japan
- Prior art keywords
- incident
- sample
- infrared
- value
- infrared rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000013626 chemical specie Substances 0.000 claims abstract description 16
- 238000004566 IR spectroscopy Methods 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 abstract description 12
- 230000005684 electric field Effects 0.000 abstract description 9
- 230000010287 polarization Effects 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 24
- 239000013078 crystal Substances 0.000 description 18
- 238000002835 absorbance Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 238000001228 spectrum Methods 0.000 description 11
- 108010010803 Gelatin Proteins 0.000 description 9
- 229920000159 gelatin Polymers 0.000 description 9
- 239000008273 gelatin Substances 0.000 description 9
- 235000019322 gelatine Nutrition 0.000 description 9
- 235000011852 gelatine desserts Nutrition 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 230000008033 biological extinction Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 2
- 238000005211 surface analysis Methods 0.000 description 2
- PGAPATLGJSQQBU-UHFFFAOYSA-M thallium(i) bromide Chemical compound [Tl]Br PGAPATLGJSQQBU-UHFFFAOYSA-M 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 108010025899 gelatin film Proteins 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、全反射赤外吸光分析法
(以下、ATR法と略す)を用いるフイルム表面近傍に
ある化学種の測定方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring chemical species near the surface of a film using total reflection infrared absorption spectrometry (hereinafter abbreviated as ATR method).
【0002】0002
【従来の技術】現在、広く一般に利用されている分析法
のひとつに赤外線吸収スペクトルによる化学分析がある
。赤外線吸収スペクトルの測定は、通常、いわゆる透過
法によるものである。透過法では、赤外光を試料に照射
し、その透過光を観測して試料の赤外光吸収を測定する
。このため、吸収が適当な透過率の範囲になるように、
試料の厚さや濃度を適当な範囲に調整する必要がある。
この調整を行うため、透過法はサンプリングにおいて不
都合となる場合があった。また、透過法は、基本的には
均一な試料(例えば、溶液、KBrディスク、ニート)
の分析に適しており、不均一な試料や試料の部分的な性
質を調べるためには不適当な場合が多い。BACKGROUND OF THE INVENTION One of the analytical methods widely used at present is chemical analysis using infrared absorption spectroscopy. Measurement of infrared absorption spectra is usually carried out by a so-called transmission method. In the transmission method, a sample is irradiated with infrared light and the transmitted light is observed to measure the infrared light absorption of the sample. For this reason, so that the absorption is within the appropriate transmittance range,
It is necessary to adjust the thickness and concentration of the sample to an appropriate range. Because of this adjustment, the transmission method may be inconvenient in sampling. In addition, the permeation method basically uses a homogeneous sample (e.g., solution, KBr disk, neat).
It is suitable for the analysis of non-uniform samples, but is often inappropriate for investigating the properties of heterogeneous samples or parts of samples.
【0003】これに対して、赤外光の全反射現象を利用
したATR法は、試料を高屈折率の結晶に接触させて、
その結晶と試料との界面で全反射した赤外光を測定する
。従って、接触面積(全反射する回数)の増減によって
吸収強度を調節することができる。このため、透過法と
比較してサンプリングの上で有利となる場合が多い。
さらに、試料表面のスペクトルが得られるので、試料表
面の分析法として利用することができる。On the other hand, the ATR method, which utilizes the phenomenon of total internal reflection of infrared light, involves bringing the sample into contact with a crystal with a high refractive index.
The infrared light totally reflected at the interface between the crystal and the sample is measured. Therefore, the absorption intensity can be adjusted by increasing or decreasing the contact area (the number of total reflections). For this reason, it is often advantageous in terms of sampling compared to the transmission method. Furthermore, since a spectrum of the sample surface can be obtained, it can be used as a method for analyzing the sample surface.
【0004】ATR法を用いれば、試料が厚く不透明で
あっても、結晶に試料表面を接触させることが可能であ
れば、赤外吸収スペクトルを得ることができる。また、
後述するように、測定条件を調整することで、界面(試
料表面)から0.1μm乃至1μmの深さの表面層につ
いてのスペクトルを測定できるので、表面から深さ方向
に沿った化学種の分布を得たり、また、薄膜の厚さを測
定することにも利用できる。従って、ATR法はフイル
ム表面近傍にある化学種の測定に有利な分析方法である
。Using the ATR method, even if the sample is thick and opaque, an infrared absorption spectrum can be obtained as long as the surface of the sample can be brought into contact with the crystal. Also,
As described later, by adjusting the measurement conditions, it is possible to measure the spectrum of the surface layer at a depth of 0.1 μm to 1 μm from the interface (sample surface), so it is possible to measure the distribution of chemical species along the depth direction from the surface. It can also be used to measure the thickness of thin films. Therefore, the ATR method is an advantageous analysis method for measuring chemical species near the film surface.
