JPH0444342A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH0444342A JPH0444342A JP15170490A JP15170490A JPH0444342A JP H0444342 A JPH0444342 A JP H0444342A JP 15170490 A JP15170490 A JP 15170490A JP 15170490 A JP15170490 A JP 15170490A JP H0444342 A JPH0444342 A JP H0444342A
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- conductor
- conductors
- potential
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は半導体装置の構造に関するもので、特に詳細に
は寄生容量の影響を少なくした配線構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to the structure of a semiconductor device, and particularly relates to a wiring structure that reduces the influence of parasitic capacitance.
(従来の技術)
現在では以前より増して、高集積度かつ高速動作を同時
に満足する半導体装置が求められている。微細加工技術
の進歩に伴ない1989年には、集積度が0.8μ蒙ル
ールを有する製品が量産に乗ろうとしている。(Prior Art) Nowadays, more than ever before, there is a demand for semiconductor devices that simultaneously satisfy high integration and high-speed operation. With advances in microfabrication technology, mass production of products with a degree of integration of 0.8 μm rule began in 1989.
第3図は従来の半導体装置内における配線導体の配線図
を示す。同図において、401および402は配線導体
、Hは配線膜厚、Lは配線幅、Sは配線導体401と4
02との配線間隔である。FIG. 3 shows a wiring diagram of wiring conductors in a conventional semiconductor device. In the figure, 401 and 402 are wiring conductors, H is the wiring film thickness, L is the wiring width, and S is the wiring conductors 401 and 4.
This is the wiring interval with 02.
配線導体401および402は互いに平行に配置されて
いる。Wiring conductors 401 and 402 are arranged parallel to each other.
上記構造を有する半導体装置において、配線導体401
および402の間には寄生容量C12が存在する。また
配線導体401および402と図示しない半導体基板と
の間では接合容量が存在し、これらを各々C1およびC
2とする。上記した配線導体の等価回路を第4図に示す
。同図においてNl、N2.N20およびN22は配線
導体上のノード、R2、R20は配線抵抗を示す。In the semiconductor device having the above structure, the wiring conductor 401
A parasitic capacitance C12 exists between and 402. Further, there is a junction capacitance between the wiring conductors 401 and 402 and a semiconductor substrate (not shown), and these are connected to C1 and C1, respectively.
Set it to 2. FIG. 4 shows an equivalent circuit of the above wiring conductor. In the same figure, Nl, N2. N20 and N22 are nodes on the wiring conductor, and R2 and R20 are wiring resistances.
第5図はノードN1およびN2での電位の変化を示す図
である。縦軸は電位、横軸は経過時間を表わす。寄生容
量C12とノードN、およびN2の電位v1およびv2
の関係は次式で表わせる。FIG. 5 is a diagram showing changes in potential at nodes N1 and N2. The vertical axis represents potential and the horizontal axis represents elapsed time. Parasitic capacitance C12, node N, and potentials v1 and v2 of N2
The relationship can be expressed by the following equation.
△V2−Ce ΔVI (+)但し
、Ce = CI2 / (C2+ CI2 )このカ
ップリング・レシオ(Coupling Ratlo
)Ceは、主として配線膜厚Hおよび配線幅Sにより決
定される。ここで配線幅りと配線間隔Sとは同一の値を
有するものとする。この長さをデザインルール(D e
slgn Rule )とし、配線間隔Sで代表させ
る。ここでノードN1の電位の変化によるノードN2の
電位の変化を見る。例えば、ノードN1の電位がvI+
△■1に変化するとノードN2の電位は寄生容量CI2
の存在によりv2 +△v2に変化する。この△V2は
所定時間経過後減衰するのでノードN2の電位はV2に
戻る。この戻る割合、即ち回路時定数は、配線抵抗R2
0。△V2-Ce ΔVI (+) However, Ce = CI2 / (C2+ CI2) This coupling ratio (Coupling Ratlo
) Ce is mainly determined by the wiring film thickness H and the wiring width S. Here, it is assumed that the wiring width and the wiring interval S have the same value. This length is determined by the design rule (De
slgn Rule ) and is represented by the wiring interval S. Here, we will look at changes in the potential of node N2 due to changes in the potential of node N1. For example, the potential of node N1 is vI+
When it changes to △■1, the potential of node N2 becomes parasitic capacitance CI2
Due to the presence of , it changes to v2 + Δv2. Since this ΔV2 attenuates after a predetermined period of time, the potential of the node N2 returns to V2. This return rate, that is, the circuit time constant, is the wiring resistance R2
0.
