JPH0438333B2 - - Google Patents
Info
- Publication number
- JPH0438333B2 JPH0438333B2 JP11293787A JP11293787A JPH0438333B2 JP H0438333 B2 JPH0438333 B2 JP H0438333B2 JP 11293787 A JP11293787 A JP 11293787A JP 11293787 A JP11293787 A JP 11293787A JP H0438333 B2 JPH0438333 B2 JP H0438333B2
- Authority
- JP
- Japan
- Prior art keywords
- pulse
- initialization
- signal
- liquid crystal
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 53
- 239000004973 liquid crystal related substance Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 23
- 230000000087 stabilizing effect Effects 0.000 claims description 22
- 239000011159 matrix material Substances 0.000 claims description 15
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims description 10
- 230000005684 electric field Effects 0.000 claims description 6
- 230000000903 blocking effect Effects 0.000 claims description 5
- 230000001747 exhibiting effect Effects 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims 2
- 229920006395 saturated elastomer Polymers 0.000 description 23
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 2
- 210000002858 crystal cell Anatomy 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はマトリクス型液晶光学装置の駆動方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for driving a matrix type liquid crystal optical device.
[従来の技術]
最近、TN型液晶に変わつて強誘電液晶が注目
されてきており、これを利用した光学装置の開発
が進められている。[Prior Art] Recently, ferroelectric liquid crystals have been attracting attention instead of TN liquid crystals, and optical devices using them are being developed.
強誘電液晶の光学モードとしては、複屈折型光
学モードおよびゲストホスト型光学モードがあ
る。これらを駆動する場合、従来のTN型液晶と
異なり、電界の印加方向によつて光学応答状態
(明暗)を制御するため、TN型液晶で用いられ
ていた駆動方法が利用できず、特殊な駆動方法を
必要とするものである。 The optical modes of ferroelectric liquid crystals include birefringent optical mode and guest-host optical mode. When driving these, unlike conventional TN-type liquid crystals, the optical response state (brightness and darkness) is controlled by the direction of electric field application, so the driving method used for TN-type liquid crystals cannot be used, and special driving methods are required. It requires a method.
さらに光学装置の寿命を考えると直流成分が画
素に長時間印加されるのは好ましくなく、その点
も考慮した駆動方法が必要になつてくる。 Furthermore, considering the lifespan of the optical device, it is undesirable for a DC component to be applied to the pixels for a long period of time, and a driving method that takes this point into account is required.
この直流成分を長時間画素に印加させない駆動
方法の1つとしては、「SID′85 Digest」(1985年)
(P.131〜P.134)の駆動方法がある。 One of the driving methods that does not apply this DC component to pixels for a long time is "SID'85 Digest" (1985).
There are driving methods (P.131-P.134).
さらに特開昭60−176097号には、交流スタビラ
イズ効果を有する強誘電液晶を用いて、光学応答
状態の双安定性を駆動電気信号で実現できる駆動
方法も開示されている。 Further, JP-A-60-176097 discloses a driving method that uses a ferroelectric liquid crystal having an AC stabilizing effect to realize bistability of the optical response state with a driving electric signal.
[発明が解決しようとする問題点]
しかし後者の駆動方法では画素に直流成分が長
時間印加される場合があつて、駆動用の透明電極
が還元されて黒ずんでしまつたり、液晶の劣化を
引き起こすという問題があつた。一方前者の駆動
方法では劣化の問題はないが、1画面の書換えに
必要な時間Tが1画素の書込みに必要な時間をt
とするとT=4×t×N(Nは走査ライン数/画
面)となつて、書換え時間Tが長く走査ライン数
をあまり増やせないとか動画表示に向かないとい
つた問題があつた。[Problems to be Solved by the Invention] However, in the latter driving method, a DC component may be applied to the pixel for a long time, which may reduce the transparent electrode for driving and cause it to darken, or cause deterioration of the liquid crystal. There was a problem with causing it. On the other hand, with the former driving method, there is no problem with deterioration, but the time T required to rewrite one screen is the time T required to write one pixel.
Then, T=4×t×N (N is the number of scanning lines/screen), which caused problems such as the rewriting time T was long and the number of scanning lines could not be increased much, and it was not suitable for displaying moving images.
本発明は、書換え時間を短縮できるとともに長
時間駆動しても透明電極の黒変や液晶の劣化を起
こさないようにしたものである。 The present invention is capable of shortening the rewriting time and also prevents blackening of the transparent electrode and deterioration of the liquid crystal even when driven for a long time.
[問題点を解決するための手段]
本発明は、電界の印加方向によつて分子の配向
状態を異にし交流スタビライズ効果を有する液晶
を用いた画素によつてマトリクス型液晶光学装置
を形成し、画素に初期化パルス群を印加して光学
的に初期化した後、第1のパルス群を印加して所
望の光学応答状態とし、その後は第2のパルス群
によつて画素の光学応答状態を交流スタビライズ
効果によつて保持するものであつて、初期化パル
ス群と第1のパルス群はそれぞれ、すべての正極
性のパルスに対して対称波形の負極性のパルスが
存在し、第2のパルス群は、交流スタビライズ効
果を呈する周波数を有し、かつ正極性のパルスと
これと波形が対称な負極性のパルスとが交互に生
じるようにしたことにより、上記目的を達成する
ものである。[Means for Solving the Problems] The present invention forms a matrix-type liquid crystal optical device using pixels using liquid crystal that changes the orientation state of molecules depending on the direction of application of an electric field and has an AC stabilizing effect. After applying a group of initialization pulses to the pixel to optically initialize the pixel, a first group of pulses is applied to bring the pixel into a desired optical response state, and then a second group of pulses is applied to bring the pixel into a desired optical response state. The initialization pulse group and the first pulse group each have a negative polarity pulse with a symmetrical waveform with respect to all positive polarity pulses, and the second pulse group The above object is achieved by the group having a frequency exhibiting an AC stabilizing effect, and in which pulses of positive polarity and pulses of negative polarity whose waveforms are symmetrical are generated alternately.