【0005】上記のように、ATR法は表面分析法とし
て優れたものであるが、透過法に比べて光の損失が大き
く、検出器に到達する光量が1/5乃至1/10になる
問題ある。このため、従来の赤外分光器では質のよいA
TRスペクトルでの測定は容易ではなかった。しかし、
近年、赤外分光計の精度が著しく向上し、質のよいAT
Rスペクトルの測定が可能になってきた。As mentioned above, the ATR method is an excellent surface analysis method, but the problem is that the loss of light is greater than that of the transmission method, and the amount of light reaching the detector is 1/5 to 1/10. be. For this reason, conventional infrared spectrometers have a high quality of A.
Measurement using the TR spectrum was not easy. but,
In recent years, the accuracy of infrared spectrometers has improved significantly, and high-quality AT
It has become possible to measure the R spectrum.
【0006】ATR法による表面分析の原理について、
以下において説明する。測定するフイルムの表面を、高
屈折率でかつ赤外光に対し透過性の高い板状結晶に密着
させて、その密着面とは逆側から、界面の法線に対して
一定の角度(臨界角)以上の角度(入射角)で赤外光を
結晶に入射させると、結晶内に入射した赤外光は結晶の
中を進んだ後、結晶とフイルムとの界面に到達し、そこ
で全反射を起こす。このとき、結晶とフイルムとの界面
で赤外光がフイルム表面にわずかに潜り込むために、反
射されてくる赤外光にはフイルム表面近傍の情報が含ま
れている。この赤外光の潜り込む深さは、結晶の屈折率
および赤外光の入射角によって変えることができるので
、フイルム表面からの深さ(厚さ)方向についての情報
(分布)を得ることができる。Regarding the principle of surface analysis by ATR method,
This will be explained below. The surface of the film to be measured is brought into close contact with a plate-shaped crystal that has a high refractive index and is highly transparent to infrared light, and the film is placed at a certain angle (critical When infrared light is incident on a crystal at an angle (incident angle) greater than or equal to the angle of incidence, the infrared light that enters the crystal travels through the crystal and reaches the interface between the crystal and the film, where total reflection occurs. wake up At this time, since the infrared light slightly penetrates the film surface at the interface between the crystal and the film, the reflected infrared light contains information about the vicinity of the film surface. The depth to which this infrared light penetrates can be changed by changing the refractive index of the crystal and the incident angle of the infrared light, so information (distribution) in the depth (thickness) direction from the film surface can be obtained. .
【0007】実際の測定では、吸収強度を強めるために
、上記の結晶をプリズムにして、このプリズムを試料で
サンドイッチ状に挟んだ状態でプリズムの側面から赤外
光を入射させ、上下の界面で複数回の全反射を繰り返し
た反射光を入射側とは逆の側面から観測するのが一般的
である。In actual measurements, in order to increase the absorption intensity, the above crystal is used as a prism, and while the prism is sandwiched between the sample, infrared light is incident from the side of the prism, and the infrared light is applied to the upper and lower interfaces. It is common to observe reflected light that has undergone multiple total reflections from the side opposite to the incident side.
【0008】このプリズムとなる高屈折率の結晶は、内
部反射エレメント(以下、IREと略す)と呼ばれるも
ので、KRS−5(屈折率:2.4)、ZnSe(屈折
率:2.4)、Si(屈折率:3.5)、Ge(屈折率
:4.0)などが一般に用いられる。The high refractive index crystal that forms this prism is called an internal reflection element (hereinafter abbreviated as IRE), and is made of KRS-5 (refractive index: 2.4) and ZnSe (refractive index: 2.4). , Si (refractive index: 3.5), Ge (refractive index: 4.0), etc. are generally used.