R2、接合溶量C2および寄生容量CI2値により決定
される。第6図はカップリング・レシオCcとデザイン
ルールSとの関係を示した図である。It is determined by R2, junction melting amount C2, and parasitic capacitance CI2 value. FIG. 6 is a diagram showing the relationship between the coupling ratio Cc and the design rule S.
同図においてデザインルールSが狭くなるにつれ、カッ
プリング・レシオCcは大きい値をとる傾向がわかる。In the figure, it can be seen that as the design rule S becomes narrower, the coupling ratio Cc tends to take a larger value.
また、接合容量C2の値が小さくなるとカップリング・
レシオCcは大きい値をとる傾向がある。特に回路時定
数が大きい場合や△V2が大きい場合、元の電位に回復
するまでに時間がかかり過ぎノードN22に接合されて
いる素子が誤動作してしまうという問題があった。最近
では高集積化により配線間隔Sが縮小される傾向が強く
、それに伴なって寄生容量CI2はさらに増大する傾向
がある。このため、高速スイッチング動作を行なう素子
が組み込まれている場合特に影響が大きかった。このよ
うに従来の半導体装置では隣接配線導体間でクロストー
ク(相互干渉)が発生し誤動作を生じるという問題があ
った。Also, as the value of junction capacitance C2 becomes smaller, coupling
The ratio Cc tends to take a large value. Particularly when the circuit time constant is large or when ΔV2 is large, there is a problem in that it takes too much time to recover to the original potential and the element connected to node N22 malfunctions. Recently, there is a strong tendency for the interconnect spacing S to be reduced due to higher integration, and as a result, the parasitic capacitance CI2 tends to further increase. For this reason, the influence was particularly large when elements that perform high-speed switching operations were incorporated. As described above, conventional semiconductor devices have a problem in that crosstalk (mutual interference) occurs between adjacent wiring conductors, resulting in malfunctions.
ところで寄生容量CI2を減少させるため配線膜厚Hを
小さくすると配線抵抗R12が増大して回路時定数が増
大し、また配線導体がアルミニウム等で形成されている
と段差被覆性が低下する等弊害が多く実現的でない。By the way, if the wiring film thickness H is made smaller in order to reduce the parasitic capacitance CI2, the wiring resistance R12 will increase and the circuit time constant will increase, and if the wiring conductor is made of aluminum or the like, there will be problems such as a decrease in step coverage. Not very practical.
(発明が解決しようとする課題)
以上説明したように、従来において半導体装置は高集積
化かつ高速動作化される傾向がある。(Problems to be Solved by the Invention) As explained above, there has been a tendency for semiconductor devices to become highly integrated and operate at high speed.
これに伴なって配線間隔は狭くなる一方寄生容量は増大
する傾向にあった。従って、隣接配線導体間でクロスト
ークが発生し素子が誤動作するという問題があった。Along with this, the wiring spacing has become narrower while the parasitic capacitance has tended to increase. Therefore, there is a problem in that crosstalk occurs between adjacent wiring conductors and the device malfunctions.
そこで本発明は上記した問題に鑑みてなされたもので、
配線導体相互の寄生容量の影響を抑制してクロストーク
の発生を防ぎ素子が誤動作しない構造を有する信頼性の
高い半導体装置を提供することを目的とする。Therefore, the present invention was made in view of the above-mentioned problems.
It is an object of the present invention to provide a highly reliable semiconductor device having a structure in which the influence of parasitic capacitance between wiring conductors is suppressed to prevent crosstalk from occurring and elements do not malfunction.
[発明の構成]
(課題を解決するための手段)
本発明の半導体装置は所定間隔を保ち形成された複数の
配線導体と、前記複数の配線導体における所定の配線導
体の長さ方向に沿って隣接しかつこれと所定間隔を保っ
て形成せられた配線部材とを具備し、前記配線部材は所
定の一定した電位に保たれていること、を特徴としてお
り請求項(2)記載の半導体装置は、請求項(1)記載
の半導体装置において前記配線部材は電源電位またはグ
ラウンド電位と同電位に保たれていること、を特徴とし
ており請求項(3)記載の半導体装置は、請求項(1)
記載の半導体装置において前記配線部材と前記複数の配
線導体とは同一の材質で形成せられていること、を特徴
としている。[Structure of the Invention] (Means for Solving the Problems) A semiconductor device of the present invention includes a plurality of wiring conductors formed at predetermined intervals, and a plurality of wiring conductors formed along the length direction of a predetermined wiring conductor in the plurality of wiring conductors. 2. The semiconductor device according to claim 2, further comprising a wiring member formed adjacent to the wiring member at a predetermined interval therebetween, and wherein the wiring member is maintained at a predetermined constant potential. The semiconductor device according to claim (1) is characterized in that the wiring member is maintained at the same potential as a power supply potential or a ground potential, and the semiconductor device according to claim (3) is characterized in that the semiconductor device according to claim (1) )
The semiconductor device described above is characterized in that the wiring member and the plurality of wiring conductors are formed of the same material.