さらに、複数の走査電極に同時に初期化信号を
供給して初期化を行つた後に、この初期化された
画素を所望の光学応答状態に書き込むことによ
り、書換え時間の短縮を実現でき、
また階調に応じて、データ信号に含まれる書込
みパルスの高周波成分の振幅を調整することによ
り、中間調も得られるようにしたものである。 Furthermore, by supplying initialization signals to multiple scanning electrodes at the same time to perform initialization, and then writing the initialized pixels to a desired optical response state, it is possible to shorten the rewriting time and increase the gradation level. By adjusting the amplitude of the high frequency component of the write pulse included in the data signal according to the data signal, halftones can also be obtained.
[実施例]
第1図において、走査電極L1〜LNとこれに対
抗する制御電極R1〜RX間に強誘電液晶を介在さ
せて各電極の交点において複数の画素を形成して
ある。選択回路SEからは走査電極L1〜LNを順次、
時分割的に初期化する初期化信号RS1(第2図)
と、時分割的に選択する選択信号S1(第2図)が
第3図示のタイミングで発生し、この初期化信号
と選択信号の非供給時には非選択信号NS1(第2
図)が発生する。初期化信号RS1は、電圧VR±
H、−VR±Hからなり、選択信号S1は電圧±Vか
らなり、非選択信号NS1は±Hからなる。[Example] In FIG. 1, a ferroelectric liquid crystal is interposed between scanning electrodes L 1 to L N and opposing control electrodes R 1 to R X to form a plurality of pixels at the intersections of each electrode. . The selection circuit SE sequentially selects scan electrodes L 1 to L N.
Initialization signal RS 1 that is initialized in a time-division manner (Figure 2)
Then, the selection signal S 1 (Fig. 2) for time-sharing selection is generated at the timing shown in Fig. 3, and when this initialization signal and selection signal are not supplied, the non-selection signal NS 1 (second
Figure) occurs. The initialization signal RS 1 has a voltage V R ±
The selection signal S 1 consists of a voltage ±V, and the non-selection signal NS 1 consists of a voltage ±H.
一方、駆動制御回路DRからは選択信号S1が供
給された走査電極における画素の所望する光学応
答状態に対応して、第2図の応答信号D1または
逆応答信号RD1がデータ信号として発生して制御
電極R1〜RXに供給される。つまり応答状態(例
えば、光透過状態)を所望する制御電極には応答
信号D1を供給し、逆応答状態(例えば、光遮断
状態)を所望する制御電極には逆応答信号RD1を
供給するものである。逆応答信号RD1は、液晶が
交流スタビライズ効果を呈する周波数に対応した
高周波成分を含んでいる。 On the other hand, the drive control circuit DR generates a response signal D 1 or a reverse response signal RD 1 as a data signal in accordance with the desired optical response state of the pixel in the scanning electrode to which the selection signal S 1 is supplied. and is supplied to the control electrodes R 1 to R X . In other words, a response signal D 1 is supplied to the control electrode for which a responsive state (for example, a light transmitting state) is desired, and a reverse response signal RD 1 is supplied to a control electrode for which a reverse responsive state (for example, a light blocking state) is desired. It is something. The reverse response signal RD 1 includes a high frequency component corresponding to the frequency at which the liquid crystal exhibits an AC stabilizing effect.
以上の信号の供給によつて、応答状態を所望す
る画素にはまず初期化信号RS1の供給によつて初
期化パルス群P1またはP2が印加され一度飽和応
答状態になつた後、飽和逆応答状態に初期化さ
れ、その後選択信号S1および応答信号D1によつ
て第1のパルス群P3が印加される。パルス群P3
では高周波交流パルス成分が0なので、交流スタ
ビライズ効果がなく、電圧−Vにより飽和逆応答
状態が保持され、ついで電圧+Vの書込みパルス
によつて飽和応答状態が書き込まれる。その後は
非選択信号NS1の供給によつて第2のパルス群P5
またはP6の高周波交流パルスが印加されて、交
流スラビライズ効果により応答状態が安定に保持
される。 By supplying the above signals, the initialization pulse group P 1 or P 2 is first applied to the pixel desired to be in the response state by supplying the initialization signal RS 1 , and once the pixel enters the saturated response state, the pixel is saturated. It is initialized to a reverse response state, and then the first pulse group P3 is applied by the selection signal S1 and the response signal D1 . Pulse group P 3
Since the high-frequency AC pulse component is 0, there is no AC stabilizing effect, and the saturated reverse response state is maintained by the voltage -V, and then the saturated response state is written by the write pulse of the voltage +V. Thereafter, the second pulse group P5 is activated by supplying the non-selection signal NS1 .
Alternatively, a high frequency AC pulse of P6 is applied, and the response state is maintained stably due to the AC smoothing effect.
一方逆応答を所望する画素には、パルス群P1
またはP2の印加によつて飽和応答状態後、飽和
逆応答状態に初期化され、その後選択信号S1およ
び逆応答信号RD1によつて第1のパルス群P4が印
加される。パルス群P4は電圧±Vの低周波交流
パルスに電圧±2Hの高電圧高周波交流パルスが
重畳されたもので、±2Hの交流スタビライズ効果
により飽和応答状態とはならす、初期化された飽
和逆応答状態が保持されるのである。そしてパル
ス群P4の印加後は第2のパルス群P5またはP6が
印加されて、交流スタビライズ効果により飽和逆
応答状態が保持されるのである。 On the other hand, for a pixel for which an inverse response is desired, pulse group P 1
Alternatively, by applying P 2 , the saturated response state is initialized to a saturated reverse response state, and then the first pulse group P 4 is applied by the selection signal S 1 and the reverse response signal RD 1 . Pulse group P 4 is a low-frequency AC pulse with a voltage of ±V superimposed with a high-voltage, high-frequency AC pulse with a voltage of ±2H, and is an initialized saturated reverse state that is not in a saturated response state due to the AC stabilization effect of ±2H. The response state is maintained. Then, after the application of the pulse group P 4 , the second pulse group P 5 or P 6 is applied, and the saturated reverse response state is maintained due to the AC stabilization effect.
これら応答および逆応答を所望する画素への印
加電圧波形例を示したのが第4図である。 FIG. 4 shows examples of voltage waveforms applied to pixels for which these responses and reverse responses are desired.