【0009】J.Opt.Soc.Ame., vol
.55(1965) No.7 pp.851には、A
TR法が化学種の定量に用いることができること、およ
びその偏光スペクトルの理論吸光度について報告されて
いる。また、Macromolecules, vol
.4(1971) No.2 pp.174 には、ポ
リプロピレン表面に紫外線を照射することによって生じ
た極性基を、ATR法を用いて表面からの深さ(厚さ)
方向について定量することが記載されている。また、表
面の膜厚をATR法を用いて測定および評価することも
知られている(パーキンエルマー・ジャパンFT−IR
フォーラム’89資料)。なお、錦田・岩本著「赤外法
による材料分析」(講談社サイエンティフィック刊)第
4章には、ATR法についての詳しい説明がある。[0009]J. Opt. Soc. Ame. , vol.
.. 55 (1965) No. 7pp. 851 has A
It has been reported that the TR method can be used to quantify chemical species and the theoretical absorbance of its polarized light spectrum. Also, Macromolecules, vol.
.. 4 (1971) No. 2 pp. 174, the polar groups generated by irradiating the polypropylene surface with ultraviolet rays were measured using the ATR method to determine the depth (thickness) from the surface.
It is described that the direction is quantified. It is also known to measure and evaluate surface film thickness using the ATR method (PerkinElmer Japan FT-IR
Forum '89 materials). In addition, Chapter 4 of ``Material Analysis by Infrared Method'' by Nishikita and Iwamoto (published by Kodansha Scientific) provides a detailed explanation of the ATR method.
【0010】ATR法の理論についてさらに詳細に説明
する。The theory of the ATR method will be explained in more detail.
【0011】試料に入射した赤外光の電場振幅Eは、潜
り込みの深さにより指数関数的に減少する。この関係を
下記1式に示す。The electric field amplitude E of the infrared light incident on the sample decreases exponentially with the depth of penetration. This relationship is shown in equation 1 below.
【0012】0012
【数1】[Math 1]
【0013】ここで、E0 は界面における電場振幅、
Zは界面からの深さである。dpは電場振幅が1/eに
減衰する深さで、「浸み込み深さ」と呼ばれる。このd
pは、下記2式で表わされる。[0013] Here, E0 is the electric field amplitude at the interface,
Z is the depth from the interface. dp is the depth at which the electric field amplitude attenuates to 1/e, and is called the "penetration depth." This d
p is represented by the following two formulas.
【0014】[0014]
【数2】[Math 2]
【0015】ここで、λは入射光の波長、θは入射角、
n1 は結晶の屈折率、そしてn21はフイルムの結晶
に対する屈折率である。Here, λ is the wavelength of the incident light, θ is the angle of incidence,
n1 is the refractive index of the crystal, and n21 is the refractive index of the film relative to the crystal.
【0016】1式および2式に示されるように、試料に
入射した赤外光が試料表面から浸み込み深さdpは、入
射光の波長λ、入射角θ、結晶の屈折率n1 およびフ
イルムの結晶に対する屈折率n21に依存する。従って
、これらの値を調節することで測定する深さを制御し、
化学種の深さ方向の分布を定量することができる。As shown in equations 1 and 2, the penetration depth dp of the infrared light incident on the sample from the sample surface is determined by the wavelength λ of the incident light, the angle of incidence θ, the refractive index n1 of the crystal, and the film thickness. depends on the refractive index n21 for the crystal. Therefore, by adjusting these values, you can control the depth to be measured,
The depth distribution of chemical species can be quantified.
【0017】また、ATR法における吸光度Aは、下記
3式で表わされる。Further, the absorbance A in the ATR method is expressed by the following three formulas.
【0018】[0018]
【数3】[Math 3]
【0019】ここで、Nは反射回数、εは注目している
化学種の分子吸光係数、C(z)は化学種の濃度の深さ
依存性である。Here, N is the number of reflections, ε is the molecular extinction coefficient of the chemical species of interest, and C(z) is the depth dependence of the concentration of the chemical species.
【0020】一方、結晶に入射する入射光の電場振幅を
1としたときの試料と結晶との界面における電場振幅E
0 は、入射面(界面の法線と入射光線とを含む面)に
垂直な成分(垂直偏光)をEy0、平行な成分(平行偏
光)をEx0、Ez0とすると、それぞれ、以下の4式
〜7式のように表わされる。On the other hand, when the electric field amplitude of the incident light incident on the crystal is 1, the electric field amplitude E at the interface between the sample and the crystal is
0 is expressed by the following 4 equations, assuming that the component perpendicular to the plane of incidence (the plane containing the normal to the interface and the incident ray) is Ey0, and the components parallel to it (parallel polarized light) are Ex0 and Ez0. It is expressed as equation 7.