(作用)
本発明では隣接する配線導体間に沿って配線部材を設け
、これを所定の一定した電位に保つ一方の配線導体の電
位が変化すると、この配線導体および配線部材間の寄生
容量が充放電される。しかしこの充放電は配線部材を介
して瞬時に行なわれる。よって隣接する配線導体間でク
ロストークが発生し素子が誤動作することはなく信頼性
の高い半導体装置を得ることができる−0
(実施例)
本発明の実施例を図面を参照して説明する。(Function) In the present invention, a wiring member is provided along between adjacent wiring conductors, and when the potential of one wiring conductor changes, which maintains the wiring member at a predetermined constant potential, the parasitic capacitance between the wiring conductor and the wiring member is filled. Discharged. However, this charging and discharging is instantaneously performed via the wiring member. Therefore, it is possible to obtain a highly reliable semiconductor device without crosstalk occurring between adjacent wiring conductors and malfunctioning of elements. (Embodiment) An embodiment of the present invention will be described with reference to the drawings.
第1図は本実施例の半導体装置内における配線図を示す
。同図において従来例と同一の構成要素には同一の符号
を付しその説明を省略する。同図において、配線導体1
01および102は互いに平行に配置されている。これ
らの配線導体101および102間には配線部材、例え
ばシールド配線導体103がこれらの配線導体に沿って
平行に配置されている。CI3は配線導体101とシー
ルド配線導体103との間の寄生容量、C23は配線導
体102とシールド配線導体103との間の寄生容量で
ある。R3はシールド配線導体103と半導体基板(図
示せず)との間の配線抵抗である。FIG. 1 shows a wiring diagram within the semiconductor device of this embodiment. In the figure, the same components as in the conventional example are given the same reference numerals, and their explanations will be omitted. In the same figure, wiring conductor 1
01 and 102 are arranged parallel to each other. A wiring member, for example a shield wiring conductor 103, is arranged between these wiring conductors 101 and 102 in parallel along these wiring conductors. CI3 is the parasitic capacitance between the wiring conductor 101 and the shield wiring conductor 103, and C23 is the parasitic capacitance between the wiring conductor 102 and the shield wiring conductor 103. R3 is the wiring resistance between the shield wiring conductor 103 and the semiconductor substrate (not shown).
シールド配線導体103は所定の電位(例えばV5g、
Vcc等)に保たれる。The shield wiring conductor 103 has a predetermined potential (for example, V5g,
Vcc, etc.).
上記構成を有する本実施例の半導体装置の動作について
説明する。配線導体101の電位が変化した場合、寄生
容量CI3が充放電される。しかし、シールド配線導体
103は例えば外部Vssラインを介して所定電圧に保
たれておりかつ配線抵抗R3は小さい値を有するのでこ
の充放電は瞬時に行なわれる。よって配線導体102に
影響を及ぼすことはない。また、配線導体102の電位
が変化した場合も上記と同様に考えられることができる
ので配線導体101に影響を及ぼすことはない。The operation of the semiconductor device of this example having the above configuration will be explained. When the potential of the wiring conductor 101 changes, the parasitic capacitance CI3 is charged and discharged. However, since the shield wiring conductor 103 is maintained at a predetermined voltage via, for example, an external Vss line, and the wiring resistance R3 has a small value, this charging and discharging occurs instantaneously. Therefore, the wiring conductor 102 is not affected. Further, even if the potential of the wiring conductor 102 changes, it can be considered in the same manner as above, and therefore the wiring conductor 101 will not be affected.