このように初期化パルス群P1,P2および第1
のパルス群P3,P4におけるパルスはそれぞれ、
すべての正極性のパルスに対して対称波形の負極
性のパルスが存在し、第2のパルス群P5,P6に
おいては、正極性のパルスとこれと波形が対称な
負極性のパルスとが交互に生じるので、画素には
直流電圧が偏つて印加されることがなく、透明電
極の黒変、液晶の劣化等を起こすことがなくな
る。 In this way, the initialization pulse groups P 1 , P 2 and the first
The pulses in the pulse groups P 3 and P 4 are respectively,
For all positive polarity pulses, there is a negative polarity pulse with a symmetrical waveform, and in the second pulse group P 5 and P 6 , a positive polarity pulse and a negative polarity pulse whose waveform is symmetrical to this pulse are present. Since the voltages occur alternately, the DC voltage is not biasedly applied to the pixels, which prevents blackening of the transparent electrodes, deterioration of the liquid crystal, etc.
また初期化信号の導入により選択信号の供給と
同時に次のラインの初期化ができるので、画面の
書換え時間が短縮できる。この例の場合、書換え
時間TはT=2×t×Nで従来の1/2である。 Further, by introducing the initialization signal, the next line can be initialized at the same time as the selection signal is supplied, so that the screen rewriting time can be shortened. In this example, the rewriting time T is T=2×t×N, which is 1/2 of the conventional time.
さらに非選択時に印加される第2のパルス群
P5およびP6は低周波パルス成分を含まないので、
光学応答状態の保持力が強く高コントラストが実
現できる。 Furthermore, a second pulse group is applied when not selected.
Since P 5 and P 6 do not contain low frequency pulse components,
It has a strong ability to maintain the optical response state and can achieve high contrast.
なお第1のパルス群P3におけるパルスの周波
数とパルス高Vは強誘電液晶の自発分極の大きさ
や液晶セル厚との関係で、飽和逆応答状態および
飽和応答状態が得られるように適宜決定される。 Note that the frequency and pulse height V of the pulses in the first pulse group P3 are appropriately determined in relation to the magnitude of spontaneous polarization of the ferroelectric liquid crystal and the thickness of the liquid crystal cell so as to obtain a saturated reverse response state and a saturated response state. Ru.
また第2のパルス群P5,P6における高周波交
流パルスの周波数は第1のパルス群P3における
パルスの周波数の2倍以上(好ましくは4倍以上
で整数倍)がよく、パルス高Hは強誘電液晶の誘
電異方性の大きさとの関係で光学応答状態が安定
に保持されるように適宜決定される。 The frequency of the high-frequency AC pulses in the second pulse groups P 5 and P 6 is preferably at least twice the frequency of the pulses in the first pulse group P 3 (preferably 4 times or more, an integral multiple), and the pulse height H is It is appropriately determined in relation to the magnitude of dielectric anisotropy of the ferroelectric liquid crystal so that the optical response state is stably maintained.
さらに初期化パルス群P1またはP2の初期化応
答電圧VRは、±Hの高周波交流パルスが重畳して
も十分に応答または逆応答となるように決定され
る。 Furthermore, the initialization response voltage V R of the initialization pulse group P 1 or P 2 is determined so that even if ±H high-frequency AC pulses are superimposed, a sufficient response or an inverse response is obtained.
次に中間調を実現する例について説明する。第
5図は第2図の例を応用して中間調を実現できる
ようにしたものである。第5図において、初期化
信号RS1および選択信号S1は第2図と同じで、デ
ータ信号として制御電極R1〜RXに供給する制御
信号Cの電圧±hを階調に応じて制御するように
したものである。 Next, an example of realizing halftones will be explained. FIG. 5 shows an example in which halftones can be realized by applying the example of FIG. 2. In FIG. 5, the initialization signal RS 1 and selection signal S 1 are the same as in FIG. 2, and control the voltage ±h of the control signal C supplied to the control electrodes R 1 to R It was designed to do so.
第5図において、画素には初期化信号RS1と制
御信号Cとの供給によつて初期化パルス群P7が
印加され飽和応答状態についで飽和逆応答状態へ
初期化された後、選択信号S1の供給により第1の
パルス群P8が印加される。パルス群P8の前半は
電圧−Vに高周波交流パルスを重畳したパルスか
らなる、逆応答状態へ作用するパルス群により初
期化された飽和逆応答状態が保持されるが、後半
の電圧Vに±hの高周波交流パルスを重畳した、
不飽和応答状態を書き込む書込みパルスの印加に
よつて、不飽和応答状態(中間調)が実現でき
る。 In FIG. 5, the initialization pulse group P7 is applied to the pixel by supplying the initialization signal RS1 and the control signal C, and the pixel is initialized to a saturated response state and then to a saturated inverse response state, and then a selection signal is sent to the pixel. The first pulse group P 8 is applied by supplying S 1 . The first half of the pulse group P8 is composed of pulses in which a high-frequency AC pulse is superimposed on the voltage -V, and the saturated reverse response state initialized by the pulse group acting on the reverse response state is maintained, but the voltage V in the second half is ± h high-frequency alternating current pulses are superimposed,
An unsaturated response state (halftone) can be realized by applying a write pulse that writes an unsaturated response state.
つまり電圧Vのパルスのみでは飽和応答状態と
なるが、これに重畳する高周波交流パルスの振幅
により交流スタビライズ効果を制御することによ
り不飽和応答状態が得られるのである。 In other words, a saturated response state can be obtained with only a pulse of voltage V, but an unsaturated response state can be obtained by controlling the AC stabilizing effect using the amplitude of the high-frequency AC pulse superimposed thereon.
そしてその後は非選択信号NS′1と制御信号C
によつて第2のパルス群である高周波交流パルス
P9が印加され、上記光学応答状態が保持される
のである。なお非選択信号NS′1は非選択時の交
流スラビライズ効果をより安定化するために、第
2図の非選択信号NSとは位相を変えた信号にし
てある。 After that, the non-selection signal NS′ 1 and the control signal C
The high frequency AC pulse which is the second pulse group is
P 9 is applied and the above optical response state is maintained. Note that the non-selection signal NS'1 is a signal whose phase is different from that of the non-selection signal NS in FIG. 2 in order to further stabilize the AC smoothing effect during non-selection.