【0021】[0021]
【数4】[Math 4]
【0022】[0022]
【数5】[Math 5]
【0023】[0023]
【数6】[Math 6]
【0024】[0024]
【数7】[Math 7]
【0025】従って、4式(垂直偏光の場合)、5式(
平行偏光の場合)、6式(平行偏光の場合)または、7
式(非偏光または円偏光の場合)を3式に代入すれば、
各々の偏光状態の吸光度Aの理論値が計算できる。
また逆に、測定した吸光度Aから分子吸光係数εやC(
z)を求めることができる。Therefore, Equation 4 (for vertically polarized light) and Equation 5 (
(for parallel polarized light), formula 6 (for parallel polarized light), or 7
Substituting the equation (for unpolarized light or circularly polarized light) into equation 3, we get
The theoretical value of absorbance A for each polarization state can be calculated. Conversely, from the measured absorbance A, the molecular extinction coefficient ε and C(
z) can be found.
【0026】[0026]
【発明が解決しようとする課題】ところが、上記のよう
なATR法を用いて化学種の深さ方向についての分布を
実際に測定をすると、吸光度の理論値と実験値との一致
が必ずしも良くなく、実験値が理論値の半分以下になる
場合もあった。その結果、ATR法による測定の結果か
ら求めた分子吸光係数の値が、透過法で求めた真の値と
大きく異なり、測定の信頼性が低いという問題があった
。[Problem to be solved by the invention] However, when the distribution of chemical species in the depth direction is actually measured using the ATR method as described above, the agreement between the theoretical absorbance value and the experimental value is not always good. In some cases, the experimental value was less than half of the theoretical value. As a result, the value of the molecular extinction coefficient determined from the measurement result by the ATR method is significantly different from the true value determined by the transmission method, resulting in a problem that the reliability of the measurement is low.
【0027】前記した錦田・岩本著「赤外法による材料
分析」には、平行偏光によるATRスペクトルの吸光度
が垂直偏光ATRスペクトルによる吸光度よりも常に大
きくなるために、非偏光で測定した場合には補正が必要
となるとの記載と、その補正式が示されている。しかし
、そこに記載されている補正式はATR法を化学種の深
さ方向についての分布を調べるために用いる場合に有効
であるかどうかは、明らかになっていなかった。In the above-mentioned "Material Analysis by Infrared Method" by Nishikita and Iwamoto, it is stated that since the absorbance of the ATR spectrum with parallel polarized light is always greater than the absorbance of the vertically polarized ATR spectrum, when measuring with non-polarized light, It states that correction is required and the correction formula is shown. However, it is not clear whether the correction formula described therein is effective when the ATR method is used to investigate the distribution of chemical species in the depth direction.
【0028】[0028]
【課題を解決するための手段】本発明者は上記の問題を
検討した結果、入射する赤外光に、入射面に対して平行
な電場振幅成分があると、理論値と実験値との間に不一
致が起こることを見出し、本発明に到達した。[Means for Solving the Problems] As a result of studying the above-mentioned problems, the present inventor found that if the incident infrared light has an electric field amplitude component parallel to the plane of incidence, there is a difference between the theoretical value and the experimental value. The present invention was achieved by discovering that discrepancies occur.
【0029】本発明は、フイルム表面近傍にある化学種
についてフイルム表面から深さ方向への濃度勾配を測定
する全反射赤外吸光分析方法であって、フイルムに入射
させる赤外光として、入射面に対して垂直に偏光させた
赤外光を用いることを特徴とする全反射赤外吸光分析方
法を提供する。The present invention is a total reflection infrared absorption analysis method for measuring the concentration gradient of chemical species near the film surface in the depth direction from the film surface. Provided is a total internal reflection infrared absorption analysis method characterized by using infrared light polarized perpendicularly to the object.
【0030】本発明の全反射赤外吸光分析方法によれば
、理論値と実験値との不一定の原因である平行電場振幅
成分が入射光に含まれていないので、理論値と実験値が
実質的に一致し、測定値から正確にフイルム表面の化学
種の濃度勾配を決定することができる。According to the total internal reflection infrared absorption analysis method of the present invention, the incident light does not contain the parallel electric field amplitude component, which is the cause of the inconsistency between the theoretical value and the experimental value. There is substantial agreement, and the concentration gradient of the chemical species on the film surface can be accurately determined from the measured values.