例えば、50μmの配線幅で長辺が10−一のIMDR
AM並チップの長辺方向にVssラインを配線し、これ
とシールド配線導体を接続した場合を考える。このとき
、これらの配線導体をアルミニウムで形成し、デザイン
ルールS−0,5μ置とする。この場合、配線抵抗R3
は6Ω程度となり、寄生容量CI3は0.3469Fと
なる。従って寄生容量CI3が充放電する時定数は、約
2 psecとなり、これは極めて短い時間である。こ
れは、シールド配線503がない場合の2000分の1
の時間に相当する。よって高速スイッチ°ング動作を必
要とする素子を有する半導体装置に本実施例で示した配
線構造を用いると十分効果がある。For example, an IMDR with a wiring width of 50 μm and a long side of 10-1
Consider the case where a Vss line is wired in the long side direction of an AM-sized chip and connected to a shield wiring conductor. At this time, these wiring conductors are formed of aluminum, and the design rule is set to S-0 at 5μ intervals. In this case, wiring resistance R3
is approximately 6Ω, and the parasitic capacitance CI3 is 0.3469F. Therefore, the time constant for charging and discharging the parasitic capacitance CI3 is approximately 2 psec, which is an extremely short time. This is 1/2000 of the case without the shield wiring 503.
corresponds to the time of Therefore, the use of the wiring structure shown in this embodiment in a semiconductor device having an element requiring high-speed switching operation is sufficiently effective.
二のように、本実施例ではシールド配線導体103を配
線導体101および102の間に設けたので従来のよう
に寄生容量の影響によりクロストークが発生し素子か誤
動作することはほとんどなくなった。2, in this embodiment, the shield wiring conductor 103 is provided between the wiring conductors 101 and 102, so that crosstalk caused by the influence of parasitic capacitance and malfunction of the element as in the conventional case is almost eliminated.
ところで、シールド配線導体103を取り除き配線の間
隔Sを配線幅りの3倍とした場合(従来例と比較して配
線間隔は3倍となる。S−3L)寄生容量は、従来例に
おける寄生容量CI2と比較して3分の1となり、また
カップリング・レシオCcも約3分の1となる。しかし
、配線間隔Sを上記した間隔に保つよりもシールド配線
103を設置した方が寄生容量の影響が少ない。By the way, when the shield wiring conductor 103 is removed and the wiring spacing S is made three times the wiring width (the wiring spacing is three times as large as that of the conventional example. S-3L), the parasitic capacitance is the same as that of the conventional example. It is one third of CI2, and the coupling ratio Cc is also about one third. However, the effect of parasitic capacitance is smaller when the shield wiring 103 is installed than when the wiring spacing S is maintained at the above-mentioned interval.
尚、シールド配線導体の材質は、配線導体と同じ材質を
用いてもよい。また、シールド配線導体は配線導体間に
必らず設ける必要はなく、誤動作の発生を防ぎたい素子
と接続された配線導体のみに隣接して設ければよい。Note that the shield wiring conductor may be made of the same material as the wiring conductor. Further, the shield wiring conductor does not necessarily need to be provided between the wiring conductors, and may be provided only adjacent to the wiring conductor connected to the element whose occurrence of malfunction is to be prevented.
[発明の効果]
以上説明したように本発明の半導体装置は、配線導体間
に所定の一定した電位に保った配線部材を設けた構造に
した。よって、配線導体の電位が変化しクロストークが
発生しても、これに隣接する配線導体の電位が変動し素
子を誤動作させることはなくなる。従って、信頼性の高
い半導体装置を提供することができる。特に高集積度化
、高速動作化された半導体装置にも効果がある。[Effects of the Invention] As explained above, the semiconductor device of the present invention has a structure in which a wiring member maintained at a predetermined constant potential is provided between wiring conductors. Therefore, even if the potential of the wiring conductor changes and crosstalk occurs, the potential of the adjacent wiring conductor will not change and the device will not malfunction. Therefore, a highly reliable semiconductor device can be provided. It is particularly effective for semiconductor devices with high integration and high speed operation.
第1図は本実施例の半導体装置の配線図、第2図は第1
図の半導体装置の等価回路図、第3図は従来例の半導体
の配線図、第4図は第3図の半導体装置の等価回路図、
第5図はノードN、およびN2の電位の変化を示した図
、第6図はカップリング・レシオとデザインルールとの
関係図である。
101.102・・・配線導体
103・・・シールド配線導体
c、、c2・・・接合容量
C10,C23・・寄生容量
L・・・配線幅
N、・ N2 、 N2(、、N2.・・・ノードR
3
R2o・・・配線抵抗
S・・・配線間隔Figure 1 is a wiring diagram of the semiconductor device of this example, and Figure 2 is the wiring diagram of the semiconductor device of this embodiment.