ところで中間調を出すパルスの前に一旦飽和逆
応答状態に初期化したが、この点が重要な意味を
もつ。単に中間調を出すためのパルスを印加した
のでは、パルス印加前の光学応答状態によつて印
加後の光学応答状態が変わつてしまい、安定な中
間調が実現できないが、第5図の例では、書換え
の前に飽和逆応答状態に初期化するため、前の光
学応答状態にも拘らず、安定した中間調を出すこ
とができるのである。 By the way, before the pulse that produces the intermediate tone, the system is initialized to a saturated inverse response state, and this point has an important meaning. If a pulse is simply applied to produce halftones, the optical response state before pulse application will change the optical response state after pulse application, making it impossible to achieve stable halftones. However, in the example shown in Figure 5, Since it is initialized to a saturated reverse response state before rewriting, stable halftones can be produced despite the previous optical response state.
つぎに、走査電極を複数本(例えばM本)毎の
ブロツク単位で同時に初期化をし、ついで初期化
したブロツク内の走査電極を順次時分割的に選択
して駆動を行なう方法について説明する。 Next, a method will be described in which a plurality of scan electrodes (for example, M scan electrodes) are initialized simultaneously in blocks, and then the scan electrodes within the initialized block are sequentially selected and driven in a time-division manner.
第6図、第7図において、まず電圧±VRから
なる初期化信号RS2(第6図)を第1図の走査電
極L1〜LNの内、複数本(例えばL1〜LM)の走査
電極に供給し、その他の走査電極には非初期化信
号NRS(第6図)を供給する。一方制御電極群R1
〜RXには初期化制御信号CR(第6図)を供給す
る。 6 and 7, first, an initialization signal RS 2 (FIG. 6) consisting of a voltage ±V R is applied to a plurality of scanning electrodes L 1 to L N in FIG. 1 (for example, L 1 to L M ), and a non-initialization signal NRS (FIG. 6) is supplied to the other scan electrodes. On the other hand, control electrode group R 1
An initialization control signal C R (FIG. 6) is supplied to R X.
以上の信号の供給によつて、初期化信号RS2の
供給されたM本の走査電極における画素は、初期
化パルス群P10が印加され飽和応答状態になつた
後、飽和逆応答状態に初期化され、その他の画素
には高周波交流パルスP11が印加されて光学応答
状態は変わらない。 By supplying the above signals, the pixels in the M scanning electrodes to which the initialization signal RS 2 is supplied enter the saturated response state by applying the initialization pulse group P 10 , and then initialize to the saturated reverse response state. The high frequency alternating current pulse P11 is applied to the other pixels, and the optical response state remains unchanged.
続いて上記初期化された走査電極に、順次、電
圧±Vからなる信号S2(第7図)が供給され、選
択信号非供給の走査電極には電圧±Hからなる非
選択信号NS2(第7図)が供給される。 Subsequently, the initialized scanning electrodes are sequentially supplied with a signal S 2 (FIG. 7) consisting of a voltage of ±V, and the scanning electrodes to which the selection signal is not supplied are supplied with a non-selection signal NS 2 (of a voltage ±H). FIG. 7) is supplied.
一方制御電極R1〜RXには、選択信号S2が供給
された走査電極における画素の所望する光学応答
状態に対応して、第7の応答信号D2または逆応
答信号RD2がデータ信号として供給される。 On the other hand, a seventh response signal D 2 or a reverse response signal RD 2 is applied to the control electrodes R 1 to R Supplied as.
以上の信号の供給によつて応答を所望する画素
には第1のパルス群P12が印加されて、電圧−V
のパルスで飽和逆応答状態が保持され、ついで電
圧+Vの書込みパルスで、飽和応答状態が書き込
まれ、その後は第2のパルス群である高周波交流
パルスP14またはP15が印加され、応答状態が保持
される。一方、逆応答を所望する画素には選択信
号S2と逆応答信号RD2によつて第1のパルス群
P13が印加される。パルス群P13は電圧±Vの低周
波交流パルスに電圧±2Hの高電圧高周波交流パ
ルスが重畳されたもので、±2Hの交流スタビライ
ズ効果により光学応答状態が変化せず、初期化状
態である飽和逆応答状態が保持されるのである。
このパルス群P13の印加後はパルス群P14または
P15により飽和逆応答状態が保持される。 By supplying the above signals, the first pulse group P12 is applied to the pixel desired to respond, and the voltage -V
The saturated reverse response state is maintained with a pulse of +V, and then the saturated response state is written with a write pulse of voltage +V. After that, the second pulse group, high frequency AC pulse P 14 or P 15 is applied, and the response state is maintained. Retained. On the other hand, a pixel for which a reverse response is desired is supplied with the first pulse group by the selection signal S 2 and the reverse response signal RD 2 .
P 13 is applied. Pulse group P 13 is a combination of a low-frequency AC pulse with a voltage of ±V and a high-voltage, high-frequency AC pulse with a voltage of ±2H, and the optical response state does not change due to the AC stabilization effect of ±2H and is in an initialized state. A saturated reverse response state is maintained.
After applying this pulse group P 13 , pulse group P 14 or
P 15 maintains the saturated reverse response state.
そして、M本の時分割走査が終了すると、順次
次のM本のブロツクの初期化と時分割走査を行な
うのである。 When the M time-division scans are completed, initialization and time-division scan of the next M blocks are sequentially performed.
この例の場合も初期化パルス群P10および第1
のパルス群P12,P13においては、すべての正極性
のパルスに対して対称波形の負極性のパルスが存
在するものであり、第2のパルス群P14,P15にお
いては、正極性のパルスとこれと波形が対称な負
極性のパルスとが交互に生じるため、偏つた直流
電圧が印加されることがない。 In this example, the initialization pulse group P 10 and the first
In the second pulse group P 12 , P 13 , there is a negative polarity pulse with a symmetrical waveform to all the positive polarity pulses, and in the second pulse group P 14 , P 15 , there is a negative polarity pulse with a symmetrical waveform to all the positive polarity pulses. Since pulses and negative pulses whose waveforms are symmetrical are generated alternately, a biased DC voltage is not applied.
また、1画面の書換え時間TはT=(2×t×
N/M)+(2×t×N)=2×t(N+N/M)
で、Mを大きくとることで書換え時間を短縮でき
る。 Also, the rewriting time T for one screen is T=(2×t×
N/M)+(2×t×N)=2×t(N+N/M)
By setting M large, rewriting time can be shortened.
さらに、前記の例同様、低周波パルスに重畳す
る高周波交流パルスの振幅制御により中間調を得
ることも可能である。 Furthermore, as in the above example, it is also possible to obtain halftones by controlling the amplitude of the high frequency alternating current pulse superimposed on the low frequency pulse.