【0031】本発明の全反射赤外吸光分析方法を実施す
るには、従来のATR測定装置の光学系で、試料の入射
光側に偏光子を置き、試料(通常は、試料が装着された
IRE)に入射させる赤外光を入射面に対して垂直に偏
光させるだけでよい。偏光子は、試料に入射させる赤外
光が垂直偏光となるように設置すれば、その位置につい
て特に制限はない。ただし、通常は試料(IRE)の前
にホルダー等で支持しておく。To carry out the total internal reflection infrared absorption analysis method of the present invention, a polarizer is placed on the incident light side of the sample in the optical system of a conventional ATR measuring device, It is only necessary to polarize the infrared light incident on the IRE) perpendicularly to the plane of incidence. The position of the polarizer is not particularly limited as long as it is installed so that the infrared light incident on the sample becomes vertically polarized light. However, the sample (IRE) is usually supported with a holder or the like in front of it.
【0032】以下、本発明の方法を手順に沿って具体的
に述べる。[0032] The method of the present invention will be described in detail below, step by step.
【0033】上記したように、ATRスペクトルは、通
常、試料とIREとの接触界面で多重反射させた赤外光
を分光測定して得られる。従って、通常はIREを試料
でサンドイッチ状に挟んで光学系にセットする。このと
きの試料とIREとの接触界面の面積を調整することで
、反射回数を調節する。As described above, the ATR spectrum is usually obtained by spectroscopically measuring infrared light that is multiple-reflected at the contact interface between the sample and the IRE. Therefore, the IRE is usually sandwiched between samples and set in the optical system. At this time, the number of reflections is adjusted by adjusting the area of the contact interface between the sample and the IRE.
【0034】IREとしては、前記したKRS−5(屈
折率:2.4)、ZnSe(屈折率:2.4)、Si(
屈折率:3.5)、Ge(屈折率:4.0)に加えて、
Te(屈折率:垂直偏光では6.3)、ZnTe(屈折
率:2.7)、GaAs(屈折率:3.3)Al2 O
3 (屈折率:1.7)、MgO(屈折率:1.7)、
AgCl(屈折率:2.0)およびAgBr(屈折率:
2.2)を挙げることができる。As the IRE, the above-mentioned KRS-5 (refractive index: 2.4), ZnSe (refractive index: 2.4), Si (
In addition to Ge (refractive index: 3.5) and Ge (refractive index: 4.0),
Te (refractive index: 6.3 for vertically polarized light), ZnTe (refractive index: 2.7), GaAs (refractive index: 3.3) Al2O
3 (refractive index: 1.7), MgO (refractive index: 1.7),
AgCl (refractive index: 2.0) and AgBr (refractive index:
2.2) can be mentioned.
【0035】本発明の実施に用いることのできるATR
測定装置の光学系としては、Wilks型、Harri
ck型、半円柱型IREを使用するタイプ、円柱型IR
Eを使用するタイプを挙げることができる。ATR that can be used to implement the present invention
The optical system of the measuring device is Wilks type,
ck type, type using semi-cylindrical IRE, cylindrical IR
Types that use E can be mentioned.
【0036】IREに装着した試料を光学系にセットし
、試料(IRE)の入射光側の直前にホルダーを用いて
偏光子を置き、赤外分光光度計によってスペクトルの測
定を行なう。The sample attached to the IRE is set in an optical system, a polarizer is placed using a holder just in front of the incident light side of the sample (IRE), and the spectrum is measured using an infrared spectrophotometer.
【0037】偏光子としては、通常の赤外光用に用いら
れるものを用いる。すなわち、普通赤外領域(400〜
4000cm−1)では塩化銀板を重ねた積層板型のも
の、あるいは臭化銀など赤外部に吸収をもたない材料を
ベースにしたワイヤグリッド型のものを用い、遠赤外領
域(10〜400cm−1)ではポリエチレンをベース
としたワイヤグリッド型のものを用いるのが一般的であ
る。ただし、塩化銀偏光子は、かなり大きなスペースを
取ること、収束性の強い光束に対して高い偏光度が得ら
れないことなどの問題があるので、ワイヤグリッド型の
偏光子を用いることが好ましい。As the polarizer, one used is normally used for infrared light. That is, the normal infrared region (400~
In the far-infrared region (10 to 4000 cm-1), we use a laminated plate type with stacked silver chloride plates, or a wire grid type based on a material that does not absorb in the infrared region, such as silver bromide. 400 cm-1), it is common to use a wire grid type one based on polyethylene. However, since silver chloride polarizers have problems such as requiring a considerably large space and not being able to obtain a high degree of polarization for highly convergent light beams, it is preferable to use a wire grid type polarizer.