3 is a wiring diagram of a conventional semiconductor device, FIG. 4 is an equivalent circuit diagram of the semiconductor device shown in FIG. 3,
FIG. 5 is a diagram showing changes in the potentials of nodes N and N2, and FIG. 6 is a diagram showing the relationship between coupling ratio and design rule. 101.102... Wiring conductor 103... Shield wiring conductor c,, c2... Junction capacitance C10, C23... Parasitic capacitance L... Wiring width N, N2, N2 (,, N2...・Node R
3 R2o...Wiring resistance S...Wiring spacing
Claims (3)
に沿って隣接しかつこれと所定間隔を保って形成せられ
た配線部材とを具備し、 前記配線部材は所定の一定した電位に保たれていること
、 を特徴とする半導体装置。(1) A plurality of wiring conductors formed at predetermined intervals, and a wiring member formed adjacent to a predetermined wiring conductor in the length direction of the plurality of wiring conductors and at a predetermined interval therefrom. A semiconductor device comprising: the wiring member being maintained at a predetermined constant potential.
同電位に保たれていること、 を特徴とした請求項(1)記載の半導体装置。(2) The semiconductor device according to claim (1), wherein the wiring member is maintained at the same potential as a power supply potential or a ground potential.
質で形成せられていること、 を特徴とする請求項(1)記載の半導体装置。(3) The semiconductor device according to claim (1), wherein the wiring member and the plurality of wiring conductors are made of the same material.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15170490A JPH0444342A (en) | 1990-06-12 | 1990-06-12 | Semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP15170490A JPH0444342A (en) | 1990-06-12 | 1990-06-12 | Semiconductor device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0444342A true JPH0444342A (en) | 1992-02-14 |
Family
ID=15524447
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP15170490A Pending JPH0444342A (en) | 1990-06-12 | 1990-06-12 | Semiconductor device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0444342A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7096436B2 (en) | 2000-03-15 | 2006-08-22 | International Business Machines Corporation | Macro design techniques to accommodate chip level wiring and circuit placement across the macro |
| JP2013040857A (en) * | 2011-08-17 | 2013-02-28 | Seiko Epson Corp | Physical quantity sensor and electronic apparatus |
-
1990
- 1990-06-12 JP JP15170490A patent/JPH0444342A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7096436B2 (en) | 2000-03-15 | 2006-08-22 | International Business Machines Corporation | Macro design techniques to accommodate chip level wiring and circuit placement across the macro |
| JP2013040857A (en) * | 2011-08-17 | 2013-02-28 | Seiko Epson Corp | Physical quantity sensor and electronic apparatus |
| US9310393B2 (en) | 2011-08-17 | 2016-04-12 | Seiko Epson Corporation | Physical quantity sensor and electronic apparatus |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6137167A (en) | Multichip module with built in repeaters and method | |
| KR0185252B1 (en) | Semiconductor integrated circuit device | |
| JPH0572744B2 (en) | ||
| DE10101066A1 (en) | Driver circuit, receive circuit and signal transmission bus system | |
| US3518451A (en) | Gating system for reducing the effects of negative feedback noise in multiphase gating devices | |
| JP3409938B2 (en) | Power-on reset circuit | |
| US6549029B1 (en) | Circuit and method for measuring capacitance | |
| JPH0444342A (en) | Semiconductor device | |
| JP2570610B2 (en) | Semiconductor device | |
| US20010025993A1 (en) | Semiconductor device | |
| KR100246592B1 (en) | Semiconductor integrated circuit chip | |
| JPH0212027B2 (en) | ||
| JPS6329962A (en) | Semiconductor device | |
| JPH0470006A (en) | LSI power supply circuit | |
| JPS612342A (en) | Semiconductor integrated circuit device | |
| IT9009396A1 (en) | A TWO-CIRCUIT BUFFER SUITABLE TO SUPPORT A HIGH NOISE MARGIN | |
| US9847288B2 (en) | Semiconductor having protective lines | |
| JPS6390842A (en) | Semiconductor integrated circuit | |
| JPH09246476A (en) | Power supply lines and method of planning layout of them in semiconductor integrated circuit | |
| JPH03250918A (en) | MISFET logic circuit | |
| KR0123784B1 (en) | Delay Circuit Using Linear Element | |
| KR20040008498A (en) | ESD Protection curcuit | |
| JPH0465867A (en) | semiconductor equipment | |
| JPH0536947A (en) | Semiconductor integrated circuit device | |
| JPH0513680A (en) | Semiconductor device |