なお上記の説明では、+側の電圧によつて応答、
−側の電圧によつて逆応答すると呼称したが、応
答および逆応答は表裏一体のものであるので、逆
に+側の電圧で逆応答、−側の電圧で応答すると
呼称してもよい。 In the above explanation, the response depends on the voltage on the + side.
Although it has been referred to as a reverse response due to a voltage on the − side, since the response and reverse response are two sides of the same coin, it may also be referred to as a reverse response due to a voltage on the + side and a response due to a voltage on the − side.
ところで、各電極に供給する信号は上記に限る
ものではなく、種々の変更が可能であり、また、
必要に応じて適宜バイアス電圧を加えるようにし
てもよい。 By the way, the signals supplied to each electrode are not limited to the above, and various changes are possible.
A bias voltage may be applied as necessary.
さらに上記実施例では、第1図のごときマトリ
クス光学装置について述べたが、これに限らず、
ライン状に配置された光シヤツタアレーを複数の
ブロツク毎に分割してこれをマトリクス的に配線
した光プリンタ用の液晶シヤツタアレーの駆動に
も適用できることは言うまでもない。この場合、
逆応答状態を暗(光遮断)状態に設定するとコン
トラストを高くとれる。 Furthermore, in the above embodiment, a matrix optical device as shown in FIG. 1 was described, but the invention is not limited to this.
Needless to say, the present invention can also be applied to driving a liquid crystal shutter array for an optical printer in which an optical shutter array arranged in a line is divided into a plurality of blocks and wired in a matrix. in this case,
High contrast can be obtained by setting the reverse response state to a dark (light-blocking) state.
[発明の効果]
本発明によれば、初期化信号を用いることで一
走査電極における画素の書込み時につぎの走査電
極における画素を初期化しておくことができ、画
素の書換え時間を短縮でき、しかも、画素に印加
されるパルスは、すべての正極性のパルスに対し
て負極性のパルスが存在するか、または、正極性
のパルスとこれと波形が対称な負極性のパルスと
が交互に生じるものであるため、偏つた直流電圧
が印加されることがなく、長時間駆動しても透明
電極の黒変や液晶の劣化を引き起こすことがな
い、などの大きな効果を有する。また書込みパル
スに含まれる高周波成分の振幅制御により、中間
調を含む安定した光学応答状態が得られる。[Effects of the Invention] According to the present invention, by using an initialization signal, pixels in the next scan electrode can be initialized when writing pixels in one scan electrode, and the time for rewriting pixels can be shortened. , the pulses applied to the pixels include a negative polarity pulse for every positive polarity pulse, or positive polarity pulses and negative polarity pulses whose waveforms are symmetrical to each other alternately. Therefore, a biased DC voltage is not applied, and even if the device is driven for a long time, it does not cause blackening of the transparent electrode or deterioration of the liquid crystal. Further, by controlling the amplitude of the high frequency component included in the write pulse, a stable optical response state including halftones can be obtained.
さらに、複数の走査電極における画素を同時に
初期化した後、所望の光学応答状態を書き込むこ
とにより、書換え時間を短縮することができる。 Furthermore, rewriting time can be shortened by writing a desired optical response state after simultaneously initializing pixels in a plurality of scan electrodes.
第1図はマトリクス型液晶光学装置の一例を示
した説明図、第2図は本発明を実現するための電
圧波形例を示した説明図、第3図は走査電極L1
〜LNへの信号供給タイミングを示した説明図、
第4図は画素に印加されるパルス例を示す波形
図、第5図、第6図および第7図はそれぞれ本発
明を実現するための他の波形例を示した説明図で
ある。
R1〜RX……制御電極、L1〜LN……走査電極、
RS1,RS2……初期化信号、S1,S2……選択信
号、NS1,NS′1,NS2……非選択信号、D1,D2
……データ信号、RD1,RD2……データ信号、C
……データ信号、CR……初期化制御信号、P1,
P2,P7,P10……初期化パルス群、P3,P4,P8,
P12,P13……第1のパルス群、P5,P6,P9,P14,
P15……第2のパルス群。
Fig. 1 is an explanatory diagram showing an example of a matrix type liquid crystal optical device, Fig. 2 is an explanatory diagram showing an example of a voltage waveform for realizing the present invention, and Fig. 3 is an explanatory diagram showing an example of a voltage waveform for realizing the present invention .
~L An explanatory diagram showing the signal supply timing to N ,
FIG. 4 is a waveform diagram showing an example of a pulse applied to a pixel, and FIGS. 5, 6, and 7 are explanatory diagrams showing other waveform examples for realizing the present invention, respectively. R 1 ~ R X ... Control electrode, L 1 ~ L N ... Scanning electrode,
RS 1 , RS 2 ... Initialization signal, S 1 , S 2 ... Selection signal, NS 1 , NS' 1 , NS 2 ... Non-selection signal, D 1 , D 2
...Data signal, RD 1 , RD 2 ...Data signal, C
...Data signal, C R ...Initialization control signal, P 1 ,
P 2 , P 7 , P 10 ... Initialization pulse group, P 3 , P 4 , P 8 ,
P 12 , P 13 ...first pulse group, P 5 , P 6 , P 9 , P 14 ,
P 15 ...Second pulse group.