【0038】また、本発明の測定法は、従来の分散型赤
外分光計を用いても原理的には可能であるが、FT−I
R赤外分光計を用いるのが実際的である。Although the measurement method of the present invention is possible in principle using a conventional dispersive infrared spectrometer,
It is practical to use an R infrared spectrometer.
【0039】[0039]
【実施例】以下の実施例で本発明をさらに説明するが、
これらは本発明を制限するものではない。[Example] The present invention will be further explained in the following example.
These do not limit the invention.
【0040】[実施例1]セルロースアセテートフイル
ム(支持体)上に、下記のゼラチン分散液を第1表に示
す塗布量で塗布し、70℃で3分間乾燥して、5種類の
ゼラチン塗布フイルムを作成した。[Example 1] The following gelatin dispersion was coated on a cellulose acetate film (support) in the coating amount shown in Table 1, and dried at 70°C for 3 minutes to form five types of gelatin-coated films. It was created.
【0041】
─────────────────────────
─────────── 塗布液
─────────────────────────
─────────── ゼラチン
7.5g サリチル
酸
2g
アセトン
500ml メタノール
200ml 塩化メチレ
ン
300ml────
─────────────────────────
─────────────────────────────────
──────────── Coating liquid ──────────────────────────
──────────── Gelatin
7.5g salicylic acid
2g
acetone
500ml methanol
200ml methylene chloride
300ml────
──────────────────────────
───────
【0042】上記の塗布量から計算した
各々のゼラチンの膜厚を第1表に示す。Table 1 shows the film thickness of each gelatin calculated from the above coating amount.
【0043】
第1表───────────────
───────────────────── 塗布
量 (ml/m2)
膜
厚(μm) ────────────────
────────────────────
15
0.087 20
0.115 25
0.
144 34
0.196 50
0.289
─────────────────────────
───────────[0043]
Table 1────────────────
────────────────────── Application amount (ml/m2)
Film thickness (μm) ────────────────
────────────────────
15
0.087 20
0.115 25
0.
144 34
0.196 50
0.289
──────────────────────────
────────────
【0044】このフイルムを、
それぞれ1cm×4cmの小片に切り、厚さ2mmのゲ
ルマニウムプレート(IRE)に密着させて、偏光子に
よって垂直偏光とされた赤外光によるATR測定を行な
った。分光器として、パーキンエルマー社製1720X
フーリエ変換赤外分光光度計を使用した。偏光子はKR
S−5を基板としたアルミニウムグリッドを用いた。赤
外線の入射角は45°、スキャン回数は50回とした。[0044] This film is
Each piece was cut into small pieces of 1 cm x 4 cm and brought into close contact with a germanium plate (IRE) with a thickness of 2 mm, and ATR measurement was performed using infrared light that was vertically polarized using a polarizer. As a spectrometer, PerkinElmer 1720X
A Fourier transform infrared spectrophotometer was used. Polarizer is KR
An aluminum grid with S-5 as a substrate was used. The incident angle of the infrared rays was 45°, and the number of scans was 50.
【0045】得られたスペクトルの1650cm−1の
吸収のベースラインからの値を吸光度とした。得られた
スペクトルを図1に、結果を後述の第2表に示す。[0045] The absorbance value from the baseline of the absorption at 1650 cm-1 of the obtained spectrum was defined as the absorbance. The obtained spectrum is shown in FIG. 1, and the results are shown in Table 2 below.
【0046】一方、2式を用いて浸み込み深さdpを計
算したところ、0.407μmを得た。また、ゼラチン
は支持体上に層状で存在しているので、C(z)は下記
の8式で表わされる。On the other hand, when the penetration depth dp was calculated using Equation 2, it was found to be 0.407 μm. Furthermore, since gelatin exists in a layered form on the support, C(z) is represented by the following formula 8.