Claims (1)
にし交流スタビライズ効果を有する液晶を複数の
走査電極と複数の制御電極間に介在させ、各電極
の交点において画素を形成してなるマトリクス型
液晶光学装置の駆動方法において、 各走査電極には、初期化信号およびこれに続く
選択信号を順次供給し、初期化信号および選択信
号の非供給時には非選択信号を供給し、 各制御電極には、液晶が交流スタビライズ効果
を呈する周波数に対応した高周波成分を含むデー
タ信号またはこの高周波成分を含まないデータ信
号を選択信号の供給に同期して供給し、 初期化信号とデータ信号との電位差によつて、
画素に初期化パルス群を印加して光学的に初期化
し、 選択信号とデータ信号との電位差によつて、画
素に第1のパルス群を印加して所望の光学応答状
態とし、 非選択信号とデータ信号との電位差によつて、
画素に第2のパルス群を印加して画素の光学応答
状態を交流スタビライズ効果によつて保持するも
のであつて、 初期化パルス群は、画素を光透過状態または光
遮断状態にするものであり、かつすべての正極性
のパルスに対して対称波形の負極性のパルスが存
在するものであり、 第1のパルス群は、画素を所望の光学応答状態
に変化させる書込みパルスまたは初期化パルス群
によつて初期化された状態を保持するパルスを含
み、かつすべての正極性のパルスに対して対称波
形の負極性のパルスが存在するものであり、 第2のパルス群は、交流スタビライズ効果を呈
する周波数を有し、かつ正極性のパルスとこれと
波形が対称な負極性のパルスとが交互に生じるも
のである ことを特徴とするマトリクス型液晶光学装置の駆
動方法。 2 上記液晶が、第2のパルス群における交流パ
ルスの周波数域で負の誘電異方性を示す強誘電液
晶である特許請求の範囲第1項記載のマトリクス
型液晶光学装置の駆動方法。 3 電界の印加方向によつて分子の配向状態を異
にし交流スタビライズ効果を有する液晶を複数の
走査電極と複数の制御電極間に介在させ、各電極
の交点において画素を形成してなるマトリクス型
液晶光学装置の駆動方法において、 各走査電極には、初期化信号およびこれに続く
選択信号を順次供給し、初期化信号および選択信
号の非供給時には非選択信号を供給し、 各制御電極には、液晶が交流スタビライズ効果
を呈する周波数に対応した高周波成分を含むデー
タ信号を選択信号の供給に同期して供給し、 初期化信号とデータ信号との電位差によつて、
画素に初期化パルス群を印加して光学的に初期化
し、 選択信号とデータ信号との電位差によつて、画
素に第1のパルス群を印加して所望の光学応答状
態とし、 非選択信号とデータ信号との電位差によつて、
画素に第2のパルス群を印加して画素の光学応答
状態を交流スタビライズ効果によつて保持するも
のであつて、 初期化パルス群は、画素を光透過状態または光
遮断状態にするものであり、かつすべての正極性
のパルスに対して対称波形の負極性のパルスが存
在するものであり、 第1のパルス群は、高周波成分を含み、画素を
所望の光学応答状態に変化させる書込みパルスま
たは初期化パルス群によつて初期化された状態を
保持するパルスを含み、かつすべての正極性のパ
ルスに対して対称波形の負極性のパルスが存在す
るものであり、 第2のパルス群は、交流スタビライズ効果を呈
する周波数を有し、かつ正極性のパルスとこれと
波形が対称な負極性のパルスとが交互に生じるも
のであり、 階調に応じて、データ信号の高周波成分の振幅
を変更することにより、書込みパルスの高周波成
分の振幅を調整し、中間調を含む所望の光学応答
状態を得る ことを特徴とするマトリクス型液晶光学装置の駆
動方法。 4 上記液晶が、第2のパルス群における交流パ
ルスの周波数域で負の誘電異方性を示す強誘電液
晶である特許請求の範囲第3項記載のマトリクス
型液晶光学装置の駆動方法。 5 電界の印加方向によつて分子の配向状態を異
にし交流スタビライズ効果を有する液晶を複数の
走査電極と複数の制御電極間に介在させ、各電極
の交点において画素を形成してなるマトリクス型
液晶光学装置の駆動方法において、 複数の走査電極に同時に初期化信号を供給した
後、この初期化信号が供給された各走査電極に順
次選択信号供給し、初期化信号および選択信号の
非供給時には非選択信号を供給し、 各制御電極には、初期化信号の供給に同期して
初期化制御信号を供給し、選択信号の供給に同期
して液晶が交流スタビライズ効果を呈する周波数
に対応した高周波成分を含むデータ信号またはこ
の高周波成分を含まないデータ信号を供給し、 初期化信号と初期化制御信号との電位差によつ
て、画素に初期化パルス群を印加して光学的に初
期化し、 選択信号とデータ信号との電位差によつて、画
素に第1のパルス群を印加して所望の光学応答状
態とし、 非選択信号とデータ信号との電位差によつて、
画素に第2のパルス群を印加して画素の光学応答
状態を交流スタビライズ効果によつて保持するも
のであつて、 初期化パルス群は、画素を光透過状態または光
遮断状態にするものであり、かつすべての正極性
のパルスに対して対称波形の負極性のパルスが存
在するものであり、 第1のパルス群は、画素を所望の光学応答状態
に変化させる書込みパルスまたは初期化パルス群
によつて初期化された状態を保持するパルスを含
み、かつすべての正極性のパルスに対して対称波
形の負極性のパルスが存在するものであり、 第2のパルス群は、交流スタビライズ効果を呈
する周波数を有し、正極性のパルスとこれと波形
が対称な負極性のパルスとが交互に生じるもので
ある ことを特徴とするマトリクス型液晶光学装置の駆
動方法。 6 上記液晶が、第2のパルス群における交流パ
ルスの周波数域で負の誘電異方性を示す強誘電液
晶である特許請求の範囲第5項記載のマトリクス
型液晶光学装置の駆動方法。 7 電界の印加方向によつて分子の配向状態を異
にし交流スタビライズ効果を有する液晶を複数の
走査電極と複数の制御電極間に介在させ、各電極
の交点において画素を形成してなるマトリクス型
液晶光学装置の駆動方法において、 複数の走査電極に同時に初期化信号を供給した
後、この初期化信号が供給された各走査電極に順
次選択信号供給し、初期化信号および選択信号の
非供給時には非選択信号を供給し、 各制御電極には、初期化信号の供給に同期して
初期化制御信号を供給し、選択信号の供給に同期
して液晶が交流スタビライズ効果を呈する周波数
に対応した高周波成分を含むデータ信号を供給
し、 初期化信号と初期化制御信号との電位差によつ
て、画素に初期化パルス群を印加して光学的に初
期化し、 選択信号とデータ信号との電位差によつて、画
素に第1のパルス群を印加して所望の光学応答状
態とし、 非選択信号とデータ信号との電位差によつて、
画素に第2のパルス群を印加して画素の光学応答
状態を交流スタビライズ効果によつて保持するも
のであつて、 初期化パルス群は、画素を光透過状態または光
遮断状態にするものであり、かつすべての正極性
のパルスに対して対称波形の負極性のパルスが存
在するものであり、 第1のパルス群は、高周波成分を含み、画素を
所望の光学応答状態に変化させる書込みパルスま
たは初期化パルス群によつて初期化された状態を
保持するパルスを含み、かつすべての正極性のパ
ルスに対して対称波形の負極性のパルスが存在す
るものであり、 第2のパルス群は、交流スタビライズ効果を呈
する周波数を有し、かつ正極性のパルスとこれと
波形が対称な負極性のパルスとが交互に生じるも
のであり、 階調に応じて、データ信号の高周波成分の振幅
を変更することにより、書込みパルスの高周波成
分の振幅を調整し、中間調を含む所望の光学応答
状態を得る ことを特徴とするマトリクス型液晶光学装置の駆
動方法。 8 上記液晶が、第2のパルス群における交流パ
ルスの周波数域で負の誘電異方性を示す強誘電液
晶である特許請求の範囲第7項記載のマトリクス
型液晶光学装置の駆動方法。[Claims] 1. A liquid crystal that changes the orientation of molecules depending on the direction of application of an electric field and has an AC stabilizing effect is interposed between a plurality of scanning electrodes and a plurality of control electrodes, and pixels are formed at the intersections of each electrode. In the driving method of a matrix type liquid crystal optical device, an initialization signal and a subsequent selection signal are sequentially supplied to each scanning electrode, and when the initialization signal and the selection signal are not supplied, a non-selection signal is supplied, A data signal containing a high frequency component corresponding to the frequency at which the liquid crystal exhibits an AC stabilizing effect or a data signal not containing this high frequency component is supplied to each control electrode in synchronization with the supply of the selection signal, and the initialization signal and data signal are supplied to each control electrode in synchronization with the supply of the selection signal. Due to the potential difference between
A group of initialization pulses is applied to the pixel to optically initialize it, and a first group of pulses is applied to the pixel to set it to a desired optical response state depending on the potential difference between the selection signal and the data signal, and a non-selection signal and Due to the potential difference with the data signal,
A second pulse group is applied to the pixel to maintain the optical response state of the pixel by an AC stabilizing effect, and the initialization pulse group is to put the pixel into a light transmitting state or a light blocking state. , and there is a negative polarity pulse with a symmetrical waveform for every positive polarity pulse, and the first pulse group is a write pulse or initialization pulse group that changes the pixel to a desired optical response state. Therefore, there is a negative polarity pulse that includes a pulse that maintains the initialized state and has a symmetrical waveform with respect to all positive polarity pulses, and the second pulse group exhibits an AC stabilizing effect. 1. A method for driving a matrix type liquid crystal optical device, characterized in that pulses of positive polarity having a high frequency and pulses of negative polarity having a waveform symmetrical therewith are alternately generated. 2. The method of driving a matrix type liquid crystal optical device according to claim 1, wherein the liquid crystal is a ferroelectric liquid crystal that exhibits negative dielectric anisotropy in the frequency range of AC pulses in the second pulse group. 3. A matrix type liquid crystal in which a liquid crystal that has an alternating current stabilizing effect by varying the orientation of molecules depending on the direction of electric field application is interposed between a plurality of scanning electrodes and a plurality of control electrodes, and pixels are formed at the intersections of each electrode. In a method for driving an optical device, an initialization signal and a subsequent selection signal are sequentially supplied to each scanning electrode, a non-selection signal is supplied when the initialization signal and selection signal are not supplied, and each control electrode is supplied with: A data signal containing a high frequency component corresponding to the frequency at which the liquid crystal exhibits an AC stabilizing effect is supplied in synchronization with the supply of the selection signal, and due to the potential difference between the initialization signal and the data signal,
A group of initialization pulses is applied to the pixel to optically initialize it, and a first group of pulses is applied to the pixel to set it to a desired optical response state depending on the potential difference between the selection signal and the data signal, and a non-selection signal and Due to the potential difference with the data signal,
A second pulse group is applied to the pixel to maintain the optical response state of the pixel by an AC stabilizing effect, and the initialization pulse group is to put the pixel into a light transmitting state or a light blocking state. , and there is a pulse of negative polarity with a symmetrical waveform with respect to all the pulses of positive polarity, and the first pulse group is a write pulse or pulse that includes a high frequency component and changes the pixel to a desired optical response state The second pulse group includes a pulse that maintains the state initialized by the initialization pulse group, and has a negative polarity pulse with a symmetrical waveform to all positive polarity pulses, and the second pulse group is It has a frequency that exhibits an AC stabilizing effect, and pulses of positive polarity and pulses of negative polarity whose waveforms are symmetrical are generated alternately, and the amplitude of the high frequency component of the data signal is changed according to the gradation. A method for driving a matrix type liquid crystal optical device, which comprises adjusting the amplitude of a high frequency component of a write pulse to obtain a desired optical response state including halftones. 4. The method of driving a matrix-type liquid crystal optical device according to claim 3, wherein the liquid crystal is a ferroelectric liquid crystal exhibiting negative dielectric anisotropy in the frequency range of AC pulses in the second pulse group. 5. A matrix type liquid crystal in which a liquid crystal that has an AC stabilizing effect by varying the orientation of molecules depending on the direction of electric field application is interposed between a plurality of scanning electrodes and a plurality of control electrodes, and pixels are formed at the intersections of each electrode. In a method for driving an optical device, an initialization signal is simultaneously supplied to a plurality of scan electrodes, and then a selection signal is sequentially supplied to each scan electrode to which this initialization signal has been supplied, and when the initialization signal and selection signal are not supplied, a non-initialization signal is supplied. A selection signal is supplied, an initialization control signal is supplied to each control electrode in synchronization with the supply of the initialization signal, and a high frequency component corresponding to the frequency at which the liquid crystal exhibits an AC stabilizing effect is synchronized with the supply of the selection signal. or a data signal that does not include this high frequency component, and optically initializes the pixel by applying an initialization pulse group to the pixel based on the potential difference between the initialization signal and the initialization control signal, and generates the selection signal. A first group of pulses is applied to the pixel to achieve the desired optical response state by the potential difference between the non-selection signal and the data signal, and by the potential difference between the non-selection signal and the data signal,
A second pulse group is applied to the pixel to maintain the optical response state of the pixel by an AC stabilizing effect, and the initialization pulse group is to put the pixel into a light transmitting state or a light blocking state. , and there is a negative polarity pulse with a symmetrical waveform for every positive polarity pulse, and the first pulse group is a write pulse or initialization pulse group that changes the pixel to a desired optical response state. Therefore, there is a negative polarity pulse that includes a pulse that maintains the initialized state and has a symmetrical waveform with respect to all positive polarity pulses, and the second pulse group exhibits an AC stabilizing effect. 1. A method for driving a matrix type liquid crystal optical device, characterized in that pulses of positive polarity and pulses of negative polarity having a waveform symmetrical therewith are alternately generated. 6. The method of driving a matrix type liquid crystal optical device according to claim 5, wherein the liquid crystal is a ferroelectric liquid crystal exhibiting negative dielectric anisotropy in the frequency range of AC pulses in the second pulse group. 