【0047】[0047]
【数8】[Math. 8]
【0048】ここで、tはゼラチンの膜厚を表わす。上
記のdp、C(z)を3式に代入し、さらに、入射光は
垂直偏光なので4式を用いて整理して下記9式を得た。[0048] Here, t represents the thickness of the gelatin film. The above dp and C(z) were substituted into Equation 3, and since the incident light was vertically polarized, Equation 4 was used to organize the equation to obtain Equation 9 below.
【0049】[0049]
【数9】[Math. 9]
【0050】各々のゼラチン塗布フイルムについて、測
定された吸光度を上記9式に従ってプロットしたグラフ
を図2に示す。FIG. 2 shows a graph in which the measured absorbance of each gelatin-coated film is plotted according to Equation 9 above.
【0051】図2において、各測定点の回帰計算より直
線を求め(ただし、(1,0)を通る)、切片の値(す
なわち、2.26ε)を求めた。この結果、ゼラチンの
分子吸光係数εとして0.26という値を得た。In FIG. 2, a straight line (passing through (1,0)) was determined by regression calculation for each measurement point, and the value of the intercept (ie, 2.26ε) was determined. As a result, a value of 0.26 was obtained as the molecular extinction coefficient ε of gelatin.
【0052】[比較例1]偏光子を用いないで非偏光の
赤外光で測定を行なった以外は実施例1と同様にして吸
光度を測定した。また、実施例1と同様にdp、C(z
)を3式に代入し、非偏光なので数式7を用いて整理し
て下記10式を得た。[Comparative Example 1] Absorbance was measured in the same manner as in Example 1, except that the measurement was performed using unpolarized infrared light without using a polarizer. Also, as in Example 1, dp, C(z
) was substituted into Equation 3, and since it is non-polarized light, Equation 7 was used to rearrange it to obtain Equation 10 below.
【0053】[0053]
【数10】[Math. 10]
【0054】吸光度の測定結果を第2表に、上記10式
に従ってプロットしたグラフを図2に示す。The absorbance measurement results are shown in Table 2, and a graph plotted according to the above equation 10 is shown in FIG.
【0055】実施例1と同様にしてグラフの切片の値か
ら求めたゼラチンの分子吸光係数εは0.13であった
。The molecular extinction coefficient ε of gelatin determined from the intercept value of the graph in the same manner as in Example 1 was 0.13.
【0056】
第2表───────────────
───────────────────── 膜厚
t(μm) e−4.92t 垂
直偏光の吸光度 無偏光の吸光度───────
─────────────────────────
──── 0.086 0.65
5 0.235 0.3
46 0.116 0.
565 0.278 0
.417 0.145
0.490 0.321
0.462 0.196
0.381 0.363
0.534 0.289
0.241 0.412
0.611 ───────────
─────────────────────────
[0056]
Table 2────────────────
──────────────────── Film thickness t (μm) e-4.92t Absorbance of vertically polarized light Absorbance of unpolarized light ────────
──────────────────────────
──── 0.086 0.65
5 0.235 0.3
46 0.116 0.
565 0.278 0
.. 417 0.145
0.490 0.321
0.462 0.196
0.381 0.363
0.534 0.289
0.241 0.412
0.611 ────────────
──────────────────────────
【0057】透過法によって求めたゼラチンの分子吸光
係数εは0.29であり、垂直偏光による測定(実施例
)によって得られた値0.26と良く一致している。
これに対して無偏光による測定(比較例)によって得ら
れた値0.13は、大きくはずれた値となっている。以
上の結果から、測定を垂直偏光によって行なうことによ
り定量性が向上することがわかる。The molecular extinction coefficient ε of gelatin determined by the transmission method is 0.29, which agrees well with the value of 0.26 obtained by measurement using vertically polarized light (Example). On the other hand, the value of 0.13 obtained by measurement using non-polarized light (comparative example) is a value that deviates greatly. From the above results, it can be seen that quantitative performance is improved by performing measurements using vertically polarized light.
【0058】[0058]
【発明の効果】本発明の全反射赤外吸光分析方法では、
ATR法での測定で問題となっていた理論値と実験値と
の不一致の原因である平行電場振幅成分が入射光に含ま
れていない。従って、理論値と実験値が実質的に一致し
、測定値から正確にフイルム表面の化学種の濃度勾配を
決定することができる。[Effect of the invention] In the total reflection infrared absorption analysis method of the present invention,
The incident light does not contain the parallel electric field amplitude component, which is the cause of the discrepancy between the theoretical value and the experimental value, which has been a problem in measurements using the ATR method. Therefore, the theoretical value and the experimental value substantially match, and the concentration gradient of the chemical species on the film surface can be accurately determined from the measured value.