7. A matrix type liquid crystal in which a liquid crystal that has an AC stabilizing effect by changing the orientation of molecules depending on the direction of electric field application is interposed between a plurality of scanning electrodes and a plurality of control electrodes, and pixels are formed at the intersections of each electrode. In a method for driving an optical device, an initialization signal is simultaneously supplied to a plurality of scan electrodes, and then a selection signal is sequentially supplied to each scan electrode to which this initialization signal has been supplied, and when the initialization signal and selection signal are not supplied, a non-initialization signal is supplied. A selection signal is supplied, an initialization control signal is supplied to each control electrode in synchronization with the supply of the initialization signal, and a high frequency component corresponding to the frequency at which the liquid crystal exhibits an AC stabilizing effect is synchronized with the supply of the selection signal. A group of initialization pulses is applied to the pixel to optically initialize it by a potential difference between the initialization signal and the initialization control signal, and a voltage difference between the selection signal and the data signal is applied to the pixel. , applying a first group of pulses to the pixel to bring it into the desired optical response state, and by the potential difference between the non-selection signal and the data signal,
A second pulse group is applied to the pixel to maintain the optical response state of the pixel by an AC stabilizing effect, and the initialization pulse group is to put the pixel into a light transmitting state or a light blocking state. , and there is a pulse of negative polarity with a symmetrical waveform with respect to all the pulses of positive polarity, and the first pulse group is a write pulse or pulse that includes a high frequency component and changes the pixel to a desired optical response state The second pulse group includes a pulse that maintains the state initialized by the initialization pulse group, and has a negative polarity pulse with a symmetrical waveform to all positive polarity pulses, and the second pulse group is It has a frequency that exhibits an AC stabilizing effect, and pulses of positive polarity and pulses of negative polarity whose waveforms are symmetrical are generated alternately, and the amplitude of the high frequency component of the data signal is changed according to the gradation. A method for driving a matrix type liquid crystal optical device, which comprises adjusting the amplitude of a high frequency component of a write pulse to obtain a desired optical response state including halftones. 8. The method of driving a matrix type liquid crystal optical device according to claim 7, wherein the liquid crystal is a ferroelectric liquid crystal that exhibits negative dielectric anisotropy in the frequency range of the AC pulses in the second pulse group.
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62112937A JPS63278034A (en) | 1987-05-08 | 1987-05-08 | Driving method for liquid crystal display device |
| DE3815400A DE3815400A1 (en) | 1987-05-08 | 1988-05-05 | METHOD FOR CONTROLLING AN OPTICAL LIQUID CRYSTAL DEVICE |
| GB8810837A GB2205984B (en) | 1987-05-08 | 1988-05-06 | Method of driving an electro-optical apparatus |
| FR888806123A FR2615007B1 (en) | 1987-05-08 | 1988-05-06 | METHOD OF ATTACKING AN OPTICAL LIQUID CRYSTAL DEVICE |
| KR1019880005311A KR920007169B1 (en) | 1987-05-08 | 1988-05-07 | Method for driving a liquid crystal apparatus |
| KR1019920006642A KR920007127B1 (en) | 1987-05-08 | 1992-04-21 | Method for driving a liquid crystal optical apparatus |
| HK1141/93A HK114193A (en) | 1987-05-08 | 1993-10-28 | Method of driving an electro-optical apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62112937A JPS63278034A (en) | 1987-05-08 | 1987-05-08 | Driving method for liquid crystal display device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS63278034A JPS63278034A (en) | 1988-11-15 |
| JPH0438333B2 true JPH0438333B2 (en) | 1992-06-24 |
Family
ID=14599227
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62112937A Granted JPS63278034A (en) | 1987-05-08 | 1987-05-08 | Driving method for liquid crystal display device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS63278034A (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2549433B2 (en) * | 1989-03-13 | 1996-10-30 | 株式会社日立製作所 | Electro-optical modulator driving method and printer |
| JP2730548B2 (en) * | 1996-11-05 | 1998-03-25 | 株式会社デンソー | Matrix type liquid crystal display |
-
1987
- 1987-05-08 JP JP62112937A patent/JPS63278034A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS63278034A (en) | 1988-11-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5691740A (en) | Liquid crystal apparatus and driving method | |
| US6567065B1 (en) | Ferroelectric liquid crystal display and method of driving the same | |
| KR920007168B1 (en) | Driving Method of Matrix Liquid Crystal Optical Device | |
| JPH09251154A (en) | Display device and method of operating display device | |
| JPH116994A (en) | Active matrix light modulator, display, and method for reducing the effects of asymmetric optical performance | |
| JPS61230197A (en) | Driving of electrooptic display unit | |
| US5006839A (en) | Method for driving a liquid crystal optical apparatus | |
| JP3302752B2 (en) | Driving method of antiferroelectric liquid crystal panel | |
| JPH0438333B2 (en) | ||
| JPH0438331B2 (en) | ||
| JPH0437412B2 (en) | ||
| JP2578490B2 (en) | Driving method of display device | |
| KR920007169B1 (en) | Method for driving a liquid crystal apparatus | |
| JPH0437411B2 (en) | ||
| JP2637517B2 (en) | Liquid crystal device | |
| JPH0437410B2 (en) | ||
| JP2637515B2 (en) | Liquid crystal device and driving method of liquid crystal element | |
| JPH0438332B2 (en) | ||
| JP2575198B2 (en) | Driving method of display device | |
| JP2580427B2 (en) | Driving method of matrix type liquid crystal optical device | |
| JPH0437409B2 (en) | ||
| KR920007128B1 (en) | Method for driving a liquid crystal optical apparatus | |
| JPS63281135A (en) | Method for driving liquid crystal display device | |
| EP1045270B1 (en) | Ferroelectric liquid crystal display and method for driving the same | |
| JPH03161790A (en) | Driving method for liquid crystal panel |