【図1】試料の赤外線吸収スペクトルである。FIG. 1 is an infrared absorption spectrum of a sample.
【図2】膜厚と吸光度の関係を理論式に従ってプロット
したグラフである。FIG. 2 is a graph plotting the relationship between film thickness and absorbance according to a theoretical formula.
I 1650cm−2のアミドの吸収II 垂直偏
光の場合(実施例1)I Absorption of amide at 1650 cm-2 II For vertically polarized light (Example 1)
Claims (1)
てフイルム表面から深さ方向への濃度勾配を測定する全
反射赤外吸光分析方法であって、フイルムに入射させる
赤外光として入射面に対して垂直に偏光させた赤外光を
用いることを特徴とする赤外分析方法。1. A total internal reflection infrared absorption spectrometry method for measuring the concentration gradient of chemical species near the film surface in the depth direction from the film surface, the method comprising: An infrared analysis method characterized by using vertically polarized infrared light.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3153966A JPH04351943A (en) | 1991-05-29 | 1991-05-29 | Infrared analysis method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3153966A JPH04351943A (en) | 1991-05-29 | 1991-05-29 | Infrared analysis method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH04351943A true JPH04351943A (en) | 1992-12-07 |
Family
ID=15573965
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3153966A Withdrawn JPH04351943A (en) | 1991-05-29 | 1991-05-29 | Infrared analysis method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH04351943A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013038092A (en) * | 2011-08-03 | 2013-02-21 | Toshiba Corp | Semiconductor laser device |
-
1991
- 1991-05-29 JP JP3153966A patent/JPH04351943A/en not_active Withdrawn
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2013038092A (en) * | 2011-08-03 | 2013-02-21 | Toshiba Corp | Semiconductor laser device |
| US9407065B2 (en) | 2011-08-03 | 2016-08-02 | Kabushiki Kaisha Toshiba | Semiconductor laser |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5963327A (en) | Total internal reflection electromagnetic radiation beam entry to, and exit from, ellipsometer, polarimeter, reflectometer and the like systems | |
| Grdadolnik | ATR-FTIR spectroscopy: Its advantage and limitations | |
| JP4140737B2 (en) | Broadband spectral rotation compensator ellipsometer | |
| US6937341B1 (en) | System and method enabling simultaneous investigation of sample with two beams of electromagnetic radiation | |
| EP1026495B1 (en) | Adjustable beam alignment compensator/retarder | |
| US5255075A (en) | Optical sensor | |
| CN1841030B (en) | spectropolarimetry | |
| US7889339B1 (en) | Complementary waveplate rotating compensator ellipsometer | |
| CN109115690B (en) | Terahertz time domain ellipsometer sensitive to real-time polarization and optical constant measurement method | |
| EP1124120A2 (en) | Spectroscopic investigation system and compensator therefor | |
| US6181421B1 (en) | Ellipsometer and polarimeter with zero-order plate compensator | |
| JPS6134442A (en) | Ellipsometry measurement method and equipment for inspecting the physical properties of the sample surface or surface film layer of the sample | |
| CN106092905A (en) | A kind of Polarized infrared light spectrometer | |
| Abbate et al. | Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range | |
| Chenault et al. | Infrared spectropolarimetry | |
| US4653908A (en) | Grazing incidence reflection spectrometer | |
| US6137618A (en) | Compact, high extinction coefficient combination brewster angle and other than brewster angle polarizing system, and method of use | |
| Dignam et al. | Azimuthal misalignment and surface anisotropy as sources of error in ellipsometry | |
| EP0144115B1 (en) | An ellipsometer | |
| JPH04351943A (en) | Infrared analysis method | |
| CN109115695B (en) | Method for extracting optical constants and Euler angles of anisotropic body materials | |
| CN208847653U (en) | Real-time polarization sensitive terahertz time-domain ellipsometer | |
| EP1038165B1 (en) | Regression calibrated spectroscopic rotating compensator ellipsometer system with photo array detector | |
| Johansson | Analysis and application of linear dichroism on membranes. Description of a linear-dichroism spectrometer | |
| TWI437220B (en) | System and method for measuring pre-tilt angle of liquid crystal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980806 |